Dark Septate Endophytes and Mycorrhizal Fungi of Trees Affected by Metal Pollution

  • Matevž LikarEmail author
Part of the Forestry Sciences book series (FOSC, volume 86)


Plants have developed intimate associations with different groups of fungal endophytes. In return for carbohydrates, these fungal endophytes help to improve the nutrient status and water balance of their host plant. In addition, they can protect the host plant against biotic and abiotic stresses, such as increased metal concentrations in the soil. Many endophytic fungi can survive at high concentrations of toxic metals, and can adapt to metal stress, which results in tolerant genotypes. Such fungi have developed many mechanisms that help them to maintain their metal homeostasis. These include passive mechanisms, such as metal binding to the cell wall, as well as active extracellular and intracellular chelation and transmembrane transport of metals. By restricting the uptake of toxic metals and improving the supply of essential elements to the host, fungal endophytes can ameliorate potential metal toxicity for their host plant. In this chapter, I discuss the effects of metal-enriched environments on the interactions between fungal endophytes and their host plants, along with the processes involved in the maintenance of metal homeostasis in fungi, and their ability to improve the fitness of plants in metal-enriched environments.


  1. Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13CrossRefGoogle Scholar
  2. Adriaensen K, Vralstad T, Noben JP, Vangronsveld J, Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Appl Environ Microbiol 71:7279–7284PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alberton O, Kuyper TW, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungi and plant responses to elevated CO2. New Phytol 167:859–868PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arriagada C, Herrera M, Ocampo J (2005) Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air Soil Pollut 166:31–47CrossRefGoogle Scholar
  6. Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169:345–354PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piché Y (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96:452–462PubMedCrossRefPubMedCentralGoogle Scholar
  8. Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Tech 32:78–91CrossRefGoogle Scholar
  9. Ban Y, Tang M, Chen H, Xu Z, Zhang H, Yang Y (2012) The response of dark septate endophytes (DSE) to heavy metals in pure culture. PLoS ONE 7(10):e47968PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bengtsson G, Rundgren S, Sjiigren M (1994) Modeling dispersal distances in a soil gradient: the influence of metal tolerance, competition and experience. Oikos 71:13–23CrossRefGoogle Scholar
  11. Baptista P, Martins A, Salomé Pais M, Tavares RM, Lino-Neto T (2007) Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 17:185–193PubMedCrossRefPubMedCentralGoogle Scholar
  12. Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bellion M, Courbot M, Jacob Ch, Blaudez D, Chalot M (2006) Extracellular and cellular mechanism sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Ann Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  15. Berthelot C, Leyval C, Foulon J, Chalot M, Blaudez D (2016) Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites. FEMS Microbiol Ecol 92:fiw144PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bi YL, Li XL, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837PubMedCrossRefPubMedCentralGoogle Scholar
  17. Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the 316 ectomycorrhizal fungus Paxillus involutus. Microbiol 146:1109–1117CrossRefGoogle Scholar
  18. Blilou I, Bueno P, Ocampo JA, García-Garrido JM (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722–725CrossRefGoogle Scholar
  19. Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92:fiw114PubMedCrossRefPubMedCentralGoogle Scholar
  20. Carrillo-Gonzalez R, González-Chávez MD (2012) Tolerance to and accumulation of cadmium by the mycelium of the fungi Scleroderma citrinum and Pisolithus tinctorius. Biol Trace Elem Res 146:388–395PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cevnik M, Jurc M, Vodnik D (2000) Filamentous fungi associated with the fine roots of Erica herbacea L. from the area influenced by the Žerjav lead smelter (Slovenia). Phyton Ann Rei Bot 40:61–64Google Scholar
  22. Colpaert JV (2008) Heavy metal pollution and genetic adaptations in ectomycorrhizal fungi. In: Avery S, Stratford M, van West P (eds) Stress in yeasts and filamentous fungi. Elsevier, Amsterdam, pp 157–173CrossRefGoogle Scholar
  23. Colpaert JV, Muller LAH, Labaerts M, Adriaensen K, Vangronsveld J (2004) Eolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytol 162:549–559CrossRefGoogle Scholar
  24. Colpaert JV, Van Assche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris. New Phytol 123:325–333CrossRefGoogle Scholar
  25. Colpaert JV, Vanden Koornhuyse P, Adriaensen K, Van Gronsveld J (2000) Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytol 147:367–379CrossRefGoogle Scholar
  26. Courbot M, Chalot M, Diez L, Leroy P, Ruotolo R (2004) Cadmium responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417PubMedPubMedCentralCrossRefGoogle Scholar
  27. Deram A, Languereau-Leman F, Howsam M et al (2008) Seasonal patterns of cadmium accumulation in Arrhenatherum elatius (Poaceae): influence of mycorrhizal and endophytic fungal colonization. Soil Biol Biochem 40:845–848CrossRefGoogle Scholar
  28. Deram A, Languereau-Leman F, Haluwyn CV (2011) Mycorrhizal and endophytic fungal colonization in Arrhenatherum elatius L. roots according to the soil contamination in heavy metals. Soil Sed Contam 20:114–127CrossRefGoogle Scholar
  29. Dixon RK, Buschena CA (1988) Response of ectomycorrhizal Pinus banksiana and Picea glauca to heavy metals in soil. Plant Soil 105:65–271CrossRefGoogle Scholar
  30. Egerton-Warburton LM, Griffin BJ (1995) Differential responses of Pisolithus tinctorius isolates to aluminum in vitro. Can J Bot 73:1229–1233CrossRefGoogle Scholar
  31. Ernst WHO, Schat H, Verkleij JAC (1990) Evolutionary biology of metal resistance in Silene vulgaris. Evol Trends Plants 4:45–51Google Scholar
  32. Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80:251–274Google Scholar
  33. Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fogarty RV, Tobin JM (1996) Fungal melanins and their interactions with metals. Enzyme Microb Technol 19:311–317PubMedCrossRefPubMedCentralGoogle Scholar
  35. Fomina M, Ritz K, Gadd GM (2000) Negative fungal chemotropism to toxic metals. FEMS Microbiol Lett 193:207–211PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60CrossRefGoogle Scholar
  37. Gonçalves SC, Martins-Loucao MA, Freitas H (2009) Evidence of adaptive tolerance to nickel in 360 isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza 19:221–230PubMedCrossRefPubMedCentralGoogle Scholar
  38. González-Chávez MC, Carrillo-González R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323PubMedCrossRefPubMedCentralGoogle Scholar
  39. González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140PubMedCrossRefPubMedCentralGoogle Scholar
  40. González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335PubMedCrossRefPubMedCentralGoogle Scholar
  41. González-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcón-Aguilar C, Peterson RL (2008) Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices. Can J Microbiol 54:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  42. González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 7:1088PubMedPubMedCentralCrossRefGoogle Scholar
  43. Green F, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeterior Biodegrad 51:145–149CrossRefGoogle Scholar
  44. Grunig CR, Queloz V, Sieber TN (2011) Structure of diversity in dark septate endophytes: from species to genes. In: Pirttila AM, Frank CA (eds) Endophythes of forest trees: biology and applications. Springer, Berlin, pp 3–30CrossRefGoogle Scholar
  45. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment. Plant Soil 189:303–319CrossRefGoogle Scholar
  47. Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717CrossRefGoogle Scholar
  48. Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelovác H, Groudováb M, Kotrba P (2015) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 120:358–369PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44CrossRefGoogle Scholar
  51. Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K, Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pol 223:957–968CrossRefGoogle Scholar
  52. Hrynkiewicz K, Baum C (2013) Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Environ Technol 34:225–230PubMedCrossRefPubMedCentralGoogle Scholar
  53. Huang Y, Li T, Huang Z-J et al (2008) Ectomycorrhizal fungus-induced changes of Cu and Cd speciation in the rhizosphere of Chinese pine seedlings. Pedosphere 18:758–765CrossRefGoogle Scholar
  54. Huusko K, Ruotsalainen AL, Markkola AM (2016) A shift from arbuscular mycorrhizal to dark septate endophytic colonization in Deschampsia flexuosa roots occurs along primary successional gradient. Mycorrhiza 27:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jiang Q-Y, Zhuo F, Long S-H, Zhao H-D, Yang D-J, Ye Z-H, Li S-S, Jing Y-X (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805PubMedPubMedCentralCrossRefGoogle Scholar
  56. Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647PubMedCrossRefPubMedCentralGoogle Scholar
  57. Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234CrossRefGoogle Scholar
  58. Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M (2010) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Tree Physiol 30:1311–1319PubMedCrossRefPubMedCentralGoogle Scholar
  59. Jumpponen A (2001) Dark septate endophytes – are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  60. Jumpponen A, Väre H, Mattson KG, Ohtonen R, Trappe JM (1999) Characterization of ‘safe sites’ for pioneers in primary succession on recently deglaciated terrain. J Ecol 87:98–105CrossRefGoogle Scholar
  61. Kanwal S, Bano A, Malik RN (2015) Effects of arbuscular mycorrhizal fungi on metals uptake, physiological and biochemical response of Medicago sativa L. with increasing Zn and Cd concentrations in soil. Am J Plant Sci 6:2906–2923CrossRefGoogle Scholar
  62. Karlinski L, Rudawska M, Kieliszewska-Rokicka B, Leski T (2010) Relationship between genotype and soil environment during colonization of poplar roots by mycorrhizal and endophytic fungi. Mycorrhiza 20:315–324PubMedCrossRefPubMedCentralGoogle Scholar
  63. Khastini RO, Ohta H, Narisawa K (2012) The role of a dark septate endophytic fungus, Veronaeopsis simplex Y34, in Fusarium disease suppression in Chinese cabbage. J Microbiol 50:618–624PubMedCrossRefPubMedCentralGoogle Scholar
  64. Kim H, Wu X, Lee J (2013) SLC31 (CTR) family of copper transporters in health and disease. Mol Aspects Med 34:561–570PubMedPubMedCentralCrossRefGoogle Scholar
  65. Klugh KR, Cumming JR (2007) Variations in organic acid exudation and aluminium resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112PubMedCrossRefPubMedCentralGoogle Scholar
  66. Knapp DG, Pintye A, Kovács GM (2012) The dark side is not fastidious—dark septate endophytic fungi of native and invasive plants of semiarid sandy areas. PLoS ONE 7(2):e32570PubMedPubMedCentralCrossRefGoogle Scholar
  67. Krznaric E, Verbruggen N, Wevers JHL, Carleer R, Vangronsveld J, Colpaert JV (2009) Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd. Environ Pol 157:1581–1588CrossRefGoogle Scholar
  68. Lambais MR, Rios-Ruíz WF, Andrade RM (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol 160:421–428CrossRefGoogle Scholar
  69. Lanfranco L, Balsamo R, Martino E, Perotto S, Bonfante P (2002a) Zinc ions alter morphology and chitin deposition in an ericoid fungus. Eur J Histochem 46:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lanfranco L, Bolchi A, Ros E, Ottonello S, Bonfante P (2002b) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lanfranco L, Balsamo R, Martino P, Bonfante P, Perotto S (2004) Zinc ions differentially affect chitin synthase gene expression in an ericoid mycorrhizal fungus. Plant Biosyst 138:271–277CrossRefGoogle Scholar
  72. Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7(416):139–153CrossRefGoogle Scholar
  73. Li HY, Li DW, He CM, Zhou ZP, Mei T, Xu H-M (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol 5:309–315CrossRefGoogle Scholar
  74. Likar M (2011) Dark septate endophytes and mycorrhizal fungi of trees affected by pollution. In: Pirttilaä AM, Frank SC (eds) Endophytes of forest trees: biology and applications. Springer, Berlin, pp 189–201CrossRefGoogle Scholar
  75. Likar M, Regvar M (2009) Application of temporal temperature gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Sci Total Environ 407:6179–6187PubMedCrossRefPubMedCentralGoogle Scholar
  76. Likar M, Regvar M (2013) Isolates of dark septate endophytes reduce metal uptake and improve physiology of Salix caprea L. Plant Soil 370:593–604CrossRefGoogle Scholar
  77. Liu H, Li T, Ding Y, Tang Y, Zhao Z (2017) Dark septate endophytes colonizing the roots of ‘non-mycorrhizal’ plants in a mine tailing pond and in a relatively undisturbed environment, Southwest China. J Plant Interact 12:264–271CrossRefGoogle Scholar
  78. Lux HB, Cumming JR (2001) Mycorrhizae confer aluminium resistance to tulip-poplar seedlings. Can J For Res 31:694–702CrossRefGoogle Scholar
  79. Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412CrossRefGoogle Scholar
  80. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189CrossRefGoogle Scholar
  81. Mandyam K, Jumpponen A (2014) Unraveling the dark septate endophyte functions: insights from the Arabidopsis model. In: Verma VC, Gange AC (eds) Advances in endophytic research. Springer, New Delhi, pp 115–141CrossRefGoogle Scholar
  82. Mandyam KG, Jumpponen A (2015) Mutualism–parasitism paradigm synthesized from results of root-endophyte models. Plant-Microbe Interact 5:776Google Scholar
  83. Marin E, Leonhardt N, Vavasseur A, Forestier C (1998) Cloning of AtMRP1, an Arabidopsis thaliana cDNA encoding a homologue of the mammalian multidrug resistance-associated protein. Biochim Biophys Acta 1369:7–13PubMedCrossRefPubMedCentralGoogle Scholar
  84. Markkola AM, Ahonen JU, Roitto M et al (2002) Shift in ectomyccorhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ Pollut 120:797–803PubMedCrossRefPubMedCentralGoogle Scholar
  85. Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102CrossRefGoogle Scholar
  86. Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128PubMedCrossRefPubMedCentralGoogle Scholar
  87. Meharg AA, Cairney JWG (1999) Co-evolution of mycorrhizal symbionts and their hosts to metal contaminated environments. Adv Ecol Res 30:70–112Google Scholar
  88. Monica IFD, Saparrat MCN, Godeas AM, Scervino JM (2015) The co-existence between DSE and AMF symbionts affects plant P pools through P mineralization and solubilization processes. Fun Ecol 17:10–17CrossRefGoogle Scholar
  89. Muller LAH, Lambaerts M, Vangronsveld J, Colpaert JV (2004) AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus. New Phytol 164:297–303CrossRefGoogle Scholar
  90. Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  92. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793PubMedCrossRefPubMedCentralGoogle Scholar
  93. Obase K, Tamai Y, Yajima T et al (2007) Mycorrhizal associations in woody plant species at the Mt. Usu vocano, Japan. Mycorrhiza 17:209–241PubMedCrossRefPubMedCentralGoogle Scholar
  94. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728PubMedCrossRefPubMedCentralGoogle Scholar
  95. Outten C, O’Halloran T (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492PubMedCrossRefPubMedCentralGoogle Scholar
  96. Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649PubMedCrossRefPubMedCentralGoogle Scholar
  97. Panaccione D, Sheets N, Miller S, Cumming J (2001) Diversity of Cenococcum geophilum isolates from serpentine and nonserpentine soils. Mycologia 93:645–652CrossRefGoogle Scholar
  98. Pawlowska TE, Charvat I (2004) Heavy-metal stress and development patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649PubMedPubMedCentralCrossRefGoogle Scholar
  99. Prasad MNV, Freitas HMD (2003) Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 93(1):285–321Google Scholar
  100. Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. App Environ Microbiol 75:2266–2274CrossRefGoogle Scholar
  101. Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242PubMedCrossRefPubMedCentralGoogle Scholar
  102. Regvar M, Likar M, Piltaver A et al (2010) Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil 330:345–356CrossRefGoogle Scholar
  103. Ruíz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:309–317PubMedCrossRefPubMedCentralGoogle Scholar
  104. Ruotsalainen AL, Markkola A, Kozlov MV (2007) Root fungal colonization in Deschampsia flexuosa: effects of pollution and neighbouring trees. Environ Pollut 147:723–728PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14PubMedCrossRefPubMedCentralGoogle Scholar
  106. Sácký J, Leonhardt T, Kotrba P (2016) Functional analysis of two genes coding for distinct cation diffusion facilitators of the ectomycorrhizal Zn-accumulating fungus Russula atropurpurea. Biometals 29:349–363PubMedCrossRefPubMedCentralGoogle Scholar
  107. Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325CrossRefGoogle Scholar
  108. Sancenón V, Puig S, Mira H, Thiele D, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587PubMedCrossRefPubMedCentralGoogle Scholar
  109. Santos S, Silva P, Garcia AC, Zilli JÉ, Berbara RLL (2016) Dark septate endophyte decreases stress on rice plants. Braz J Microbiol 48:333–341PubMedPubMedCentralCrossRefGoogle Scholar
  110. Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. CRC Press, Boca Raton, pp 171–188Google Scholar
  111. Schüßler A (2017) Glomeromycota (version Jan 2016). In: Roskov Y, Abucay L, Orrell T, Nicolson D, Bailly N, Kirk PM, Bourgoin T, DeWalt RE, Decock W, De Wever A, Nieukerken E van, Zarucchi J, Penev L (eds) Species 2000 and ITIS Catalogue of Life, 29th May 2017. Digital resource at Species 2000: Naturalis, Leiden, The Netherlands. ISSN 2405-8858
  112. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  113. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365PubMedPubMedCentralGoogle Scholar
  114. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187PubMedPubMedCentralCrossRefGoogle Scholar
  115. Singh RP, Tripathi RD, Sinha SK, Maheshwari R, Srivastava HS (1997) Response of higher plants to lead contaminated environment. Chemosphere 34:2467–2493PubMedCrossRefPubMedCentralGoogle Scholar
  116. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, LondonGoogle Scholar
  117. Sonjak S, Udovic M, Wraber T, Likar M, Regvar M (2009) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje salterns. Soil Biol Biochem 41:1847–1856CrossRefGoogle Scholar
  118. Spagnoletti FN, Tobar NE, Fernández Di Pardo A, Chiocchio VM, Lavado RS (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32CrossRefGoogle Scholar
  119. Staudenrausch S, Kaldorf M, Renker C, Luis P, Buscot F (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biol Fertil Soil 41:439–446CrossRefGoogle Scholar
  120. Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285CrossRefGoogle Scholar
  121. Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 5:547PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tellenbach C, Sieber TN (2013) Do colonization by dark septate endophytes and elevated temperature affect pathogenicity of oomycetes? FEMS Microbiol Ecol 82:157–168CrossRefGoogle Scholar
  123. Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293PubMedCrossRefPubMedCentralGoogle Scholar
  124. Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174CrossRefGoogle Scholar
  125. Unterbrunner R, Puschenreiter M, Simmer P, Wieshammer G, Tlustoš P, Zupan M, Wenzel WW (2007) Heavy metal accumulation in trees growing on contaminated sites in central Europe. Environ Pol 148:107–114CrossRefGoogle Scholar
  126. Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184PubMedCrossRefPubMedCentralGoogle Scholar
  127. Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Environ Microbiol 8:971–983PubMedCrossRefPubMedCentralGoogle Scholar
  128. van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841CrossRefGoogle Scholar
  129. Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Eviron Pollut 139:362–371CrossRefGoogle Scholar
  130. Vrålstad T, Schumacher T, Taylor AFS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152CrossRefGoogle Scholar
  131. Wang J, Li T, Liu G, Smith JM, Zhao Z (2016) Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects. Sci Rep 6:22028PubMedPubMedCentralCrossRefGoogle Scholar
  132. Waschke A, Sich M, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferase in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  133. Watkinson SC (2016) Mutualistic symbiosis between fungi and autotrophs. In: Watkinson SC, Boddy L, Money NP (eds) The Fungi, 3rd edn. Academic Press, Amsterdam, pp 234–239Google Scholar
  134. Whitfield L, Richards AJ, Rimmer DL (2004) Relationship between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62PubMedCrossRefPubMedCentralGoogle Scholar
  135. Xu RB, Li T, Gui HL, Wang JL, Yu X, Ding YH, Wang CJ, Yang ZL, Zhao ZW (2015) Diversity and characterization of Cd-tolerant dark septate endophytes (DSEs) associated with the roots of Nepal alder (Alnus nepalensis) in a metal mine tailing of southwest China. Appl Soil Ecol 93:11–18CrossRefGoogle Scholar
  136. Yuan Z, Su Z, Zhang C (2016) Understanding the biodiversity and functions of root fungal endophytes: the ascomycete Harpophora oryzae as a model case. In: Druzhinina IS, Kubicek CP (eds) Environmental and microbial relationships. The mycota. Springer, Berlin, pp 205–214CrossRefGoogle Scholar
  137. Zarei M, Kenig S, Hempel S, Khayam Nekouei M, Savaghebi Gh, Buscot F (2008) Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut 156:1277–1283PubMedCrossRefPubMedCentralGoogle Scholar
  138. Zarei M, Wubet T, Schäfer SH, Savaghebi GR, Salehi Jouzani G, Khayam Nekouei M, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765PubMedCrossRefPubMedCentralGoogle Scholar
  139. Zhan F, He Y, Yang Y, Li Y, Li T, Zhao Z (2016) Effects of tricyclazole on cadmium tolerance and accumulation characteristics of a dark septate endophyte (DSE), Exophiala pisciphila. Bull Environ Contam Toxicol 96:235–241PubMedCrossRefPubMedCentralGoogle Scholar
  140. Zhang Y, Zhang Y, Liu M, Shi X, Zhao Z (2008) Dark septate endophyte (DSE) fungi isolated from metal polluted soil: their taxonomic position, tolerance, and accumulation of heavy metals in vitro. J Microbiol 46:624–632PubMedCrossRefPubMedCentralGoogle Scholar
  141. Zhang Y, Li T, Zhao ZW (2013) Colonization characteristics and composition of dark septate endophytes (DSE) in a lead and zinc slag heap in Southwest China. Soil Sed Contam 22:532–545CrossRefGoogle Scholar
  142. Zhao D, Tao L, Shen M, Wang J, Zhao Z (2015) Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: Evidence from RNA-seq data. Microbiol Res 170:27–35PubMedCrossRefPubMedCentralGoogle Scholar
  143. Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from metal-contaminated soil by mycorrhizal willows. Int J Phytoremed 11:200–213CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations