Sorghum Domestication and Diversification: A Current Archaeobotanical Perspective

  • Dorian Q. Fuller
  • Chris J. StevensEmail author


Sorghum bicolor, one of the world’s five most important crops, originated in Africa. While this has long been clear, accumulating data from both archaeobotany and genetics, provides the basis for a new overview on the domestication process, racial evolution, and geographical dispersal of sorghum. Archaeobotanical finds from 113 sites in Africa and Eurasia are reviewed and mapped. Of these only 16 provide identifications of probable morphological races. Domestication is evidently taking place more than 3000 years BC in the eastern Sudan near the Atbara and Gash rivers. Early domesticated race bicolor then spread to South Asia around 2000 BC and to the Niger Basin in West Africa after 1000 BC. The framework of five cultivated races remains useful, with the original domesticated race bicolor being characterized by tight-fitting hulls requiring dehusking and the other races representing subsequent parallel evolution for free-threshing and larger-grained cultivars. This took place at least three times, including race ‘caudatum’ focused initially on the Sahelian region race ‘durra’ that evolved probably in India, and race ‘guinea’ that evolved in forested West Africa. Early race guinea in turn produced an even more forest adapted ‘mageritiferum’ type that appears to be ancestral to southern African guinea and ‘kafir’ sorghums, implying a dispersal across the central African rainforests. In contrast other eastern African caudatums and ‘bicolor’ types presumably followed a savannah dispersal. In addition to the early dispersal of race bicolor from Africa to India, which was ancestral to East Asian sorghums, a later dispersal of guinea types is inferred to have taken place from southeastern Africa across the Indian Ocean.


Archaeology Genetics Races Nubia India 



This research has been carried out as part of the “Comparative Pathways to Agriculture” project, funded by a European Research Council advanced grant (No. 323842). We are grateful to our colleagues who have contributed to our Old World Crops Archaeobotanical Databse (OWCAD), including Leilani Lucas, Charlene Murphy, Louise Champion and Fabio Silva. We also thank Alem Beldados, Andrea Manzo, and Frank Winchell for brining to our attention new evidence from Sudan, and Alison Crowther and Nicole Boivin for bringing to our attention new samples from eastern Africa. Lastly, we thank peer-reviewers and editors for their helpful suggestions.


  1. Acland JD (1971) East African crops. Longman, LondonGoogle Scholar
  2. Aldrich PR, Doebley J (1992) Restriction fragment variation in the nuclear and chloroplast genomes of cultivated and wild Sorghum bicolor. Theor Appl Genet 85:293–302CrossRefPubMedGoogle Scholar
  3. Appa Rao S, Prasada Rao KE, Mengesha MH et al (1996) Morphological diversity in sorghum germplasm from India. Genet Resour Crop Evol 43(6):559–567CrossRefGoogle Scholar
  4. Barakat H, Fahmy el-Din AG (1999) Wild grasses as ‘Neolithic’ food resources in the eastern Sahara: a review of the evidence from Egypt. In: van der Veen M (ed) The exploitation of plant resources in ancient Africa. Plenum Press, New York, pp 33–46CrossRefGoogle Scholar
  5. Beldados A, Costantini L (2011) Sorghum exploitation at Kassala and its environs, Northeastern Sudan in the second and first millennium BC. Nyame Akuma 75:33–39Google Scholar
  6. Beldados A, Manzo A, Murphy C et al. (2018) Evidence of sorghum cultivation and introduced West Africa crops in the second millennium BCE at Kassala, Eastern SudanGoogle Scholar
  7. Bigga G, Kahlheber S (2011) From gathering to agricultural intensification: archaeobotanical remains from Mege, Chad Basin, NE Nigeria. In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African Past: current approaches to African archaeobotany. Africa Magna Verlag, Frankfurt, pp 19–45Google Scholar
  8. Billot C, Ramu P, Bouchet S et al (2013) Massive Sorghum collection genotyped with SSR Markers to enhance use of global genetic resources. PLoS ONE 8(4):e59714. Scholar
  9. Blench RM (2006) Archaeology language and the African past. Altamira Press, LanhamGoogle Scholar
  10. Blench RM (2009) Bananas and plantains in Africa: re-interpreting the linguistic evidence. Ethnobotany Res Appl 7:363–380CrossRefGoogle Scholar
  11. Boivin N, Crowther A, Helm R et al (2013) East Africa and Madagascar in the Indian Ocean world. J World Prehist 26(3):213–281CrossRefGoogle Scholar
  12. Boivin N, Crowther A, Prendergast M et al (2014) Indian Ocean food globalisation and Africa. Afr Archaeol Rev 31(4):547–581CrossRefGoogle Scholar
  13. Bonjean APA (2010) Origins and historical diffusion in China of major native and alien cereals. In: He Z, Bonjean APA (eds) Cereals in China. Mexico, CIMMYT, pp 1–14Google Scholar
  14. Borlaug NE, Axtell J, Burton GW et al (1996) Lost crops of Africa Grains, vol I. National Academy Press, Washington DCGoogle Scholar
  15. Bosi G, Mercuri AM, Guarnieri C et al (2009) Luxury food and ornamental plants at the 15th century AD Renaissance court of the Este family (Ferrara, northern Italy). Veg Hist Archaeobot 18(5):389–402CrossRefGoogle Scholar
  16. Bostoen K (2014) Wild trees in the subsistence economy of early Bantu speech communities: a historical-linguistic approach. In: Stevens CJ, Nixon S, Murray MA, Fuller DQ (eds) Archaeology of African Plant Use. Left Coast Press, Walnut Creek, pp 129–140Google Scholar
  17. Brown PJ, Myles S, Kresovich S (2011) Genetic support for phenotype-based racial classification in Sorghum. Crop Sci 51:224–230CrossRefGoogle Scholar
  18. Buonincontri M, Moser D, Allevato E et al (2014) Farming in a rural settlement in central Italy: cultural and environmental implications of crop production through the transition from Lombard to Frankish influence (8th–11th centuries ad). Veg Hist Archaeobot 23(6):775–788CrossRefGoogle Scholar
  19. Casa AM, Pressoir G, Brown PJ et al (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48(1):30–40CrossRefGoogle Scholar
  20. Chaix L, Honegger M (2015) New data on animal exploitation from the Mesolithic to the Neolithic periods in Northern Sudan. In: Kerner S, Dann RJ, Bangsgaard P (eds) Climate and ancient societies. Museum of Tusculanum Press, Copenhagen, pp 197–209Google Scholar
  21. Champion L, Fuller DQ (2018) New evidence on the development of millet and rice economies in the Niger river basin: archaeobotanical results from Benin. Plants and People in the African Past 529–547Google Scholar
  22. Chirikure S, Manyanga M, Pollard AM et al (2014) Zimbabwe culture before Mapungubwe: new evidence from Mapela Hill South-Western Zimbabwe. PLoS ONE 9(10):e111224. Scholar
  23. Clapham AJ, Rowley-Conwy PA (2007) New discoveries at Qasr Ibrim, Lower Nubia. In: Cappers RTJ (ed) Fields of change: progress in African archaeobotany. The Netherlands: Barkhuis & Groningen University Library, Groningen, pp 157–164Google Scholar
  24. Clark JD (1984) Prehistoric cultural continuity and the economic change in the Central Sudan in the early Holocene. In: Clark JD, Brandt SA (eds) From hunters to farmers, the causes and consequences of food production in Africa. University of California Press, Berkley, pp 113–126Google Scholar
  25. Cleuziou S, Costantini L (1980) Premiers éléments sur l’agriculture protohistorique de l’Arabie Orientale. Paléorient 6:245–251CrossRefGoogle Scholar
  26. Connah G (1967) Progress report on archaeological work in Bornu 1964–1966 with particular reference to the excavations at Daima mound. In: Northern History Research Scheme (ed), Second Interim Report. Ahmadu Bello University, Zaria, pp 20–31Google Scholar
  27. Costantini L (1990) Harappan agriculture in Pakistan: the evidence of Naursharo. In: Taddei M (ed) South Asian archaeology 1987. Istituto Italiano per il Medio ed Estremo Oriente, Rome, pp 321–332Google Scholar
  28. Crowther A, Horton M, Kotarba-Morley A et al (2014) Iron age agriculture, fishing and trade in the Mafia Archipelago, Tanzania: new evidence from Ukunju Cave. Azania 49(1):21–44CrossRefGoogle Scholar
  29. Crowther A, Lucas L, Helm R et al (2016) Ancient crops provide first archaeological signature of the westward Austronesian expansion. Proc Nat Acad Sci 113 (24):6635–6640. Scholar
  30. D’Andrea AC, Wadge P (2011) T’ef (Eragrostis tef): A Legacy of Pastoralism? In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African past: current approaches to African archaeobotany. Africa Magna Verlag, Frankfurt, pp 225–241Google Scholar
  31. de Alencar Figueiredo LF, Calatayud C, Dupuits C et al (2008) Phylogeographic evidence of crop neodiversity in sorghum. Genetics 179(2):997–1008CrossRefPubMedPubMedCentralGoogle Scholar
  32. de Moulins D, Phillips C, Durrani N (2003) The archaeological records of Yemen and the question of Afro-Asian contact. In: Neumann K, Buttler A, Kahlheber S (eds) Food, fuels and fields: progress in African archaeobotany. Heinrich Barth-Institut, Cologne, pp 281–299Google Scholar
  33. de Wet JML (1977) Domestication of African cereals. Afr Econ Hist 3:15–32CrossRefGoogle Scholar
  34. de Wet JML, Harlan JR, Price EG (1976) Variability in Sorghum bicolor. In: Harlan JR, de Wet JMJ, Stemler ABL (eds) Origins of African plant domestication. Mouton Press, The Hague, pp 453–463Google Scholar
  35. Delneuf MOT (1995) L’environment et les usages alimentaires en vigneur a l’époque protohistorique dans l’extreme-nord du Cameroun. In: Marliac A (ed) Milieux, Societés et Archéologues. Office de la Recherche scientifique et technique de outre-mer, Paris, pp 213–226Google Scholar
  36. Deu, MD. Gonzalez-de-Leon J-C, Glaszmann I et al (1994) RFLP diversity in cultivated sorghum in relation to racial differentiation. Theor Appl Genet 88:838–844CrossRefPubMedGoogle Scholar
  37. Deu M, Rattunde H, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49:168–180CrossRefPubMedGoogle Scholar
  38. Ehret C (1973) Patterns of Bantu and central Sudanic settlement in central and southern Africa (1000 BC–500AD) Transafrican J Hist 3:1–71Google Scholar
  39. Ehret C (2011) History and the testimony of language. University of California, BerkleyGoogle Scholar
  40. Ehret C (2014) Linguistic evidence and the origins of food production in Africa. Where are we now? In: Stevens CJ, Nixon S, Murray MA, Fuller DQ (eds) Archaeology of African plant use. Left Coast Press, Walnut Creek, pp 233–242Google Scholar
  41. Folkertsma R, Rattunde HFW, Chandra S et al (2005) The pattern of genetic diversity of guinea race Sorghum bicolor (L.) Moench landraces as revealed with SSR markers. Theor Appl Genet 111:399–409CrossRefPubMedGoogle Scholar
  42. Fuller DQ (2002) Fifty Years of Archaeobotanical Studies in India: Laying a Solid Foundation. In: Settar S, Korisettar R (eds) Indian archaeology in retrospect, vol III. Archaeology and interactive disciplines. Publications of the Indian Council for Historical Research Manohar, New Dehli, pp 247–364Google Scholar
  43. Fuller DQ (2003a) African crops in prehistoric South Asia: a critical review. In: Neumann K, Butler A, Kahlheber S (eds) Food, Fuel and Fields. Progress in Africa Archaeobotany, Africa Praehistorica 15. Heinrich-Barth-Institut, Cologne, pp 239–271Google Scholar
  44. Fuller DQ (2003b) An agricultural perspective on Dravidian historical linguistics: archaeological crop packages, livestock and Dravidian crop vocabulary. In: Bellwood P, Renfrew C (eds) Assessing the languaging/farming dispersal hypothesis. McDonald Institute, Cambridge, pp 191–213Google Scholar
  45. Fuller DQ (2004) Early Kushite agriculture: archaeobotanical evidence from Kawa. Sudan Nubia 8:70–74Google Scholar
  46. Fuller DQ (2014) Agricultural innovation and state collapse in Meroitic Nubia: the impact of the savannah package. In: Stevens CJ, Nixon S, Murray MA, Fuller DQ (eds) Archaeology of African plant use. Left Coast Press, Walnut Creek, pp 165–178Google Scholar
  47. Fuller DQ (in press) Archaeobotany. In: Kennet D, Rao JVP (eds.) Paithan Excavations. Memoirs of the Archaeological Survey of India, Delhi, pp 289–327Google Scholar
  48. Fuller DQ, Allaby R (2009) Seed dispersal and crop domestications: shattering, germination and seasonality in evolution under cultivation. Ann Plant Rev 38:238–295Google Scholar
  49. Fuller DQ, Boivin N (2009) Crops, cattle and commensals across the Indian Ocean: current and potential archaeobiological evidence. In: Lefevre G (ed) Plantes et Societes, Etudes Ocean Indien 42-43. Institut National des Langues et Civilisations Orientales, Paris, pp 13–46Google Scholar
  50. Fuller DQ, Edwards DN (2001) Medieval plant economy in Middle Nubia: preliminary archaeological evidence from Nauri. Sudan Nubia 5:97–103Google Scholar
  51. Fuller DQ, Lucas L (2014) Wheats: origins and development. In: Smith C (ed) Encyclopedia of global archaeology. Springer, New York, pp 7812–7817CrossRefGoogle Scholar
  52. Fuller DQ, Allaby RG, Stevens CJ (2010) Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeol 42(1):13–28CrossRefGoogle Scholar
  53. Fuller DQ, Denham T, Arroyo-Kalin M et al (2014) Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc Nat Acad Sci 111(17):6147–6152CrossRefPubMedGoogle Scholar
  54. Gautier A, Van Neer W (2006) Animal remains from Mahal Teglinos (Kassala, Sudan) and the arrival of pastoralism in the Southern Atbai. J Afr Archaeol 4(2):223–233CrossRefGoogle Scholar
  55. Giblin JD, Fuller DQ (2011) First and second millennium AD agriculture in Rwanda: archaeobotanical finds and radiocarbon dates from seven sites. Veg Hist Archaeobot 20(4):253–265Google Scholar
  56. Grollemund R, Branford S, Bostoen K et al (2015) Bantu expansion shows that habitat alters the route and pace of human dispersals. Proc Nat Acad Sci 112(43):13296–13301CrossRefGoogle Scholar
  57. Haaland R (1995) Sedentism, cultivation and plant domestication in the Holocene middle Nile region. J Field Archaeol 22(2):157–173Google Scholar
  58. Hagerty MH (1941) Comments on writings concerning Chinese sorghums. Harvard J Asia Stud 5(3–4):234–260CrossRefGoogle Scholar
  59. Harlan JR, De Wet JML (1972) A simplified classification of cultivated sorghum. Crop Sci 12:172–176CrossRefGoogle Scholar
  60. Harlan JR, Stemler ABL (1976) The races of sorghum in Africa. In: Harlan JR, de Wet J, Stemler A (eds) Origins of African plant domestication. Mouton Press, The Hague, pp 465–478CrossRefGoogle Scholar
  61. Harlan JR, De Wet JML, Price EG (1973) Comparative evolution of cereals. Evolution 277:311–325CrossRefGoogle Scholar
  62. Helm R, Crowther A, Shipton C et al (2012) Exploring agriculture, interaction and trade on the eastern African littoral: preliminary results from Kenya. Azania 47(1):39–63CrossRefGoogle Scholar
  63. Htun TM, Inoue C, Chhourn O et al (2014) Effect of quantitative trait loci for seed shattering on abscission layer formation in Asian wild rice Oryza rufipogon. Breed Sci 64(3):199–205CrossRefPubMedPubMedCentralGoogle Scholar
  64. Huffman TN (1974) The Leopard’s Kopje Tradition. Salisbury: National Museums and Monuments (Memoir 6)Google Scholar
  65. Irvine FR (1969) West African Agriculture, 3 edn, vol 2. West African Crops. Oxford University Press, OxfordGoogle Scholar
  66. Ishii T, Numaguchi K, Miura K et al (2013) OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45:462–465CrossRefPubMedGoogle Scholar
  67. Kajale MD (1990) Observations on the plant remains from excavation at Chalcolithic Kaothe, District Dhule, Maharashtra with cautionary remarks on their interpretations. In: Dhavalikar MK, Shinde VS, Atre SM (eds) Excavations at Kaothe. Decan College Postgraduate Research Institute, Pune, pp 265–280Google Scholar
  68. Klein RR, Miller FR, Dugas DV et al (2015) Allelic variants in the PRR37 gene and the human-mediated dispersal and diversification of sorghum. Theor Appl Genet 128(9):1669–1683CrossRefPubMedGoogle Scholar
  69. Kröpelin S, Verschuren D, Lézine A-M et al (2008) Climate-driven ecosystem succession in the Sahara: the past 6000 years. Science 320(5877):765–768CrossRefPubMedGoogle Scholar
  70. Larson G, Fuller DQ (2014) The evolution of animal domestication. Ann Rev Ecology Evolution Systematics 45:115–136CrossRefGoogle Scholar
  71. Li WL, Gill BS (2006) Multiple pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309CrossRefPubMedGoogle Scholar
  72. Li C, Zhou A, Sang T (2006) Rice domestication by reduced shattering. Science 311:1936–1939CrossRefPubMedGoogle Scholar
  73. Lin Z, Griffith ME, Li X et al (2007) Origin of seed shattering in rice (Oryza sativa L.). Planta 226:11–20CrossRefPubMedGoogle Scholar
  74. Lin Z, Li X, Shannon LM et al (2012) Parallel domestication of the Shattering1 genes in cereals. Nat Genet 44(6):720–724CrossRefPubMedPubMedCentralGoogle Scholar
  75. Logan AL (2012) A history of food without history: food, trade, and environment in west-central Ghana in the second millennium AD. Unpublished PhD dissertation. University of Michigan, Ann ArborCrossRefGoogle Scholar
  76. Luo H, Zhao W, Wang Y et al (2016) SorGSD: a sorghum genome SNP database. Biotechnol Biofuels 9:6. Scholar
  77. Mace ES, Xia L, Jordan DR et al (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9:26CrossRefGoogle Scholar
  78. Magid AA (1989) Plant Domestication in the Middle Nile Basin: an Archaeobotanical Case Study. Cambridge Monographs in African Archaeology 35. BAR S523. British Archaeological Reports, OxfordGoogle Scholar
  79. Magid AA (2003) Exploitation of food-plants in the early and middle Holocene Blue Nile area, Sudan and neighbouring areas, Complutum 14. Universidad Complutense de Madrid Servicio de Publicaciones, MadridGoogle Scholar
  80. Manning K, Fuller DQ (2014) Early millet farmers in the lower Tilemsi Valley, Northeastern Mali. In: Stevens CJ, Nixon S, Murray MA, Fuller DQ (eds) Archaeology of African plant use. Left Coast Press, Walnut Creek, CA, pp 73–81Google Scholar
  81. Manning K, Timpson A (2014) The demographic response to Holocene climate change in the Sahara. Quat Sci Rev 101:28–35CrossRefGoogle Scholar
  82. McClatchie M, Fuller DQ (2014) Leaving a lasting impression: arable economies and cereal impressions in Africa and Europe. In: Stevens CJ, Nixon S, Murray MA, Fuller DQ (eds) Archaeology of African plant use. Left Coast Press, Walnut Creek, pp 259–266Google Scholar
  83. McIntosh SK (1995) Paleobotanical and human osteological remains. In: McIntosh SK (ed) Excavations at Jenné-Jeno, Hambarketolo, and Kaniana (Inland Niger Delta, Mali): the 1981 season. University of California Press, Berkley, pp 348–359Google Scholar
  84. Mitchell PJ (2002) The archaeology of Southern Africa. Cambridge University Press, CambridgeGoogle Scholar
  85. Morris G, Ramu P, Deshpande SP (2013) Population genomic and genome-wide association studies of agroclimatic traits in Sorghum. Proc Nat Acad Sci 110(2):453–458CrossRefPubMedGoogle Scholar
  86. Nixon S, Murray MA, Fuller DQ (2011) Plant use at an early Islamic merchant town in the West African Sahel: the archaeobotany of Essouk-Tadmakka (Mali). Ved Hist Archaeobot 20(3):223–239CrossRefGoogle Scholar
  87. NPGS (2016) National plant germplasm system. Germplasm Resources Information Network (GRIN), Washington, USDA. Accessed 29 Mar 2015
  88. Olsen KM (2012) One gene’s shattering effects. Nat Genet 44:616–617CrossRefPubMedGoogle Scholar
  89. Pelling R (2005) Garamantian agriculture and its significance in a wider North African context: the evidence of the plant remains from the Fazzan project. J N Afr Stud 10(3/4):397–412CrossRefGoogle Scholar
  90. Pelling R (2007) Agriculture and trade amongst the Garamantes and the Fezzanese: 3000 years of archaeobotanical data from the Sahara and its margins. PhD Thesis. UCL, LondonGoogle Scholar
  91. Perumal R, Krishnaramanujam R, Menz MA et al (2007) Genetic diversity among sorghum races and working groups based on AFLPs and SSRs. Crop Sci 47:1375–1383CrossRefGoogle Scholar
  92. Philippson G, Bahuchet S (1994) Cultivated crops and Bantu migrations in central and eastern Africa: a linguistic approach. Azania 29–30(1):103–120CrossRefGoogle Scholar
  93. Ramu P, Billot C, Rami J et al (2013) Assessment of genetic diversity in the sorghum reference set using EST-SSR markers. Theor Appl Genet 126(8):2051–2064CrossRefPubMedGoogle Scholar
  94. Ricquier B, Bosteon K (2011) Stirring up the porridge: how early Bantu speakers prepared their cereals. In: Fahmy AG, Kahlheber S, D’Andrea AC (eds) Windows on the African past: current approaches to African archaeobotany. Africa Magna Verlag, Frankfurt, pp 209–224Google Scholar
  95. Rowley-Conwy P (1991) Sorghum from Qasr Ibrim, Egyptian Nubia, c. 800 BC AD 1811: a preliminary study. In: Renfrew J (ed) New light on early farming. Edinburgh University Press, Edinburgh, pp 191–212Google Scholar
  96. Rowley-Conwy P, Deakin W, Shaw CH (1997) Ancient DNA from archaeological sorghum (Sorghum bicolor) from Qasr Ibrim, Nubia: implications for domestication and evolution and a review of the archaeological evidence. Sahara 9:23–34Google Scholar
  97. Rowley-Conwy P, Deakin W, Shaw CH (1999) Ancient DNA from Sorghum. In: van der Veen M (ed) The exploitation of plant resources in ancient Africa. Plenum, New York, pp 55–61CrossRefGoogle Scholar
  98. Ruas MP, Tengberg M, Ettahiri AS et al (2011) Archaeobotanical research at the medieval fortified site of Îgîlîz (anti-atlas, morocco) with particular reference to the exploitation of the argan tree. Vegetation History Archaeobotany 20:419–433CrossRefGoogle Scholar
  99. Saraswat KS, Pokharia AK (2003) Palaeoethnobotanical investigations at early Harappan Kunal. Pragdhara 13:105–140Google Scholar
  100. Sassoon H (1967) New views on Engaruka, northern Tanzania. J African History 8(02):201–217CrossRefGoogle Scholar
  101. Schoenbrun DL (1993) We are what we eat: ancient agriculture between the Great lakes. J Afr Hist 34:1–31CrossRefGoogle Scholar
  102. Shechter Y, De Wet JMJ (1975) Comparative electrophoresis and isozyme analysis of seed proteins from cultivated races of Sorghum. Am J Bot 62:254–261CrossRefGoogle Scholar
  103. Shinnie PL, Anderson J (2004) The capital of kush 2: meroe excavations, 1973–1984, Meroitica 20. Harrassowitz, WiesbadenGoogle Scholar
  104. Shipton C, Helm R, Boivin N et al (2013) Intersections, networks and the genesis of social complexity on the Nyali coast of east Africa. Afr Archaeol Rev 30:427–453CrossRefGoogle Scholar
  105. Smith W (2003) Archaeobotanical investigations of agriculture at late antique Kom el-Nana (Tell el-Amarna). Egypt Exploration Soc, LondonGoogle Scholar
  106. Snowden JD (1936) The cultivated races of Sorghum. Allard and Son, LondonGoogle Scholar
  107. Snowden JD (1955) The wild fodder Sorghums of the secion Eu-Sorghum. J Linn Soc Bot (London) 55:191–260CrossRefGoogle Scholar
  108. Southworth FC (2006) Proto-Dravidian agriculture. In: Osada T (ed), Proceedings of the Pre-symposium of RIHN and 7th ESCA Harvard- Kyoto Roundtable. Research Institute for Humanity and Nature, Kyoto, pp 121–150Google Scholar
  109. Stapf O (1886) Die Pflanzenreste des Hallstätter Heidengebirges. Zool -Bot Ges, ÖsterreichGoogle Scholar
  110. Stapf O (1917) Sorghum. In: Prain D (ed) Flora of Tropical Africa, vol 9. Gramineae (Maydeae-Paniceae). L. Reeve, Asford, pp 104–154Google Scholar
  111. Stemler AB (1990) A scanning electron microscopic analysis of plant impressions in pottery from sites of Kadero, El Zakiab, Um Direiwa and El Kadada. Archaeologie du Nil Moyen 4:87–106Google Scholar
  112. Sukumaran S, Xiang W, Bean S et al (2012) Associated mapping for grain quality in a diverse sorghum collection. Plant Genome 5:126–135CrossRefGoogle Scholar
  113. Tengberg M (2003) Archaeobotany in the Oman Peninsula and the role of eastern Arabia in the spread of African crops. In: Neumann K, Butler A, Kahlheber S (eds) Food, fuel and fields progress in African archaeobotany. Africa Praehistorica. Monographien zur Archäologie und Umwelt Afrikas. Heinrich-Barth-Institut, Köln, pp 229–237Google Scholar
  114. van der Veen M (2011) Consumption, trade and innovation: exploring the botanical remains from the Roman and Islamic ports at Quseir al-Qadim. Egypt, Africa Magna Verglag, FrankfurtGoogle Scholar
  115. van der Veen M, Lawrence T (1991) The plant remains. In: Welsby DA, Daniels CM (eds) Soba: archaeological research at a medieval capital on the Blue Nile British institute in Eastern Africa memoirs, London, pp 264–274Google Scholar
  116. Walshaw SC (2010) Converting to rice: urbanization, Islamization and crops on Pemba Island, Tanzania, AD 700–1500. World Archaeology 42:137–154CrossRefGoogle Scholar
  117. Wasylikowa K, Dahlberg JA (1999) Sorghum in the economy of the early Neolithic nomadic tribes at Nabta Playa, southern Egypt. In: van der Veen M (ed) The exploitation of plant resources in ancient Africa. Plenum Press, New York, pp 11–32CrossRefGoogle Scholar
  118. Wasylokowa K, Dahlberg JA (2001) Sorghum remains from site E-75-6. In: Wendorf F, Schild R (eds) Holocene settlement of the Egyptian Sahara: Volume 1: the archaeology of Nabta Playa Springer/Plenum, New York, pp 578–587Google Scholar
  119. Wiersema JH, Dahlberg J (2007) The nomenclature of Sorghum bicolor (L.) Moench (Gramineae). Taxon 56(3):941–946CrossRefGoogle Scholar
  120. Willcox G (1992) Some differences between crops of near Eastern origin and those from the tropics. In: Jarrige C (ed) South Asian archaeology 1989. Monographs in World Archaeology, vol 14, Wisconsin, pp 291–300Google Scholar
  121. Winchell F (2013) The Butana group ceramics and their place in the Neolithic and post-neolithic of northeast Africa. Cambridge monographs in African archaeology 83, British archaeological report series 2459. Archaeopress, OxfordGoogle Scholar
  122. Winchell F, Stevens CJ, Murphy C et al (2017) Evidence for sorghum domestication in fourth millennium BC eastern Sudan: spikelet morphology from ceramic impressions of the Butana Group. Curr Anthropol 58(7):673–683CrossRefGoogle Scholar
  123. Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the Old World. Oxford University Press, OxfordCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of ArchaeologyUniversity College LondonLondonUK

Personalised recommendations