Advertisement

Potential of Tree Endophytes as Sources for New Drug Compounds

  • Mysore V. Tejesvi
  • Anna Maria Pirttilä
Chapter
Part of the Forestry Sciences book series (FOSC, volume 86)

Abstract

The novel or designer metabolites produced by fungal endophytes are increasingly recognized by natural chemists due to their diverse structures and as candidates for drug discovery and development. Many of the metabolites belong to different classes i.e., alkaloids, benzopyranones, coumarins, chromones, cytochalasines, enniatines, isocoumarin derivatives, quinones, peptides, phenols, phenolic acids, semiquinones, steroids, terpenoids, xanthones and lactones. One of the most widely studied endophytic genera is Pestalotiopsis, from which more than 140 metabolites are reported with antimicrobial, antioxidant and antitumor activities. Here we update on the advances made on identifying bioactive metabolites with drug development potential from endophytic fungi. Furthermore, we look into the most recent innovations on improving the exploitation of endophytic fungi and their products by the pharmaceutical industry. Our main emphasis lies on the anti-infective discovery in the view of developing new drug compounds from endophytic products.

Abbreviations

ACE

Angiotensin I-converting enzyme

AIDS

Acquired Immune Deficiency Syndrome

CFME

Cell-free metabolic engineering

DGGE

Denaturing Gradient Gel Electrophoresis

EMEA

European Agency for the Evaluation of Medicinal Products

FDA

Food and Drug Administration

HI

Human immunodeficiency

IC50

The half maximal inhibitory concentration

MIC

Minimum inhibitory concentration

NDM-1

New Delhi metallo-beta-lactamase

RFLP

Restriction Fragment Length Polymorphism

SARS

Severe acute respiratory syndrome

TB

Tuberculosis

References

  1. Adnani N, Rajski SR, Bugni TS (2017) Symbiosis-inspired approaches to antibiotic discovery. Nat Prod Rep 34:784–814PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aigle B, Corre C (2012) Waking up Streptomyces secondary metabolism by constitutive expression of activators or genetic disruption of repressors. Methods Enzymol 517:343–366PubMedCrossRefGoogle Scholar
  3. Ananda K, Sridhar KR (2002) Diversity of endophytic fungi in the roots of mangrove species on west coast of India. Can J Microbiol 48:871–878PubMedCrossRefGoogle Scholar
  4. Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Schnitzer S, Carson W (eds) Tropical forest community ecology. Blackwell Scientific, LondonGoogle Scholar
  5. Arnold AE, Meija LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baayen RP, Bonants PJM, Verkley G et al (2002) Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology 92:464–477PubMedCrossRefGoogle Scholar
  7. Bacon CW, White JF (1994) Stains, media, and procedures for analyzing endophytes. In: Bacon CW, White JF (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca RatonGoogle Scholar
  8. Bailly J, Fraissinet-Tachet L, Verner M-C et al (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632–642PubMedCrossRefGoogle Scholar
  9. Balick MJ, Cox PA (1997) Plants, people and culture. The Science of Ethnobotany Scientific American Library, New YorkGoogle Scholar
  10. Bradley JS, Guidos R, Baragona S et al (2007) Anti-infective research and development—problems, challenges, and solutions. Lancet Infect Dis 7:68–78PubMedCrossRefGoogle Scholar
  11. Brem D, Leuchtmann A (2001) Epichloe grass endophytes increase herbivore resistance in the woodland grasses Brachypodium sylvaticum. Oecologia 126:522–530PubMedCrossRefGoogle Scholar
  12. Brown KB, Hyde KD, Guest DI (1998) Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia. Fungal Divers 1:27–51Google Scholar
  13. Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carroll G (1998) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69(1):2–9CrossRefGoogle Scholar
  15. Chagas FO, Dias LG, Pupo MT (2013) A mixed culture of endophytic fungi increases production of antifungal polyketides. J Chem Ecol 39:1335–1342PubMedCrossRefGoogle Scholar
  16. Chujo T, Scott B (2014) Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol Microbiol 92:413–434PubMedCrossRefGoogle Scholar
  17. Chung YM, El-Shazly M et al (2013) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. J Nat Prod 76:1260–1266PubMedCrossRefGoogle Scholar
  18. Clay K (1998) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69:10–16CrossRefGoogle Scholar
  19. Combès A, Ndoye I, Bance C et al (2012) Chemical communication between the endophytic fungus Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum. PLoS ONE 7:e47313PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cragg GM, Newman DJ (2009) Nature: a vital source of leads for anticancer drug development. Phytochem Rev 8:313–331CrossRefGoogle Scholar
  21. Deng BW, Liu KH, Chen WQ et al (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biot 25:139–143CrossRefGoogle Scholar
  22. Deyrup ST, Swenson DC, Gloer JB et al (2006) Caryophyllene sesquiterpenoids from a fungicolous isolate of Pestalotiopsis disseminate. J Nat Prod 69:608–611PubMedCrossRefGoogle Scholar
  23. DiMasi JA, Feldman L, Seckler A et al (2010) Trends in risks associated with new drug development: success rates for investigational drugs. Nature 87:272–277Google Scholar
  24. Ding G, Li Y, Fu SB et al (2009) Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod 72:182–186PubMedCrossRefGoogle Scholar
  25. Ding G, Liu SC, Guo LD et al (2008) Antifungal metabolites from the plant endophytic fungus Pestalotiopsis foedan. J Nat Prod 71:615–618PubMedCrossRefGoogle Scholar
  26. Dudley QM, Karim AS, Jewett MC (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 10:69–82PubMedCrossRefGoogle Scholar
  27. Ebrahim W, El-Neketi M, Lewald L-I et al (2016) Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal–bacterial nixed cultures. J Nat Prod 79:914–922PubMedCrossRefGoogle Scholar
  28. Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206PubMedCrossRefGoogle Scholar
  29. Fessner WD (2015) Systems Biocatalysis: Development and engineering of cell-free “artificial metabolisms” for preparative multi-enzymatic synthesis. N Biotechnol. 32:658–664PubMedCrossRefGoogle Scholar
  30. Fischer J, Schroeckh V, Brakhage AA (2016) Awakening of fungal secondary metabolite gene clusters. In: Schmoll M, Dattenböck C (eds) Gene expression systems in fungi: advancements and applications. fungal biology. Springer, Heidelberg, pp 253–273CrossRefGoogle Scholar
  31. Frohlich J, Hyde KD (1999) Biodiversity of palm fungi in the tropics: are global fungal diversity estimates realistic? Biodivers Conserv 8:977–1004CrossRefGoogle Scholar
  32. Frohlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212CrossRefGoogle Scholar
  33. Fu J, Wenzel SC, Perlova O et al (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113PubMedPubMedCentralCrossRefGoogle Scholar
  34. Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD (2015) Complete biosynthesis of opioids in yeast. Science 349:1095–1100PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gazis R, Kuo A, Riley R et al (2016) The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biol 120:26–42PubMedCrossRefPubMedCentralGoogle Scholar
  36. Germida JJ, Siciliano SD, de Freitas R et al (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus) and wheat (Triticum aestivum). FEMS Microbiol Ecol 26:43–50CrossRefGoogle Scholar
  37. Govaerts R (2001) How many species of seed plants are there? Taxon 50:1085–1090CrossRefGoogle Scholar
  38. Grabley S, Sattler I (2003) Natural products for lead identification: nature is a valuable resource for providing tools. In: Hillisch A, Hilgenfeld R (eds) Modern method of drug discovery. Birkhauser verlag, BaselGoogle Scholar
  39. Grabley S, Thiericke R (1999) Bioactive agents from natural sources: trends in discovery and application. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, BerlinGoogle Scholar
  40. Green D, Keller M (2006) Capturing the uncultivated majority. Curr Opin Biotechnol 17:236–240PubMedCrossRefPubMedCentralGoogle Scholar
  41. Groppe K, Steinger T, Sanders I (1999) Interaction between the endophytic fungus Epichloë bromicola and the grass Bromus erectus: effects of endophyte infection, fungal concentration and environment on grass growth and flowering. Mol Ecol 8(11):1827–1835PubMedCrossRefPubMedCentralGoogle Scholar
  42. Guazzaroni M-E, Silva-Rocha R, Ward RJ (2015) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microbial Biotechnol 8:52–64CrossRefGoogle Scholar
  43. Gunatilaka L (2006) Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. J Nat Prod 69:509–526PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guo LD, Huang GR, Wang Y et al (2003) Molecular identification of endophytic fungi from Pinus tabulaeformis. Mycol Res 107:680–688PubMedCrossRefPubMedCentralGoogle Scholar
  45. Guo LD, Hyde KD, Liew ECY (2000) Detection and taxonomic placement of endophytic fungi within frond tissues of Livistona chinensis based on rDNA sequences. Mol Phylogenet Evol 20:1–13CrossRefGoogle Scholar
  46. Gutierrez-Zamora ML, Martinez-Romero E (2001) Natural endophytic association between Rhizobium and maize (Zea mays L). J Biotechnol 91(2):117–126PubMedCrossRefPubMedCentralGoogle Scholar
  47. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Molec Biol Rev 68:669–685CrossRefGoogle Scholar
  48. Harper JK, Arif AM, Ford EJ et al (2003) Pestacin: a 1, 3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476CrossRefGoogle Scholar
  49. Hartley SE, Eschen R, Horwood JM et al (2015) Infection by a foliar endophyte elicits novel arabidopside-based plant defence reactions in its host, Cirsium arvense. New Phytol 205:816–827PubMedCrossRefPubMedCentralGoogle Scholar
  50. Heinig U, Scholtz S, Jennewein S (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fung Divers 60:161–170.  https://doi.org/10.1007/s13225-013-0228-7CrossRefGoogle Scholar
  51. Higginbotham SJ, Arnold AE, Ibañez A, Spadafora C, Coley PD, Kursar TA (2013) Bioactivity of fungal endophytes as a function of endophyte taxonomy and the taxonomy and distribution of their host plants. PLoS ONE 8:e73192PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hoff JA, Klopfenstein NB, McDonald GI (2004) Fungal endophytes in woody roots of Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa). Forest Pathol 34:255–271CrossRefGoogle Scholar
  53. Huang QL, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9:2237–2242PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hugonnet JE, Tremblay LW, Boshoff HI et al (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323:1215–1218PubMedPubMedCentralCrossRefGoogle Scholar
  55. Imada C, Koseki N, Kamata M et al (2007) Isolation and characterization of antibacterial substances produced by marine actinomycetes in the presence of seawater. Actinomycetologica 21:27–31CrossRefGoogle Scholar
  56. Jaber LR, Vidal S (2009) Interactions between an endophytic fungus, aphids, and extrafloral nectaries: do endophytes induce extrafloral-mediated defences in Vicia faba? Funct Ecol 23:707–714CrossRefGoogle Scholar
  57. Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interact 2:53–62CrossRefGoogle Scholar
  58. Jennings DH, Lysek G (1996) Fungal biology: understanding the fungal lifestyle. In: Herndon VA (ed) Oxford press, Oxford, 146 pGoogle Scholar
  59. Ji Y, Bi J-N, Yan B et al (2006) Taxol-producing fungi: a new approach to industrial production of taxol Chinesenese. J Biotechnol 22:1–6Google Scholar
  60. Kinghorn AD (2001) Pharmacognosy in the 21st century. J Pharm Pharmacol 53:135–148CrossRefGoogle Scholar
  61. Komatsua M, Uchiyama T, Omura S et al (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651CrossRefGoogle Scholar
  62. Koskimäki JJ, Hokkanen J, Jaakola L et al (2009) Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur J Plant Pathol 125:629–640CrossRefGoogle Scholar
  63. Kumar SS, Cheung HY, Lau CS et al (2004) In vitro studies of endophytic fungi from Tripterygium wilfordii with anti-proliferative activity on human peripheral blood mononuclear cells. J Ethnopharmacol 94:295–300CrossRefGoogle Scholar
  64. Kumarasamy KK, Toleman MA, Walsh TR et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91Google Scholar
  66. Laxminarayan R, Sridhar D, Blaser M et al (2016) Achieving global targets for antimicrobial resistance. Science 353:874–875PubMedCrossRefPubMedCentralGoogle Scholar
  67. Lee JC, Yang XS, Schwartz M et al (1995) The relationship between the rarest tree in North America and an endophytic fungus. Chem Biol 2:721–727PubMedCrossRefPubMedCentralGoogle Scholar
  68. Li EW, Jiang LH, Guo LD et al (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899PubMedCrossRefPubMedCentralGoogle Scholar
  69. Li JY, Harper JK, Grant DM et al (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis sp. and Monochaetia sp. Phytochemistry 56:463–468PubMedCrossRefGoogle Scholar
  70. Li JY, Strobel GA (2001) Jesterone and hydroxyjesterone antioomycete cyclohexenone epoxides from the endophytic fungus Pestalotiopsis jester. Phytochemistry 57:261–265PubMedCrossRefGoogle Scholar
  71. Liu H, Jiang H, Haltli B (2009a) Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile Escherichia coli-streptomyces artificial chromosome vector, pSBAC. Nat Prod 72:389–395CrossRefGoogle Scholar
  72. Liu L, Liu S, Niu S et al (2009b) Isoprenylated chromone derivatives from the plant endophytic fungus Pestalotiopsis fici. J Nat Prod 72:1482–1486PubMedCrossRefGoogle Scholar
  73. Liu L, Tian RR, Liu SC et al (2009c) Pestalofones A-E, bioactive cyclohexanone derivatives from the plant endophytic fungus Pestalotiopsis fici. Bioorg Med Chem 17:606–613PubMedCrossRefPubMedCentralGoogle Scholar
  74. Liu SC, Guo LD, Che YS, Liu L (2013) Pestaloficiols Q-S from the plant endophytic fungus Pestalotiopsis fici. Fitoterapia 85:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mwangi MM, Wu SW, Zhou Y et al (2007) Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by wholegenome sequencing. Proc Natl Acad Sci USA 104:9451–9456PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nakamura H, Iitaka Y, Kitahara T et al (1977) Structure of aplasmomycin. J Antibiot 30:714–719PubMedCrossRefGoogle Scholar
  77. Navarro-Meléndez AL, Heil M (2014) Symptomless endophytic fungi suppress endogenous levels of salicylic acid and interact with the jasmonate-dependent indirect defense traits of their host, Lima bean (Phaseolus lunatus). J Chem Ecol 40:816–825PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nützmann HW, Reyes-Dominguez Y, Scherlach K et al (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci 108:14282–14287PubMedPubMedCentralCrossRefGoogle Scholar
  79. Okane I, Nagagiri A, Ito T (1998) Endophytic fungi in leaves of ericaceous plants. Can J Bot 76:657–663Google Scholar
  80. Ola ARB, Thomy D, Lai D et al (2013) Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. J Nat Prod 76:2094–2099PubMedCrossRefGoogle Scholar
  81. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9(3):203–214PubMedCrossRefGoogle Scholar
  82. Pelaez F, Collado J, Arenal F et al (1998) Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycol Res 102:755–761CrossRefGoogle Scholar
  83. Penalva MA, Rowlands RT, Turner G (1998) The optimization of penicillin biosynthesis in fungi. Trends Biotechnol 16:483–489PubMedCrossRefGoogle Scholar
  84. Pendleton JN, Gorman SP, Gilmore BF (2013) Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther 11(3):297–308PubMedCrossRefGoogle Scholar
  85. Perlova O, Gerth K, Kuhlmann S et al (2009) Novel expression hosts for complex secondary metabolite megasynthetases: production of myxochromide in the thermopilic isolate Corallococcus macrosporus GT-2. Microb Cell Fact 8:1PubMedPubMedCentralCrossRefGoogle Scholar
  86. Petrini O (1986) Taxonomy of endophytic fungi in aerial plant tissues. In: Fokkoema NJ, Van den Huevel J (eds) Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp 175–187Google Scholar
  87. Pfeifer BA, Admiraal SJ, Gramajo H et al (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792PubMedCrossRefGoogle Scholar
  88. Photita W, Lumyong S, Lumyong P et al (2004) Are some endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140Google Scholar
  89. Piepersberg W (1994) Pathway engineering in secondary metabolites-producing actinomycetes. CRC Cr Rev Biotechn 14:251–285CrossRefGoogle Scholar
  90. Pirttilä AM, Laukkanen H, Pospiech H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L) by in situ hybridization. Appl Environ Microbiol 66:3073–3077PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pirttilä AM, Pospiech H, Laukkanen H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L). Microbial Ecol 45:53–62CrossRefGoogle Scholar
  92. Provorov NA, Yu A, Borisov AY et al (2002) Developmental genetics and evolution of symbiotic structures in nitrogen-fixing nodules and arbuscular mycorrhiza. J Theor Biol 214:215–232PubMedCrossRefGoogle Scholar
  93. Ragazzi A, Moricca S, Capretti P (2001) Endophytic fungi in Quercus cerris: isolation frequency in relation to phenological phase, tree health and the organ affected. Phytopathol mediterr 40:165–171Google Scholar
  94. Richter SS, Heilmann KP, Dohrn CL et al (2009) Changing epidemiology of antimicrobial-resistant Streptococcus pneumoniae in the United States, 2004–2005. Clin Infect Dis 48:e23–e33PubMedCrossRefGoogle Scholar
  95. Ro DK, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  96. Rodrigues KF, Samuels GJ (1999) Fungal endophytes of Spondias mombin leaves in Brazil. J Basic Microb 39:131–135CrossRefGoogle Scholar
  97. Saikkonen K, Ahlholm J, Helander M et al (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:346–352CrossRefGoogle Scholar
  98. Saikkonen K, Faeth SH, Helander M et al (1998) Fungal endophytes: a continuum of interaction with host plants. Annu Rev Ecol Syst 29:319–343CrossRefGoogle Scholar
  99. Saikkonen K, Wäli P, Helander M (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280PubMedPubMedCentralCrossRefGoogle Scholar
  100. Samuelsson G (2004) Drugs of natural origin: a textbook of pharmacognosy, 5th edn. Sweedish Pharmaceutical Press, Stockholm, p 620Google Scholar
  101. Schäberle TF, Hack IM (2014) Overcoming the current deadlock in antibiotic research. Trends Microbiol 22:165–167PubMedCrossRefGoogle Scholar
  102. Schippmann U, Leaman DJ, Cunningham AB (2002) Impact of cultivation and gathering of medicinal plants on biodiversity: global trends and issues In: (FAO) Inter departmental working group on biological diversity for food and agriculture, RomeGoogle Scholar
  103. Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686PubMedPubMedCentralCrossRefGoogle Scholar
  104. Schulz B, Guske S, Dammann U et al (1998) Endophyte host interactions II. Defining symbiosis of the endophyte-host interaction. Symbiosis 25:213–227Google Scholar
  105. Schulz B, Sucker J, Aust HJ (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015CrossRefGoogle Scholar
  106. Schulz BU, Wanke U, Drager S et al (1993) Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycol Res 97:1447–1450CrossRefGoogle Scholar
  107. Siegel MR, Latch GCM, Johnson MC (1987) Fungal endophytes of grasses. Annu Rev Phytopathol 25:293–315CrossRefGoogle Scholar
  108. Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae. Science 260:214–216PubMedCrossRefGoogle Scholar
  109. Stierle AA, Stierle DB (2005) Bioprospecting in the Berkeley pit: Bio active metabolites from acid mine waste extremophiles. Stud Nat Prod Chem 32:1123–1175CrossRefGoogle Scholar
  110. Strobel G (2003) Endophytes as sources of bioactive products. Microbes Infect 5:535–544PubMedPubMedCentralCrossRefGoogle Scholar
  111. Strobel G (2007) Plant associated microorganisms (endophytes) as a new source of bioactive natural products. In: Kayser O, Quax WJ (eds) Medical plant biotechnology. Wiley –VCH Verlag, WeinheimGoogle Scholar
  112. Strobel GA (2002) Rainforest endophytes and bioactive products. Crc Cr Rev Biotechn 22:315–333CrossRefGoogle Scholar
  113. Strobel GA, Ford E, Worapong J et al (2002) Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60:179–183PubMedCrossRefPubMedCentralGoogle Scholar
  114. Strobel GA, Hess WM, Ford E (1996a) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol Biot 17(5/6):417–423CrossRefGoogle Scholar
  115. Strobel GA, Yang X, Sears J (1996b) Taxol from Pestalotiopsis microspora of Taxus wallachiana. Microbiology 142:435–440PubMedCrossRefGoogle Scholar
  116. Sturz A, Cristic BR, Matheson BG (1998) Associations of bacterial endophytes population from red clover and potato crops with potential for beneficial allelopathy. Can J Microbiol 44:162–167CrossRefGoogle Scholar
  117. Suryanarayanan TS, Kumaresan V (2000) Endophytic fungi of some halophytes from an estuarine mangrove forest. Mycol Res 104:1465–1467CrossRefGoogle Scholar
  118. Suryanarayanan TS, Kumaresan V, Johnson JA (1998) Foliar fungal endophytes from two species of the mangrove Rhizophora. Can J Microbiol 44:1003–1006CrossRefGoogle Scholar
  119. Suryanarayanan TS, Venkatesan G, Murali TS (2003) Endophytic fungal communities in leaves of tropical forest trees: diversity and distribution patterns. Curr Sci India 85:489–493Google Scholar
  120. Svahn KS, Göransson U, Chryssanthou E et al (2014) Induction of gliotoxin secretion in Aspergillus fumigatus by bacteria-associated molecules. PLoS ONE 9:e93685PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459PubMedPubMedCentralCrossRefGoogle Scholar
  122. Taylor JE, Hyde KD, Jones EBG (1999) Endophytic fungi associated with the temperate palm, Trachycarpus fortunei, within and outside its geographical range. New Phytol 142:335–346CrossRefGoogle Scholar
  123. Tejesvi MV, Kajula M, Mattila S, Pirttilä AM (2011) Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fung Div 47:97–107CrossRefGoogle Scholar
  124. Tejesvi MV, Kini KR, Prakash HS et al (2007) Genetic diversity and antifungal activity of species of Pestalotiopsis isolated as endophytes from medicinal plants. Fungal Divers 24:37–54Google Scholar
  125. Tejesvi MV, Mahesh B, Nalini MS et al (2005) Endophytic fungal assemblages from inner bark and twig of Terminalia arjuna W and A (Combretaceae). World J Microbiol Biot 21:1535–1540CrossRefGoogle Scholar
  126. Tejesvi MV, Mahesh B, Nalini MS et al (2006) Fungal endophyte assemblages from ethnopharmaceutically important medicinal trees. Can J Microbiol 52:427–435PubMedCrossRefGoogle Scholar
  127. Tejesvi MV, Picart P, Kajula M et al (2016) Identification of antibacterial peptides from endophytic microbiome. Appl Microbiol Biotech 100:9283–9293CrossRefGoogle Scholar
  128. Tejesvi MV, Pirttilä AM (2017) Endophytic fungi, occurrence and metabolites. In: Anke T and Schüffler A (eds) The Mycota Vol. XV: physiology and genetics, 2nd ed (in press)Google Scholar
  129. Tejesvi MV, Ruotsalainen AL, Markkola AM et al (2010) Root fungal endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134CrossRefGoogle Scholar
  130. Tejesvi MV, Tamhankar SA, Kini KR et al (2009) Phylogenetic analysis of endophytic Pestalotiopsis species from ethnopharmaceutically important medicinal trees. Fungal Divers 38:167–183Google Scholar
  131. Tejesvi MV, Segura DR, Schnorr KM et al (2013) An antimicrobial peptide from endophytic Fusarium tricinctum of Rhododendron tomentosum Harmaja. Fung Div 60:153–159CrossRefGoogle Scholar
  132. Tian Y, Amand S, Buisson D et al (2014) The fungal leaf endophyte Paraconiothyrium variabile specifically metabolizes the host- plant metabolome for its own benefit. Phytochemistry 108:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  133. Tomita F (2003) Endophytes in Southeast Asia and Japan: their taxonomic diversity and potential applications. Fungal Divers 14:187–204Google Scholar
  134. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029PubMedCrossRefPubMedCentralGoogle Scholar
  135. Toofanee SB, Dulymamode R (2002) Fungal endophytes associated with Cordemoya integrefolia. Fungal Divers 11:169–175Google Scholar
  136. Uniyal SK, Singh KN, Jamwal P et al (2006) Traditional use of medicinal plants among the tribal communities of Chhota Bhangal, Western Himalaya. J Ethnobiol Ethnomed 2:1–14CrossRefGoogle Scholar
  137. Verdine GL (1996) The combinatorial chemistry of nature. Nature 384:11–13PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, Che Y, Guo L, Liu G, Guo L, Wang C, Yin WB, Stadler M, Zhang X, Liu X (2015a) Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genom 16:28CrossRefGoogle Scholar
  139. Wang W-X, Kusari S, Sezgin S, Lamshöft M, Kusari P, Kayser O, Spiteller M (2015b) Hexacyclopeptides secreted by an endophytic fungus Fusarium solani N06 act as crosstalk molecules in Narcissus tazetta. Appl Microbiol Biotechnol 99:7651–7662PubMedCrossRefPubMedCentralGoogle Scholar
  140. Watanabe K (2008) Exploring the biosynthesis of natural products and their inherent suitability for the rational design of desirable compounds through genetic engineering. Biosci Biotechnol Biochem 72:2491–2506PubMedCrossRefPubMedCentralGoogle Scholar
  141. Wenzel SC, Muller R (2005) Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr Opin Biotechnol 16:594–606PubMedCrossRefGoogle Scholar
  142. Williams RB, Henrikson JC, Hoover AR et al (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897PubMedCrossRefGoogle Scholar
  143. World Health Organisation (WHO) (1991) Traditional medicine and modern health care, Progress Report by the Director General, Forty Fourth World Health assembly, A44/19Google Scholar
  144. Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 44:15–31CrossRefGoogle Scholar
  145. Xu J, Yang X, Lin Q (2014) Chemistry and biology of Pestalotiopsis-derived natural products. Fungal Divers 66:37–68CrossRefGoogle Scholar
  146. Yang Y, Zhao H, Barrero RA et al (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genom 15:69CrossRefGoogle Scholar
  147. Zhang HR, Boghigian BA, Armando J et al (2011) Methods and options for the heterologous production of complex natural products. Nat Prod Rep 28:125–151PubMedCrossRefPubMedCentralGoogle Scholar
  148. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753–771PubMedCrossRefPubMedCentralGoogle Scholar
  149. Zhao K, Ping WX, Ma X et al (2005) Breeding of highyield strain of taxol by mutagenesis of protoplast and primary discussion of genetic differences between mutants and their parent strain. Acta Microbiol Sin 45:355–358Google Scholar
  150. Zhou DP, Zhao K, Ping WX et al (2005) Study on the mutagensis of protoplasts from taxol-producing fungus Nodulisporium sylviforme. J Am Sci 1:55–62Google Scholar
  151. Zirkle R, Ligon JM, Molnar I (2004) Heterologous production of the antifungal polyketide antibiotic soraphen A of Sorangium cellulosum So ce26 in Streptomyces lividans. Microbiology 150:2761–2774PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ecology and GeneticsUniversity of OuluOuluFinland

Personalised recommendations