Contact Urticaria Syndrome pp 131-147 | Cite as
Molecular Diagnosis in Contact Urticaria Caused by Proteins
Abstract
Molecular diagnosis (MD), or component-resolved diagnosis in allergy, consists of detecting specific IgE to different allergens. In this chapter is described how molecular diagnosis may increase diagnostic accuracy in patients with contact urticaria induced by proteins of the vegetal and animal kingdoms, how to recognize allergens associated with genuine sensitization from allergens with cross-reactivity, and how some allergens are associated with clinical reactions. Nevertheless, all in vitro test results should be evaluated in conjunction with the clinical history, because allergen sensitization does not necessarily imply clinical responsiveness. In general, molecular diagnosis provides us specificity in the diagnosis; however, to have enough diagnostic sensitivity, the skin prick test or specific IgE with whole standardized extracts is required.
Keywords
Allergy diagnosis Molecular diagnosis Component-resolved diagnosis Allergens Immunoglobulin E (IgE)Abbreviations
- Abs
antibodies
- CCD
Cross-reactive carbohydrate determinants
- LTP
Lipid transfer proteins
- MD
Molecular diagnosis
- OAS
Oral allergy syndrome
- PR 10 protein
Pathogenesis-related protein 10
Notes
Acknowledgments
I thank Oliver Shaw for editorial assistance.
Conflicts of Interest
The author reports having served as a consultant to Thermo Fisher, MSD, Novartis, Genentech, Sanofi, Leti, Roche and GSK; having been paid lecture fees by Novartis, GSK, Stallergenes, LE as well as having received grant support for research from Thermo Fisher, GSK, and ALK-Abello.
References
- 1.Sastre J. Molecular diagnosis in allergy. Clin Exp Allergy. 2010;40:1442–60.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Sastre J, Sastre-Ibañez M. Molecular diagnosis and immunotherapy. Curr Opin Allergy Clin Immunol. 2016;16(6):565–70.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, et al. EAACI molecular allergology user's guide. Pediatr Allergy Immunol. 2016;27(Suppl 23):1–250.CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Radauer C, Bublin M, Wagner S, et al. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Canonica GW, Ansotegui IJ, Pawankar R, Schmid-Grendelmeier P, van Hage M, Baena-Cagnani CE, et al. A WAO – ARIA – GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013;6(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Cabrera-Freitag P, Goikoetxea MJ, Beorlegui C, et al. Can component-based microarray replace fluorescent enzyme-immunoassay in the diagnosis of grass and cypress pollen allergy? Clin Exp Allergy. 2011;41(10):1440–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Cabrera-Freitag P, Goikoetxea MJ, Gamboa PM, et al. A study of the variability of the in vitro component-based microarray ISAC CDR 103 technique. J Investig Allergol Clin Immunol. 2011;21(5):414–5.PubMedGoogle Scholar
- 8.Lizaso MT, García BE, Tabar AI, et al. Comparison of conventional and component-resolved diagnostics by two different methods (Advia-Centaur/Microarray-ISAC) in pollen allergy. Ann Allergy Asthma Immunol. 2011;107(1):35–41.CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Chokshi NY, Sicherer SH. Molecular diagnosis of egg allergy: an update. Expert Rev Mol Diagn. 2015;15(7):895–906.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Quirce S, Maranon F, Umpierrez A, et al. Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy. 2001;56:754–62.CrossRefPubMedPubMedCentralGoogle Scholar
- 11.Ando H, Moverare R, Kondo Y, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol. 2008;122:583–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Lemon-Mule H, Sampson HA, Sicherer SH, et al. Immunologic changes in children with egg allergy ingesting extensively heated egg. J Allergy Clin Immunol. 2008;122:977–83.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Urisu A, Ando H, Morita Y, et al. Allergenic activity of heated and ovomucoid-depleted egg white. J Allergy Clin Immunol. 1997;100:171–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Restani P, Ballabio C, Di Lorenzo C, et al. Molecular aspects of milk allergens and their role in clinical events. Anal Bioanal Chem. 2009;395:47–56.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Fiocchi A, Dahda L, Dupont C, Campoy C, Fierro V, Nieto A. Cow's milk allergy: towards an update of DRACMA guidelines. World Allergy Organ J. 2016;9(1):35.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Nowak-Wegrzyn A, Bloom KA, Sicherer SH, et al. Tolerance to extensively heated milk in children with cow's milk allergy. J Allergy Clin Immunol. 2008;122:342–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Mullins RJ, James H, Platts-Mills TA, Commins S. Relationship between red meat allergy and sensitization to gelatin and galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2012;129:1334–42.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Gronlund H, Adedoyin J, Commins SP, Platts-Mills TA, van Hage M. The carbohydrate galactose-alpha-1,3-galactose is a major IgE-binding epitope on cat IgA. J Allergy Clin Immunol. 2009;123:1189–91.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358:1109–17.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Hamsten C, Starkhammar M, Tran TA, et al. Identification of galactose-alpha-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy. 2013;68:549.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Restani P, Ballabio C, Tripodi S, Fiocchi A. Meat allergy. Curr Opin Allergy Clin Immunol. 2009;9:265–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 2002;129:38–48.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Gámez C, Sánchez-García S, Ibáñez MD, et al. Tropomyosin IgE-positive results are a good predictor of shrimp allergy. Allergy. 2011;66:1375–83.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Bronnert M, Mancini J, Birnbaum J, et al. Component-resolved diagnosis with commercially available d. Pteronyssinus der p 1, der p 2, and der p 10: relevant markers for house dust mite allergy. Clin Exp Allergy. 2012;42:1406–15.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Gámez C, Zafra M, Boquete M, Sanz V, Mazzeo C, Ibáñez MD, et al. New shrimp IgE-binding proteins involved in mite-seafood cross-reactivity. Mol Nutr Food Res. 2014;58(9):1915–25.CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Pascal M, Grishina G, Yang AC, Sánchez-García S, Lin J, Towle D, Ibañez MD, Sastre J, Sampson HA, Ayuso R. Molecular diagnosis of shrimp allergy: efficiency of several allergens to predict clinical reactivity. J Allergy Clin Immunol Pract. 2015;3(4):521–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Ayuso R, Grishina G, Bardina L, et al. Myosin light chain is a novel shrimp allergen, Lit v 3. J Allergy Clin Immunol. 2008;122:795–802.CrossRefPubMedPubMedCentralGoogle Scholar
- 28.Ayuso R, Grishina G, Ibanez MD, et al. Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen. J Allergy Clin Immunol. 2009;124:114–20.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Van Do T, Hordvik I, Endresen C, Elsayed S. Characterization of parvalbumin, the major allergen in Alaska pollack, and comparison with codfish Allergen M. Mol Immunol. 2005;42:345–53.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Swoboda I, Bugajska-Schretter A, Verdino P, et al. Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol. 2002;168:4576–84.CrossRefPubMedPubMedCentralGoogle Scholar
- 31.Vázquez-Cortés S, Nuñez-Acevedo B, Jimeno-Nogales L, Ledesma A, Fernández-Rivas M. Selective allergy to the Salmonidae fish family: a selective parvalbumin epitope? Ann Allergy Asthma Immunol. 2012;108:62–3.CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Griesmeier U, Vázquez-Cortés S, et al. Expression levels of parvalbumins determine allergenicity of fish species. Allergy. 2010;65:191–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol. 2014;5:179.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Saarelainen S, Taivainen A, Rytkonen-Nissinen M, et al. Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. Clin Exp Allergy. 2004;34:1576–82.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Uriarte SA, Sastre J. Clinical relevance of molecular diagnosis in pet allergy. Allergy. 2016;71(7):1066–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Mattsson L, Lundgren T, Everberg H, Larsson H, Lidholm J. Prostatic kallikrein: a new major dog allergen. J Allergy Clin Immunol. 2009;123:362–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Cabanas R, Lopez-Serrano MC, Carreira J, et al. Importance of albumin in cross-reactivity among cat, dog and horse allergens. J Investig Allergol Clin Immunol. 2000;10:71–7.PubMedGoogle Scholar
- 38.van Ree R, van Leeuwen WA, Bulder I, Bond J, Aalberse RC. Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J Allergy Clin Immunol. 1999;104:1223–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 39.Hilger C, Kohnen M, Grigioni F, Lehners C, Hentges F. Allergic cross-reactions between cat and pig serum albumin. Study at the protein and DNA levels. Allergy. 1997;52:179–87.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Smith W, Butler AJ, Hazell LA, et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy. 2004;34:1732–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Saarelainen S, Rytkonen-Nissinen M, Rouvinen J, et al. Animal-derived lipocalin allergens exhibit immunoglobulin E cross-reactivity. Clin Exp Allergy. 2008;38:374–81.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Phipatanakul W, Litonjua AA, Platts-Mills TA, et al. Sensitization to mouse allergen and asthma and asthma morbidity among women in Boston. J Allergy Clin Immunol. 2007;120:954–6.CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Sastre J, Lluch-Bernal M, Quirce S, et al. A double-blind, placebo-controlled oral challenge study with lyophilized larvae and antigen of the fish parasite, Anisakis simplex. Allergy. 2000;55:560–4.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Caballero ML, Moneo I. Specific IgE determination to Ani s 1, a major allergen from Anisakis simplex, is a useful tool for diagnosis. Ann Allergy Asthma Immunol. 2002;89:74–7.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Asturias JA, Eraso E, Moneo I, Martinez A. Is tropomyosin an allergen in Anisakis? Allergy. 2000;55(9):898.CrossRefPubMedPubMedCentralGoogle Scholar
- 46.Perez-Perez J, Fernandez-Caldas E, Maranon F, et al. Molecular cloning of paramyosin, a new allergen of Anisakis simplex. Int Arch Allergy Immunol. 2000;123:120–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Commins SP, Kim EH, Orgel K, Kulis M. Peanut allergy: new developments and clinical implications. Curr Allergy Asthma Rep. 2016;16(5):35.CrossRefPubMedPubMedCentralGoogle Scholar
- 48.Klemans RJ, van Os-Medendorp H, Blankestijn M, Bruijnzeel-Koomen CA, Knol EF, Knulst AC. Diagnostic accuracy of specific IgE to components in diagnosing peanut allergy: a systematic review. Clin Exp Allergy. 2015;45(4):720–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 49.de Leon MP, Drew AC, Glaspole IN, Suphioglu C, O'Hehir RE, Rolland JM. IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Mol Immunol. 2007;44:463–71.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Barre A, Jacquet G, Sordet C, Culerrier R, Rouge P. Homology modelling and conformational analysis of IgE-binding epitopes of Ara h 3 and other legumin allergens with a cupin fold from tree nuts. Mol Immunol. 2007;44:3243–55.CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Asero R. Detection and clinical characterization of patients with oral allergy syndrome caused by stable allergens in Rosaceae and nuts. Ann Allergy Asthma Immunol. 1999;83:377–83.CrossRefPubMedPubMedCentralGoogle Scholar
- 52.Krause S, Reese G, Randow S, et al. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J Allergy Clin Immunol. 2009;124:771–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Ballmer-Weber BK, Lidholm J, Fernández-Rivas M, Seneviratne S, Hanschmann KM, Vogel L, et al. IgE recognition patterns in peanut allergy are age dependent: perspectives of the EuroPrevall study. Allergy. 2015;70(4):391–40.CrossRefPubMedPubMedCentralGoogle Scholar
- 54.Ballmer-Weber BK, Vieths S. Soy allergy in perspective. Curr Opin Allergy Clin Immunol. 2008;8(3):270–5.CrossRefPubMedPubMedCentralGoogle Scholar
- 55.Holzhauser T, Wackermann O, Ballmer-Weber BK, et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol. 2009;123:452–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Jones SM, Magnolfi CF, Cooke SK, Sampson HA. Immunologic cross-reactivity among cereal grains and grasses in children with food hypersensitivity. J Allergy Clin Immunol. 1995;96:341–51.CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Pastorello EA, Farioli L, Conti A, et al. Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge. Int Arch Allergy Immunol. 2007;144:10–22.CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Battais F, Pineau F, Popineau Y, et al. Food allergy to wheat: identification of immunogloglin E and immunoglobulin G-binding proteins with sequential extracts and purified proteins from wheat flour. Clin Exp Allergy. 2003;33:962–70.CrossRefPubMedPubMedCentralGoogle Scholar
- 59.Palosuo K, Varjonen E, Kekki OM, et al. Wheat omega-5 gliadin is a major allergen in children with immediate allergy to ingested wheat. J Allergy Clin Immunol. 2001;108:634–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Matsuo H, Kohno K, Niihara H, Morita E. Specific IgE determination to epitope peptides of omega-5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis. J Immunol. 2005;175:8116–22.CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Palacin A, Quirce S, Armentia A, et al. Wheat lipid transfer protein is a major allergen associated with baker's asthma. J Allergy Clin Immunol. 2007;120:1132–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 62.Satoh R, Koyano S, Takagi K, Nakamura R, Teshima R, Sawada J. Immunological characterization and mutational analysis of the recombinant protein BWp16, a major allergen in buckwheat. Biol Pharm Bull. 2008;31:1079–85.CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Asero R. Plant food allergies: a suggested approach to allergen-resolved diagnosis in the clinical practice by identifying easily available sensitization markers. Int Arch Allergy Immunol. 2005;138:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
- 64.Fernandez-Rivas M, Bolhaar S, Gonzalez-Mancebo E, et al. Apple allergy across Europe: how allergen sensitization profiles determine the clinical expression of allergies to plant foods. J Allergy Clin Immunol. 2006;118:481–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 65.Gonzalez-Mancebo E, Fernandez-Rivas M. Outcome and safety of double-blind, placebo-controlled food challenges in 111 patients sensitized to lipid transfer proteins. J Allergy Clin Immunol. 2008;121:1507–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 66.Asero R, Mistrello G, Roncarolo D, Amato S. Relationship between peach lipid transfer protein specific IgE levels and hypersensitivity to non-Rosaceae vegetable foods in patients allergic to lipid transfer protein. Ann Allergy Asthma Immunol. 2004;92:268–72.CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Palacín A, Tordesillas L, Gamboa P, et al. Characterization of peach thaumatin-like proteins and their identification as major peach allergens. Clin Exp Allergy. 2010;40:1422–30.CrossRefPubMedPubMedCentralGoogle Scholar
- 68.Palacín A, Rivas LA, Gómez-Casado C, et al. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray. PLoS One. 2012;7(9):e44088.CrossRefPubMedPubMedCentralGoogle Scholar
- 69.Aleman A, Sastre J, Quirce S, et al. Allergy to kiwi: a double-blind, placebo-controlled food challenge study in patients from a birch-free area. J Allergy Clin Immunol. 2004;113:543–50.CrossRefPubMedPubMedCentralGoogle Scholar
- 70.Le TM, Bublin M, Breiteneder H, et al. Kiwifruit allergy across Europe: clinical manifestation and IgE recognition patterns to kiwifruit allergens. J Allergy Clin Immunol. 2013;131(1):164–71.CrossRefPubMedPubMedCentralGoogle Scholar
- 71.Palacin A, Quirce S, Sanchez-Monge R, et al. Allergy to kiwi in patients with baker's asthma: identification of potential cross-reactive allergens. Ann Allergy Asthma Immunol. 2008;101:200–5.CrossRefPubMedPubMedCentralGoogle Scholar
- 72.Hemmer W, Focke M, Gotz M, Jarisch R. Sensitization to Ficus benjamina: relationship to natural rubber latex allergy and identification of foods implicated in the Ficus-fruit syndrome. Clin Exp Allergy. 2004;34(8):1251.CrossRefPubMedPubMedCentralGoogle Scholar
- 73.Palacin A, Rodriguez J, Blanco C, et al. Immunoglobulin E recognition patterns to purified Kiwifruit (Actinidinia deliciosa) allergens in patients sensitized to Kiwi with different clinical symptoms. Clin Exp Allergy. 2008;38:1220–8.CrossRefPubMedPubMedCentralGoogle Scholar
- 74.Pastorello EA, Vieths S, Pravettoni V, et al. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol. 2002;109:563.CrossRefPubMedPubMedCentralGoogle Scholar
- 75.Datema MR, Zuidmeer-Jongejan L, Asero R, Barreales L, Belohlavkova S, de Blay F, et al. Hazelnut allergy across Europe dissected molecularly: a EuroPrevall outpatient clinic survey. J Allergy Clin Immunol. 2015;136(2):382–91.CrossRefPubMedPubMedCentralGoogle Scholar
- 76.Bauermeister K, Ballmer-Weber BK, Bublin M, et al. Assessment of component-resolved in vitro diagnosis of celeriac allergy. J Allergy Clin Immunol. 2009;124:1273–81.CrossRefPubMedPubMedCentralGoogle Scholar
- 77.Beyer K, Bardina L, Grishina G, Sampson HA. Identification of sesame seed allergens by 2-dimensional proteomics and Edman sequencing: seed storage proteins as common food allergens. J Allergy Clin Immunol. 2002;110:154–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 78.Leduc V, Moneret-Vautrin DA, Tzen JT, Morisset M, Guerin L, Kanny G. Identification of oleosins as major allergens in sesame seed allergic patients. Allergy. 2006;61:349–56.CrossRefPubMedPubMedCentralGoogle Scholar
- 79.Byrne AM, Malka-Rais J, Burks AW, Fleischer DM. How do we know when peanut and tree nut allergy have resolved, and how do we keep it resolved? Clin Exp Allergy. 2010;40(9):1303–11.CrossRefPubMedPubMedCentralGoogle Scholar
- 80.Posch A, Chen Z, Raulf-Heimsoth M, Baur X. Latex allergens. Clin Exp Allergy. 1998;28:134–40.CrossRefPubMedPubMedCentralGoogle Scholar
- 81.Raulf-Heimsoth M, Rihs HP, Rozynek P, et al. Quantitative analysis of immunoglobulin E reactivity profiles in patients allergic or sensitized to natural rubber latex (Hevea brasiliensis). Clin Exp Allergy. 2007;37:1657–67.CrossRefPubMedPubMedCentralGoogle Scholar
- 82.Chen Z, Posch A, Cremer R, Raulf-Heimsoth M, Baur X. Identification of hevein (Hev b 6.02) in Hevea latex as a major cross-reacting allergen with avocado fruit in patients with latex allergy. J Allergy Clin Immunol. 1998;102:476–81.CrossRefPubMedPubMedCentralGoogle Scholar
- 83.Chen Z, Cremer R, Posch A, Raulf-Heimsoth M, Rihs HP, Baur X. On the allergenicity of Hev b 1 among health care workers and patients with spina bifida allergic to natural rubber latex. J Allergy Clin Immunol. 1997;100:684–93.CrossRefPubMedPubMedCentralGoogle Scholar
- 84.Yeang HY, Cheong KF, Sunderasan E, et al. The 14.6 kd rubber elongation factor (Hev b 1) and 24 kd (Hev b 3) rubber particle proteins are recognized by IgE from patients with spina bifida and latex allergy. J Allergy Clin Immunol. 1996;98:628–39.CrossRefPubMedPubMedCentralGoogle Scholar
- 85.Slater JE, Vedvick T, Arthur-Smith A, Trybul DE, Kekwick RG. Identification, cloning, and sequence of a major allergen (Hev b 5) from natural rubber latex (Hevea brasiliensis). J Biol Chem. 1996;271:25394–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 86.Sastre J, Fernandez-Nieto M, Rico P, et al. Specific immunotherapy with a standardized latex extract in allergic workers: a double-blind, placebo-controlled study. J Allergy Clin Immunol. 2003;111:985–94.CrossRefPubMedPubMedCentralGoogle Scholar
- 87.Ott H, Schröder C, Raulf-Heimsoth M, Mahler V, Ocklenburg C, Merk HF, Baron JM. Microarrays of recombinant Hevea brasiliensis proteins: a novel tool for the component-resolved diagnosis of natural rubber latex allergy. J Investig Allergol Clin Immunol. 2010;20(2):129–38.PubMedGoogle Scholar
- 88.Drew AC, Eusebius NP, Kenins L, et al. Hypoallergenic variants of the major latex allergen Hev b 6.01 retaining human T lymphocyte reactivity. J Immunol. 2004;173(9):5872.CrossRefPubMedPubMedCentralGoogle Scholar
- 89.Sutherland MF, Drew A, Rolland JM, Slater JE, Suphioglu C, O'Hehir RE. Specific monoclonal antibodies and human immunoglobulin E show that Hev b 5 is an abundant allergen in high protein powdered latex gloves. Clin Exp Allergy. 2002;32:583–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 90.Sastre J, Raulf-Heimsoth M, Rihs HP, et al. IgE reactivity to latex allergens among sensitized healthcare workers before and after immunotherapy with latex. Allergy. 2006;61:206–10.CrossRefPubMedPubMedCentralGoogle Scholar
- 91.Karisola P, Kotovuori A, Poikonen S, et al. Isolated hevein-like domains, but not 31-kd endochitinases, are responsible for IgE-mediated in vitro and in vivo reactions in latex-fruit syndrome. J Allergy Clin Immunol. 2005;115:598–605.CrossRefPubMedPubMedCentralGoogle Scholar
- 92.Pamies R, Oliver F, Raulf-Heimsoth M, et al. Patterns of latex allergen recognition in children sensitized to natural rubber latex. Pediatr Allergy Immunol. 2006;17:55–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 93.Malandain H, Giroux F, Cano Y. The influence of carbohydrate structures present in common allergen sources on specific IgE results. Eur Ann Allergy Clin Immunol. 2007;39:216–20.PubMedGoogle Scholar