Advertisement

Bacteria Inhabiting Wood of Roots and Stumps in Forest and Arable Soils

  • Katarzyna Kubiak
  • Marta Wrzosek
  • Sebastian Przemieniecki
  • Marta Damszel
  • Zbigniew Sierota
Chapter
Part of the Forestry Sciences book series (FOSC, volume 86)

Abstract

This chapter discusses the effect of sawdust amendment on the bacterial populations in wood and rhizosphere soil in two habitats, afforested post-agricultural sites and forests, and the interactions between bacteria and fungi inhabiting wood. We evaluated and compared the bacterial biota: (i) in two types of soil, before and after the addition of wood (in the form of pine sawdust mixed with soil) under the roots of planted seedlings; (ii) the studies were performed in autumn and spring to evaluate the influence of low temperatures on the bacterial populations, and (iii) in roots of Scots pine at plantations where stumps were previously colonized by the saprotrophic Phlebiopsis gigantea or the pathogenic Heterobasidion annosum and Armillaria ostoyae. The qualitative and quantitative changes in bacterial communities in soil and in wood of roots on both arable and forest soils are discussed.

Abbreviations

COP

Copiotrophs

OLI

Oligotrophs

FLU

Fluorescent  bacteria

SPO

Sporulating bacteria

ACT

Actinobacteria

CEL

Cellulolytic bacteria

Notes

Acknowledgements

The paper presents some unpublished results from the project NCBR No. 12-0096-10, funded by the National Research Center for Research and Development, Poland, and from the research project BLP-329, funded by the General Directorate of State Forests, Poland. The authors would also like to thank the anonymous reviewers for their valuable comments and suggestions.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Adams AS, Six DL, Adams SM, Holben WE (2008) In vitro interactions between yeasts and bacteria and the fungal symbionts of the mountain pine beetle (Dendroctonus ponderosae). Microb Ecol 56:460–466.  https://doi.org/10.1007/s00248-008-9364-0CrossRefPubMedGoogle Scholar
  2. Agler TA, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):e1002352. pmid:26788878CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aira M, Monroy F, Domínguez J (2006) Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol 52:738–747CrossRefPubMedGoogle Scholar
  4. Alam MZ, Sultana M, Anwar MN (2011) Isolation, identification and characterization of four cellulolytic actinomycetes and their cellulases. Aust J Biol Sci 6:159–173Google Scholar
  5. Anderson I, Abt B, Lykidis A, Klenk H-P, Kyrpides N, Ivanova N (2012) Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS ONE 7:e39331CrossRefPubMedPubMedCentralGoogle Scholar
  6. Austin AT, Ballaré CL (2010) Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS 107:4618–4622CrossRefPubMedGoogle Scholar
  7. Bal A, Anand R, Berge O, Chanway CP (2012) Isolation and identification of diazotrophic bacteria from internal tissues of Pinus contorta and Thuja plicata. Can J Forest Res 42:807–813CrossRefGoogle Scholar
  8. Baldan E, Nigris S, Populin F, Zottini M, Squartini A, Baldan B (2014) Identification of culturable bacterial endophyte community isolated from tissues of Vitisvinifera “Glera”. Plant Biosyst 148:508–516CrossRefGoogle Scholar
  9. Barbieri E, Bertini L, Rossi I, Ceccaroli P, Saltarelli R, Guidi C et al (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35.  https://doi.org/10.1016/j.femsle.2005.04.027CrossRefPubMedGoogle Scholar
  10. Barbieri E, Guidi C, Bertaux J, Frey-Klett P, Garbaye J, Ceccaroli P et al (2007) Occurrence and diversity of bacterial communities in Tuber magnatum during truffle maturation. Environ Microbiol 9:2234–2246.  https://doi.org/10.1111/j.1462-2920.2007.01338.xCrossRefPubMedGoogle Scholar
  11. Barbieri E, Ceccaroli P, Saltarelli R, Guidi C, Potenza L, Basaglia M, et al (2010) New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol. 114:936–942.  https://doi.org/10.1016/j.funbio.2010.09.001CrossRefPubMedGoogle Scholar
  12. Bardgett RD (2011) Plant-soil interactions in a changing world. PMC F 1000 Biol Rep 3:16  https://doi.org/10.3410/b3-16
  13. Barros IA, Araujo WL, Azevedo JL (2010) The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae). Braz J Microbiol 41:956–965CrossRefGoogle Scholar
  14. Baumgartner K, Coetzee MPA, Hoffmeister D (2011) Secrets of the subterranean pathosystem of Armillaria Molecular Plant Pathology, 1–20,  https://doi.org/10.1111/j.1364-3703.2010.00693.x
  15. Becker P, Abu-Resh I, Markossian S, Antranikian G, Mürkl H (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. 1H1-91 on olive oil. Appl Microbiol Biotechnol 48:184–190CrossRefPubMedGoogle Scholar
  16. Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, Vangronsveld J (2016) Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci U S A 113(8):2312–2317.  https://doi.org/10.1073/pnas.1523264113CrossRefPubMedPubMedCentralGoogle Scholar
  17. Behie SW, Bidochka MJ (2014) Ubiquity of Insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 80(5):1553–1560CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bekele A, Kellman L, Beltrami H (2007) Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada. For Ecol Manag 242:587–597CrossRefGoogle Scholar
  19. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microb Ecol 39:219–227Google Scholar
  20. Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70(6):3600–3608.  https://doi.org/10.1128/aem.70.6.3600-3608.2004CrossRefPubMedPubMedCentralGoogle Scholar
  21. Blankinship JC, Niklaus PA, Hungate BA (2011) A meta-analysis of responses of soil biota to global change. Oecologia 165(3):553–565.  https://doi.org/10.1007/s00442-011-1909-0CrossRefPubMedGoogle Scholar
  22. Błaszczyk M (2010) Mikrobiologia środowisk [Environmental microbiology]. PWN, Warsaw In PolishGoogle Scholar
  23. Boersma FGH, Warmink JA, Andreote FA, Van Elsas JD (2009) Selection of Sphingomonadaceae at the base of Laccaria proxima and Russula exalbicans fruiting bodies. Appl Environ Microbiol 75:1979–1989.  https://doi.org/10.1128/aem.02489-08CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bradford MA, Davies CA, Frey SD et al (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett 11(12):1316–1327.  https://doi.org/10.1111/j.1461-0248.2008.01251.xCrossRefPubMedGoogle Scholar
  25. Brzeski MW, Szczech M (1999) Effect of continuous soil amendment with coniferous sawdust on nematodes and microorganisms. Nemat Medit 27:159–166Google Scholar
  26. Bulgari D, Casati P, Quaglino F, Bianco PA (2014) Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol 14:198CrossRefPubMedPubMedCentralGoogle Scholar
  27. Butt TM, Copping L (2000) Fungal biological control agents. Pestic Outlook 11:186–191CrossRefGoogle Scholar
  28. Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Element Res 97(2):183–194.  https://doi.org/10.1385/bter:97:2:183CrossRefGoogle Scholar
  29. Caravaca F, Barea JM, Figueroa D, Roldán A (2002) Assessing the effectiveness of mycorrhizal inoculation and soil compost addition for enhancing reaforestation with Olea europaea subsp. sylvestris through changes in soil biological and physical parameters. Appl Soil Ecol 20:107–118CrossRefGoogle Scholar
  30. Carey JC, Tang J, Templer PH et al (2016) Temperature response of soil respiration largely unaltered with experimental warming. PNAS 2016(113):13797–13802CrossRefGoogle Scholar
  31. Carrell AA, Frank AC (2015) Bacterial endophyte communities in the foliage of coast redwood and giant sequoia. Front Microbiol6: 1008  https://doi.org/10.3389/fmicb.2015.01008
  32. Celar FA (2003) Competition for ammonium and nitrate forms of nitrogen between some phytopathogenic and antagonistic soil fungi. Biol Con 28(1):19–24.  https://doi.org/10.1016/s1049-9644(03)00049-5CrossRefGoogle Scholar
  33. Chanway CP (1997) Inoculation of tree roots with plant growth promoting soil bacteria: an emerging technology for reforestation. For Sci 43:99–112Google Scholar
  34. Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycol 103(1). https://doi.org/10.3852/10-078CrossRefPubMedGoogle Scholar
  35. Chebotar VK, Shcherbakov AV, Maslennikova SN, Zaplatkin AN, Kanarskiy AV, Zavalin AA (2016) Endophytic bacteria of woody plants as the basis of complex microbial preparations for agriculture and forestry. Russ Agricult Sci 42(5):339–342CrossRefGoogle Scholar
  36. Classen AT, Sundqvist M, Henning JA, Newman GS, Moore JAM, Cregger M, Moorhead LC, Patterson CM (2015) ESA centennial paper: direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6(8):130CrossRefGoogle Scholar
  37. Compant S, van der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant/microorganism interactions. FEMS Microbiol Ecol 73:197–214PubMedGoogle Scholar
  38. DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD (2015) Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol 6:104.  https://doi.org/10.3389/fmicb.2015.00104CrossRefPubMedPubMedCentralGoogle Scholar
  39. Deng F, Xu R, Boland GJ (2003) Hypovirulence-associated double-stranded RNA from Sclerotinia homeocarpa is conspecific with Ophiostoma novo-ulmi mitovirus 3a-Ld. Phytopathol 93(11):1407–1414CrossRefGoogle Scholar
  40. Deveau A, Antony-Babu S, Le Tacon F, Robin C, Frey-Klett P, Uroz S (2016) Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza 26:389–399.  https://doi.org/10.1007/s00572-015-0679-7CrossRefPubMedGoogle Scholar
  41. Ding T, Palmer MW, Melcher U (2013) Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 13:1CrossRefPubMedPubMedCentralGoogle Scholar
  42. Domínguez-Núñez JA, Muñóz D, de la Cruz A, Saiz de Omeñaca JA (2013) Effects of Pseudomonas fluorescens on the water parameters of mycorrhizal and non-mycorrhizal seedlings of Pinus halepensis. Agronomy 3:571–582.  https://doi.org/10.3390/agronomy3030571CrossRefGoogle Scholar
  43. Drigo B, Van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond to elevated atmospheric CO2. ISME J 3:1204–1217CrossRefPubMedGoogle Scholar
  44. Duda B, Sierota Z (1987) Survival of Scots pine seedlings after biological and chemical control of damping-off fungi in plastic greenhouses. Eur J For Path 2:110–117CrossRefGoogle Scholar
  45. Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defence: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501–538CrossRefPubMedGoogle Scholar
  46. Eberl L, Vandamme P (2016). Members of the genus Burkholderia: good and bad guys. F1000Research 5, F1000 Faculty Rev–1007,  https://doi.org/10.12688/f1000research.8221.1
  47. Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L (2017) Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports 7:44641.  https://doi.org/10.1038/srep44641CrossRefPubMedPubMedCentralGoogle Scholar
  48. Enebak SA, Carey WA (2000) Evidence for induced systemic protection to fusiform rust in loblolly pine by plant growth-promoting rhizobacteria. APS 84(3):306–308.  https://doi.org/10.1094/pdis.2000.84.3.306CrossRefGoogle Scholar
  49. Enebak SA, Wei G, Kloepper JW (1998) Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings. For Sci 44:139–144Google Scholar
  50. Eschen R, Mortimer SR, Lawson CS, Edwards AR, Brook AJ, Igual JM (2007) Carbon addition alters vegetation composition on ex-arable fields. J Appl Ecol 44:95–104CrossRefGoogle Scholar
  51. Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fatima U, Senthil-Kumar M (2015) Plant and pathogen nutrient acquisition strategies. Front Plant Sci 6:750.  https://doi.org/10.3389/fpls.2015.00750CrossRefPubMedPubMedCentralGoogle Scholar
  53. Filteau M, Lagacé L, LaPointe G, Roy D (2010) Seasonal and regional diversity of maple sap microbiota revealed using community PCR fingerprinting and 16S rRNA gene clone libraries. Syst Appl Microbiol 33:165–173CrossRefPubMedGoogle Scholar
  54. Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Change 4:395–398.  https://doi.org/10.1038/nclimate1796CrossRefGoogle Scholar
  55. Frey-Klett P, Pierrat JD, Garbaye J (1997) Location and Survival of Mycorrhiza Helper Pseudomonas fluorescens during Establishment of Ectomycorrhizal Symbiosis between Laccaria bicolor and Douglas Fir. Appl Environ Microbiol 63(1)139–144Google Scholar
  56. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609.  https://doi.org/10.1128/mmbr.00020-11CrossRefPubMedPubMedCentralGoogle Scholar
  57. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750CrossRefPubMedGoogle Scholar
  58. Garcia-Gonzalez E, Müller S, Hertlein G, Heid N, Süssmuth RD, Genersch E (2014) Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae. Microbiolog 3(5):642–656CrossRefGoogle Scholar
  59. Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479–480:356–368.  https://doi.org/10.1016/j.virol.2015.02.034CrossRefPubMedGoogle Scholar
  60. Giardina ChP, Litton CM, Crow SE, Asner GP (2014) Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Clim. Change 4(9):822–827.  https://doi.org/10.1038/nclimate2322CrossRefGoogle Scholar
  61. Gopalakrishnan S, Vadlamudi S, Bandikinda P, Sathya A, Vijayabharathi R, Rupela O, Kudapa H, Katta K, Varshney RK (2014) Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol Res 169(1):40–48.  https://doi.org/10.1016/j.micres.2013.09.008CrossRefPubMedGoogle Scholar
  62. Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014) Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat Clim Change 4:903–906.  https://doi.org/10.1038/nclimate2361CrossRefGoogle Scholar
  63. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefGoogle Scholar
  64. Hill PW, Marsden KA, Jones DL (2013) How significant to plant N nutrition is the direct consumption of soil microbes by roots? New Phytol 199(4):948–955CrossRefPubMedPubMedCentralGoogle Scholar
  65. Hoffman MT, Arnold E (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. App Environ Microbiol 76:4063–4075CrossRefGoogle Scholar
  66. Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krüger D (2014) Network analysis reveals ecological links between N-fixing bacteria and wood decaying fungi. PLoS ONE 9(2):e88141.  https://doi.org/10.1371/journal.pone.0088141CrossRefPubMedPubMedCentralGoogle Scholar
  67. Huang B, Lv C, Zhuang P, Zhang H, Fan L (2011) Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. Plant Biol (Stuttg) 13:925–931CrossRefGoogle Scholar
  68. Izumi H (2011) Diversity of endophytic bacteria in forest trees. In: Pirttilä A, Frank A (eds) Endophytes of forest trees. Forestry sciences, vol 80. Springer, DordrechtCrossRefGoogle Scholar
  69. Izumi H, Anderson IC, Alexander IJ, Killham K, Moore ERB (2006) Diversity and expression of nitrogenase genes (nifH) from ectomycorrhizas of Corsican pine (Pinus nigra). Environ Microbiol 8:2224–2230CrossRefPubMedGoogle Scholar
  70. Izumi H, Anderson IC, Killham K, Moore ERB (2008) Diversity of predominant endophytic bacteria in European deciduous and coniferous trees. Can J Microbiol 54:173–179CrossRefPubMedGoogle Scholar
  71. Kaczmarek Z, Wolna-Maruwka A, Jakubus M (2008) Changes of the number of selected microorganism groups and enzymatic activity in the soil inoculated with effective microorganisms (EM). J Res Applic Agr Eng 53:122–127Google Scholar
  72. Karhu K, Auffret MD, Dungait JAJ, Hopkins DA, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N and Hartley IP (2014) Temperature sensitivity of soil respiration rates enhanced by microbial community response, Nature 513, 81–84, (04 September 2014),  https://doi.org/10.1038/nature13604CrossRefPubMedGoogle Scholar
  73. Kobayashi DY, Crouch JA (2009) Bacterial/fungal interactions:from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol 47:63–82.  https://doi.org/10.1146/annurev-phyto-080508-081729CrossRefPubMedGoogle Scholar
  74. Koch AL (2001) Oligotrophs versus copiotrophs. BioEssays 23(7):657–661CrossRefPubMedGoogle Scholar
  75. Kubiak K, Damszel M, Sikora K, Przemieniecki S, Małecka M, Sierota Z (2017a) Colonization of Fungi and Bacteria in Stumps and Roots of Scots Pine after Thinning and Treatment with Rotstop. J Phytopathol 165:143–156CrossRefGoogle Scholar
  76. Kubiak K, Małecka M, Tkaczyk M, Sierota Z (2017b) Pine sawdust as stimulator of the microbial community in post-arable afforested soil. Arch Agron Soil Sci 63(3):427–441.  https://doi.org/10.1080/03650340.2016.1213816CrossRefGoogle Scholar
  77. Kubiak K, Żółciak A, Damszel M, Lech P, Sierota Z (2017c) Armillaria pathogenesis under climate changes. Forests 8:100.  https://doi.org/10.3390/f8040100CrossRefGoogle Scholar
  78. Kwaśna H, Sierota Z (1999) Structure of fungal communities in barren post agricultural soil 1-and 2-years after pine sawdust application. Phytopath Pol. 17:13–21Google Scholar
  79. Kwaśna H, Sierota Z, Bateman GL (2000) Fungal communities in fallow soil before and after amending with pine sawdust. Appl Soil Ecol 14:177–182CrossRefGoogle Scholar
  80. Kwaśna H, Brzeski MW, Sierota Z (2001) Drobnoustroje środowiska glebowego—aspekty fizjologiczne, biochemiczne, genetyczne [Microorganisms of the soil environment—physiological, biochemical, genetic aspects]: Mikroorganizmy środowiska glebowego odłogujących gruntów porolnych—zmiany w zbiorowiskach grzybów i nicieni po dodaniu trocin iglastych [Soil microorganisms in abandoned farm soils—changes in fungal and nematodes community after sawdust addition]. Adam Marszałek Press, Toruń, PolishGoogle Scholar
  81. Kwaśna H, Małecka M, Sierota Z, Jaworski T (2016) Effects of sawdust amendment on forest soil fungal community and infestation by cockchafers. Dendrobiology 75:87–97.  https://doi.org/10.12657/denbio.075.009CrossRefGoogle Scholar
  82. Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phyto 192(1):215–224.  https://doi.org/10.1111/j.1469-8137.2011.03790.xCrossRefGoogle Scholar
  83. Lavelle P, Lattaud C, Trigo D, Barois I (1995) Mutualism and biodiversity in soils. Plant Soil 170:23–33CrossRefGoogle Scholar
  84. Lladó S, López-Mondéjar R, Baldrian P (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiol Mol Biol Rev 81:e00063-16.  https://doi.org/10.1128/mmbr.00063-16CrossRefPubMedPubMedCentralGoogle Scholar
  85. Lopez MJ, Vargas MCG, Suarez F, Moreno J (2006) Biodelignification and humification of horticultural plant residues by fungi. Int Biodeter Biodegr 57:165–179CrossRefGoogle Scholar
  86. Martin BD, Schwab E (2012) Current usage of symbiosis and associated terminology. Int J Biol 5:32–45CrossRefGoogle Scholar
  87. Mendes IC, Bandick AK, Dick RP, Bottomley PJ (1999) Microbial biomass and activities in soil aggregates affected by winter cover crops. Soil Sci Soc Am J 63:873–881CrossRefGoogle Scholar
  88. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  89. Miransari M (2011) Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl Microbiol Biotechnol 89:917–930CrossRefPubMedGoogle Scholar
  90. Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F, Caciotti A, Tegli S, Surico G, Fani R (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res Microbiol 154:105–114CrossRefPubMedGoogle Scholar
  91. Neher DA (1999) Soil community composition and ecosystem processes comparing agricultural ecosystems with natural ecosystems. Agrofor Sys 45:159–185CrossRefGoogle Scholar
  92. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327–337Google Scholar
  93. Nongkhlaw FMW, Joshi SR (2014) Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya India. Rev Biol Trop 62:1295–1308CrossRefPubMedGoogle Scholar
  94. Nowak A, Michalcewicz W, Jakubiszyn B (1993) Liczebność bakterii, grzybów, promieniowców oraz biomasa mikroorganizmów w glebie [Amount and biomass of bacteria, fungi and actinomycetes in soil]. Zesz Nauk Ak Rol Szczecin 57:101–111 (In Polish)Google Scholar
  95. O’Loughlin EJ, Sims GK, Traina SJ (1999) Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an arthrobacter sp. isolated from subsurface sediment. Biodegrad 10(2):93–104.  https://doi.org/10.1023/a:1008309026751
  96. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. CURRENT SCI 89(1):177–180Google Scholar
  97. Partida-Martinez LP, Groth I, Schmitt I, Richter W, Roth M et al (2007) Burkholderia rhizoxinica sp. nov. and Burkholderia endofungorum sp. nov., bacterial endosymbionts of the plant-pathogenic fungus Rhizopus microsporus. Int J Syst Evol Microbiol 57:2583–2590CrossRefPubMedGoogle Scholar
  98. Pirttilä AM, Pospiech H, Laukkanen H, Myllylä R, Hohtola A (2005) Seasonal variations in location and population structure of endophytes in buds of Scots pine. Tree Physiol 25:289–297CrossRefPubMedGoogle Scholar
  99. Pratt JE, Niemi M, Sierota ZH (2000) Comparison of three products based on Phlebiopsis gigantea for the control of Heterobasidion annosum in Europe. Biocontrol Sci Technol 10:467–477CrossRefGoogle Scholar
  100. Proenca DN, Romeu F, Kublik S, Scholer A, Vestegaard G, Schloter M, Morais P (2017) The Microbiome of Endophytic, Wood Colonizing Bacteria from Pine Trees as Affected by Pine Wilt Disease. Nature Sci Rep 7, Article no 4205,  https://doi.org/10.1038/s41598-017-04141-6
  101. Przemieniecki S, Damszel M, Sierota Z, Kurowski T (2017) The bacterial community isolated from (Armillaria ostoyae (Romagn) Herink) rhizomorphs and its selected properties. Proc, Kraków, PolandGoogle Scholar
  102. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 75:6176–6186CrossRefPubMedPubMedCentralGoogle Scholar
  103. Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol 50:403–424.  https://doi.org/10.1146/annurev-phyto-081211-172908CrossRefPubMedGoogle Scholar
  104. Rangel-Castro JI, Levenfors JJ, Danell E (2002) Physiological and genetic characterization of fluorescent Pseudomonas associated with Cantharellus cibarius. Can J Microbiol 48:739–748CrossRefPubMedGoogle Scholar
  105. Rinta-Kanto JM, Sinkko H, Rajala T, Abu Al-Soud W, Sørensen SJ, Tamminen MV, Timonen S (2016) Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs, FEMS microbiology ecology 92 (7), fiw087CrossRefPubMedGoogle Scholar
  106. Saha N, Wirth S, Ulrich A (2013) Cellulolytic bacterial biodiversity in long-term manure experimental sites. Afr J Agric Res 8:299–307Google Scholar
  107. Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S (2011) Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem 43(7):1417–1425.  https://doi.org/10.1016/j.soilbio.2011.03.005CrossRefPubMedPubMedCentralGoogle Scholar
  108. Shankar N, Panchapakesan A, Bhandari S, Ravishankar HN (2014) Simultaneous cellulose hydrolysis and bio-electricity generation in a mediatorless Microbial Fuel Cell using a Bacillus flexus strain isolated from wastewater. Res Biotechnol 5:06–12Google Scholar
  109. Shen SY, Fulthorpe R (2015) Seasonal variation of bacterial endophytes in urban trees. Front Microbiol 6:427PubMedPubMedCentralGoogle Scholar
  110. Sierota Z, Wrzosek M, Sikora K, Biedunkiewicz A, Pawłowska J, Tarwacki G, Małecka M, Żółciak A (2016) The impact of Phlebiopsis gigantea treatment on bacterial and fungal communities inhabiting Norway spruce stumps. Austrian J For Sci 133(3):203–222Google Scholar
  111. Smalla K, Jechalke S, Top EM (2015) Plasmid detection, characterization and ecology. Microbiol Spectr 3(1):  https://doi.org/10.1128/microbiolspec.plas-0038-2014,  https://doi.org/10.1128/microbiolspec.plas-0038-2014
  112. Soria S, Alonso R, Bettucci L (2012) Endophytic bacteria from Pinus taeda L. AS biocontrol agents of Fusarium circinatum Nirenberg and O‘Donnell. Chil J Agric Res 72(2).doi:doi.org/ https://doi.org/10.4067/s0718-58392012000200018
  113. Sousa JAJ, Olivares FL (2016) Chem Biol Technol Agric 3: 24:  https://doi.org/10.1186/s40538-016-0073-5
  114. Steinauer K, Jensen B, Strecker T, de Luca E, Scheu S, Eisenhauer N (2016) Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient. BMC Ecol 16:19.  https://doi.org/10.1186/s12898-016-0073-0CrossRefPubMedPubMedCentralGoogle Scholar
  115. Strzelczyk E, Li CY (2000) Bacterial endobionts in the big non-mycorrhizal roots of Scots pine (Pinus sylvestris L.). Microbiol Res 155:229–232CrossRefPubMedGoogle Scholar
  116. Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2013) The impacts of treatment with biocontrol fungus (Phlebiopsis gigantea) on bacterial diversity in Norway spruce stumps. Biol Con 64:238–246CrossRefGoogle Scholar
  117. Tabao NC, Moasalud RG (2010) Characterisation and identification of high cellulose-producing bacterial strains from Philippine mangroves. Philipp J System Biol 4:13–20.  https://doi.org/10.3860/pjsb.v4i0.1562CrossRefGoogle Scholar
  118. Thongsandee W, Matsuda Y, Shimizu M, Ehara H, Ito S (2013) Isolation of endophytic streptomycetes from above- and belowground organs of Quercus serrata. J Forest Res 18:179–189.  https://doi.org/10.1007/s10310-012-0337-2CrossRefGoogle Scholar
  119. Tizzard AC, Vergnon M, Clinton PW (2006) The unseen depths of soils—how plant growth promoting microbes may advance commercial forestry practices.N Z J For 3:9–12Google Scholar
  120. Toju H, Guimarães PL, Jr Jens, Olesen M, Thompson JN (2015) Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology. Sci Adv 2015(1):e1500291CrossRefGoogle Scholar
  121. Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2011) An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohyd Polym 83:891–897CrossRefGoogle Scholar
  122. Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Moënne-Loccoz Y, Muller D, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013). Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science 4:356 http://doi.org/10.3389/fpls.2013.00356
  123. van der Heijden MGA, Hartmann M (2016) Networking in the Plant Microbiome. PLoS Biol 4(2):e1002378.  https://doi.org/10.1371/journal.pbio.1002378CrossRefGoogle Scholar
  124. van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorhizaal ecology and evolution, the past, the present and the future. New Phytol 205(4):1406–1423CrossRefPubMedGoogle Scholar
  125. Van Veen JA, Paul EA (1981) Organic C dynamics in grassland soils, backround information and computer simulation. Can J Soil Sci 6:185–201CrossRefGoogle Scholar
  126. Venkatachalam S, Sivaprakash M, Gowdaman V, Prabagaran SR (2014) Bioprospecting of cellulase producing extremophilic bacterial isolates from India. Br Microbiol Res J 4:142–154CrossRefGoogle Scholar
  127. Watanabe N, Lewis JA, Papavizas GC (1987) Influence of nitrogen fertilizers on growth, spore production and germination, and biological potential of trichoderma and Gliocladium. J Phyto 120(4):337–346.  https://doi.org/10.1111/j.1439-0434.1987.tb00497.xCrossRefGoogle Scholar
  128. Wei X, Qiu L, Shao M, Zhang X, Gale WJ (2012) The accumulation of organic carbon in mineral soils by afforestation of abandoned farmland. PLoS ONE 7(3):e32054CrossRefPubMedPubMedCentralGoogle Scholar
  129. Weise T, Kai M, Piechulla B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8(5):e63538.  https://doi.org/10.1371/journal.pone.0063538CrossRefPubMedPubMedCentralGoogle Scholar
  130. Westerberg K, Elvang AM, Stackebrandt E, Jansson JK (2000) Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Sys Evolut Microbiol 50(6):2083–2092.  https://doi.org/10.1099/00207713-50-6-2083CrossRefGoogle Scholar
  131. Weyman-Kaczmarkowa W, Pędziwilk Z (1996) Wilgotność środowiska i występowanie promieniowców i ich form fungistycznych w glebach o odmiennej teksturze. Acta Microbiol Pol 45(3/4):85–90 (In Polish)Google Scholar
  132. Wright MS, Cornelius ML (2012) Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae). BMC Microbiol 12:291CrossRefPubMedPubMedCentralGoogle Scholar
  133. Wrzosek M, Ruszkiewicz-Michalska M, Sikora K, Damszel M, Sierota Z (2017) The plasticity of fungal interactions. Mycol Prog 16(2):101–108.  https://doi.org/10.1007/s11557-016-1257-xCrossRefGoogle Scholar
  134. Wyszkowska J, Kucharski J (2005) Nawożenie słomą i trocinami jako czynnik niwelujący oddziaływanie zanieczyszczenia gleby kadmem na drobnoustroje [The fertilization with straw and sawdust as the limiting factor the influence of cadmium in soil on microorganisms]. Zesz Probl Post Nauk Rol 506:557–568 (In Polish)Google Scholar
  135. Xie J, Xiao X, Fu Y, Liu H, Cheng J, Ghabrial SA, Liang D (2011) A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology 418(1):49–56CrossRefPubMedGoogle Scholar
  136. Yadav A, Dubey RC Yadav K (2015) In Vitro growth enhancement of ectomycorrhizal fungus Scleroderma Bovista by Two Mycorrhizosphere Bacteria, The Indian Forester, 141(5) 4839/57Google Scholar
  137. Yang B, Wang X-M, Yang T, Jia Y, Zhou J, Dai Ch-Ch (2015) Fungal endophyte Phomopsis liquidambri affects nitrogen transformation processes and related microorganisms in the rice rhizosphere. Front Microbiol 6:982.  https://doi.org/10.3389/fmicb.2015.00982CrossRefPubMedPubMedCentralGoogle Scholar
  138. Zhao J, Ni T, Li Y, Xiong W, Ran W, Shen B (2014) Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 9:e85301CrossRefPubMedPubMedCentralGoogle Scholar
  139. Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481.  https://doi.org/10.2136/sssaj1997.03615995006100020015xCrossRefGoogle Scholar
  140. Zvyagintsev DG (1991) Methods of soil microbiology and biochemistry. Moscow University Press, MoscowGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Katarzyna Kubiak
    • 1
  • Marta Wrzosek
    • 2
  • Sebastian Przemieniecki
    • 3
  • Marta Damszel
    • 3
  • Zbigniew Sierota
    • 4
  1. 1.Department of Forest ProtectionForest Research InstituteRaszynPoland
  2. 2.Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research CentreUniversity of WarsawWarsawPoland
  3. 3.Department of Entomology, Phytopathology and Molecular DiagnosticsUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  4. 4.Department of Forestry and Forest EcologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations