Advertisement

Molecular Diagnosis in Contact Urticaria Caused by Proteins

  • Joaquin Sastre
Chapter
Part of the Updates in Clinical Dermatology book series (UCD)

Abstract

Molecular diagnosis (MD), or component-resolved diagnosis in allergy, consists of detecting specific IgE to different allergens. In this chapter is described how molecular diagnosis may increase diagnostic accuracy in patients with contact urticaria induced by proteins of the vegetal and animal kingdoms, how to recognize allergens associated with genuine sensitization from allergens with cross-reactivity, and how some allergens are associated with clinical reactions. Nevertheless, all in vitro test results should be evaluated in conjunction with the clinical history, because allergen sensitization does not necessarily imply clinical responsiveness. In general, molecular diagnosis provides us specificity in the diagnosis; however, to have enough diagnostic sensitivity, the skin prick test or specific IgE with whole standardized extracts is required.

Keywords

Allergy diagnosis Molecular diagnosis Component-resolved diagnosis Allergens Immunoglobulin E (IgE) 

Abbreviations

Abs

antibodies

CCD

Cross-reactive carbohydrate determinants

LTP

Lipid transfer proteins

MD

Molecular diagnosis

OAS

Oral allergy syndrome

PR 10 protein

Pathogenesis-related protein 10

Notes

Acknowledgments

I thank Oliver Shaw for editorial assistance.

Conflicts of Interest

The author reports having served as a consultant to Thermo Fisher, MSD, Novartis, Genentech, Sanofi, Leti, Roche and GSK; having been paid lecture fees by Novartis, GSK, Stallergenes, LE as well as having received grant support for research from Thermo Fisher, GSK, and ALK-Abello.

References

  1. 1.
    Sastre J. Molecular diagnosis in allergy. Clin Exp Allergy. 2010;40:1442–60.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sastre J, Sastre-Ibañez M. Molecular diagnosis and immunotherapy. Curr Opin Allergy Clin Immunol. 2016;16(6):565–70.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Matricardi PM, Kleine-Tebbe J, Hoffmann HJ, Valenta R, Hilger C, Hofmaier S, et al. EAACI molecular allergology user's guide. Pediatr Allergy Immunol. 2016;27(Suppl 23):1–250.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Radauer C, Bublin M, Wagner S, et al. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J Allergy Clin Immunol. 2008;121:847–52.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Canonica GW, Ansotegui IJ, Pawankar R, Schmid-Grendelmeier P, van Hage M, Baena-Cagnani CE, et al. A WAO – ARIA – GA2LEN consensus document on molecular-based allergy diagnostics. World Allergy Organ J. 2013;6(1):17.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cabrera-Freitag P, Goikoetxea MJ, Beorlegui C, et al. Can component-based microarray replace fluorescent enzyme-immunoassay in the diagnosis of grass and cypress pollen allergy? Clin Exp Allergy. 2011;41(10):1440–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cabrera-Freitag P, Goikoetxea MJ, Gamboa PM, et al. A study of the variability of the in vitro component-based microarray ISAC CDR 103 technique. J Investig Allergol Clin Immunol. 2011;21(5):414–5.PubMedGoogle Scholar
  8. 8.
    Lizaso MT, García BE, Tabar AI, et al. Comparison of conventional and component-resolved diagnostics by two different methods (Advia-Centaur/Microarray-ISAC) in pollen allergy. Ann Allergy Asthma Immunol. 2011;107(1):35–41.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chokshi NY, Sicherer SH. Molecular diagnosis of egg allergy: an update. Expert Rev Mol Diagn. 2015;15(7):895–906.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Quirce S, Maranon F, Umpierrez A, et al. Chicken serum albumin (Gal d 5*) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy. 2001;56:754–62.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ando H, Moverare R, Kondo Y, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. J Allergy Clin Immunol. 2008;122:583–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lemon-Mule H, Sampson HA, Sicherer SH, et al. Immunologic changes in children with egg allergy ingesting extensively heated egg. J Allergy Clin Immunol. 2008;122:977–83.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Urisu A, Ando H, Morita Y, et al. Allergenic activity of heated and ovomucoid-depleted egg white. J Allergy Clin Immunol. 1997;100:171–6.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Restani P, Ballabio C, Di Lorenzo C, et al. Molecular aspects of milk allergens and their role in clinical events. Anal Bioanal Chem. 2009;395:47–56.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fiocchi A, Dahda L, Dupont C, Campoy C, Fierro V, Nieto A. Cow's milk allergy: towards an update of DRACMA guidelines. World Allergy Organ J. 2016;9(1):35.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nowak-Wegrzyn A, Bloom KA, Sicherer SH, et al. Tolerance to extensively heated milk in children with cow's milk allergy. J Allergy Clin Immunol. 2008;122:342–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mullins RJ, James H, Platts-Mills TA, Commins S. Relationship between red meat allergy and sensitization to gelatin and galactose-alpha-1,3-galactose. J Allergy Clin Immunol. 2012;129:1334–42.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gronlund H, Adedoyin J, Commins SP, Platts-Mills TA, van Hage M. The carbohydrate galactose-alpha-1,3-galactose is a major IgE-binding epitope on cat IgA. J Allergy Clin Immunol. 2009;123:1189–91.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chung CH, Mirakhur B, Chan E, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358:1109–17.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hamsten C, Starkhammar M, Tran TA, et al. Identification of galactose-alpha-1,3-galactose in the gastrointestinal tract of the tick Ixodes ricinus; possible relationship with red meat allergy. Allergy. 2013;68:549.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Restani P, Ballabio C, Tripodi S, Fiocchi A. Meat allergy. Curr Opin Allergy Clin Immunol. 2009;9:265–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ayuso R, Reese G, Leong-Kee S, Plante M, Lehrer SB. Molecular basis of arthropod cross-reactivity: IgE-binding cross-reactive epitopes of shrimp, house dust mite and cockroach tropomyosins. Int Arch Allergy Immunol. 2002;129:38–48.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gámez C, Sánchez-García S, Ibáñez MD, et al. Tropomyosin IgE-positive results are a good predictor of shrimp allergy. Allergy. 2011;66:1375–83.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bronnert M, Mancini J, Birnbaum J, et al. Component-resolved diagnosis with commercially available d. Pteronyssinus der p 1, der p 2, and der p 10: relevant markers for house dust mite allergy. Clin Exp Allergy. 2012;42:1406–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gámez C, Zafra M, Boquete M, Sanz V, Mazzeo C, Ibáñez MD, et al. New shrimp IgE-binding proteins involved in mite-seafood cross-reactivity. Mol Nutr Food Res. 2014;58(9):1915–25.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pascal M, Grishina G, Yang AC, Sánchez-García S, Lin J, Towle D, Ibañez MD, Sastre J, Sampson HA, Ayuso R. Molecular diagnosis of shrimp allergy: efficiency of several allergens to predict clinical reactivity. J Allergy Clin Immunol Pract. 2015;3(4):521–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ayuso R, Grishina G, Bardina L, et al. Myosin light chain is a novel shrimp allergen, Lit v 3. J Allergy Clin Immunol. 2008;122:795–802.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ayuso R, Grishina G, Ibanez MD, et al. Sarcoplasmic calcium-binding protein is an EF-hand-type protein identified as a new shrimp allergen. J Allergy Clin Immunol. 2009;124:114–20.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Van Do T, Hordvik I, Endresen C, Elsayed S. Characterization of parvalbumin, the major allergen in Alaska pollack, and comparison with codfish Allergen M. Mol Immunol. 2005;42:345–53.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Swoboda I, Bugajska-Schretter A, Verdino P, et al. Recombinant carp parvalbumin, the major cross-reactive fish allergen: a tool for diagnosis and therapy of fish allergy. J Immunol. 2002;168:4576–84.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vázquez-Cortés S, Nuñez-Acevedo B, Jimeno-Nogales L, Ledesma A, Fernández-Rivas M. Selective allergy to the Salmonidae fish family: a selective parvalbumin epitope? Ann Allergy Asthma Immunol. 2012;108:62–3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Griesmeier U, Vázquez-Cortés S, et al. Expression levels of parvalbumins determine allergenicity of fish species. Allergy. 2010;65:191–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kuehn A, Swoboda I, Arumugam K, Hilger C, Hentges F. Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol. 2014;5:179.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Saarelainen S, Taivainen A, Rytkonen-Nissinen M, et al. Assessment of recombinant dog allergens Can f 1 and Can f 2 for the diagnosis of dog allergy. Clin Exp Allergy. 2004;34:1576–82.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Uriarte SA, Sastre J. Clinical relevance of molecular diagnosis in pet allergy. Allergy. 2016;71(7):1066–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mattsson L, Lundgren T, Everberg H, Larsson H, Lidholm J. Prostatic kallikrein: a new major dog allergen. J Allergy Clin Immunol. 2009;123:362–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cabanas R, Lopez-Serrano MC, Carreira J, et al. Importance of albumin in cross-reactivity among cat, dog and horse allergens. J Investig Allergol Clin Immunol. 2000;10:71–7.PubMedGoogle Scholar
  38. 38.
    van Ree R, van Leeuwen WA, Bulder I, Bond J, Aalberse RC. Purified natural and recombinant Fel d 1 and cat albumin in in vitro diagnostics for cat allergy. J Allergy Clin Immunol. 1999;104:1223–30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hilger C, Kohnen M, Grigioni F, Lehners C, Hentges F. Allergic cross-reactions between cat and pig serum albumin. Study at the protein and DNA levels. Allergy. 1997;52:179–87.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Smith W, Butler AJ, Hazell LA, et al. Fel d 4, a cat lipocalin allergen. Clin Exp Allergy. 2004;34:1732–8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Saarelainen S, Rytkonen-Nissinen M, Rouvinen J, et al. Animal-derived lipocalin allergens exhibit immunoglobulin E cross-reactivity. Clin Exp Allergy. 2008;38:374–81.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Phipatanakul W, Litonjua AA, Platts-Mills TA, et al. Sensitization to mouse allergen and asthma and asthma morbidity among women in Boston. J Allergy Clin Immunol. 2007;120:954–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sastre J, Lluch-Bernal M, Quirce S, et al. A double-blind, placebo-controlled oral challenge study with lyophilized larvae and antigen of the fish parasite, Anisakis simplex. Allergy. 2000;55:560–4.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Caballero ML, Moneo I. Specific IgE determination to Ani s 1, a major allergen from Anisakis simplex, is a useful tool for diagnosis. Ann Allergy Asthma Immunol. 2002;89:74–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Asturias JA, Eraso E, Moneo I, Martinez A. Is tropomyosin an allergen in Anisakis? Allergy. 2000;55(9):898.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Perez-Perez J, Fernandez-Caldas E, Maranon F, et al. Molecular cloning of paramyosin, a new allergen of Anisakis simplex. Int Arch Allergy Immunol. 2000;123:120–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Commins SP, Kim EH, Orgel K, Kulis M. Peanut allergy: new developments and clinical implications. Curr Allergy Asthma Rep. 2016;16(5):35.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Klemans RJ, van Os-Medendorp H, Blankestijn M, Bruijnzeel-Koomen CA, Knol EF, Knulst AC. Diagnostic accuracy of specific IgE to components in diagnosing peanut allergy: a systematic review. Clin Exp Allergy. 2015;45(4):720–30.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    de Leon MP, Drew AC, Glaspole IN, Suphioglu C, O'Hehir RE, Rolland JM. IgE cross-reactivity between the major peanut allergen Ara h 2 and tree nut allergens. Mol Immunol. 2007;44:463–71.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Barre A, Jacquet G, Sordet C, Culerrier R, Rouge P. Homology modelling and conformational analysis of IgE-binding epitopes of Ara h 3 and other legumin allergens with a cupin fold from tree nuts. Mol Immunol. 2007;44:3243–55.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Asero R. Detection and clinical characterization of patients with oral allergy syndrome caused by stable allergens in Rosaceae and nuts. Ann Allergy Asthma Immunol. 1999;83:377–83.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Krause S, Reese G, Randow S, et al. Lipid transfer protein (Ara h 9) as a new peanut allergen relevant for a Mediterranean allergic population. J Allergy Clin Immunol. 2009;124:771–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ballmer-Weber BK, Lidholm J, Fernández-Rivas M, Seneviratne S, Hanschmann KM, Vogel L, et al. IgE recognition patterns in peanut allergy are age dependent: perspectives of the EuroPrevall study. Allergy. 2015;70(4):391–40.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ballmer-Weber BK, Vieths S. Soy allergy in perspective. Curr Opin Allergy Clin Immunol. 2008;8(3):270–5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Holzhauser T, Wackermann O, Ballmer-Weber BK, et al. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol. 2009;123:452–8.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Jones SM, Magnolfi CF, Cooke SK, Sampson HA. Immunologic cross-reactivity among cereal grains and grasses in children with food hypersensitivity. J Allergy Clin Immunol. 1995;96:341–51.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pastorello EA, Farioli L, Conti A, et al. Wheat IgE-mediated food allergy in European patients: alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge. Int Arch Allergy Immunol. 2007;144:10–22.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Battais F, Pineau F, Popineau Y, et al. Food allergy to wheat: identification of immunogloglin E and immunoglobulin G-binding proteins with sequential extracts and purified proteins from wheat flour. Clin Exp Allergy. 2003;33:962–70.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Palosuo K, Varjonen E, Kekki OM, et al. Wheat omega-5 gliadin is a major allergen in children with immediate allergy to ingested wheat. J Allergy Clin Immunol. 2001;108:634–8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Matsuo H, Kohno K, Niihara H, Morita E. Specific IgE determination to epitope peptides of omega-5 gliadin and high molecular weight glutenin subunit is a useful tool for diagnosis of wheat-dependent exercise-induced anaphylaxis. J Immunol. 2005;175:8116–22.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Palacin A, Quirce S, Armentia A, et al. Wheat lipid transfer protein is a major allergen associated with baker's asthma. J Allergy Clin Immunol. 2007;120:1132–8.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Satoh R, Koyano S, Takagi K, Nakamura R, Teshima R, Sawada J. Immunological characterization and mutational analysis of the recombinant protein BWp16, a major allergen in buckwheat. Biol Pharm Bull. 2008;31:1079–85.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Asero R. Plant food allergies: a suggested approach to allergen-resolved diagnosis in the clinical practice by identifying easily available sensitization markers. Int Arch Allergy Immunol. 2005;138:1–11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fernandez-Rivas M, Bolhaar S, Gonzalez-Mancebo E, et al. Apple allergy across Europe: how allergen sensitization profiles determine the clinical expression of allergies to plant foods. J Allergy Clin Immunol. 2006;118:481–8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gonzalez-Mancebo E, Fernandez-Rivas M. Outcome and safety of double-blind, placebo-controlled food challenges in 111 patients sensitized to lipid transfer proteins. J Allergy Clin Immunol. 2008;121:1507–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Asero R, Mistrello G, Roncarolo D, Amato S. Relationship between peach lipid transfer protein specific IgE levels and hypersensitivity to non-Rosaceae vegetable foods in patients allergic to lipid transfer protein. Ann Allergy Asthma Immunol. 2004;92:268–72.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Palacín A, Tordesillas L, Gamboa P, et al. Characterization of peach thaumatin-like proteins and their identification as major peach allergens. Clin Exp Allergy. 2010;40:1422–30.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Palacín A, Rivas LA, Gómez-Casado C, et al. The involvement of thaumatin-like proteins in plant food cross-reactivity: a multicenter study using a specific protein microarray. PLoS One. 2012;7(9):e44088.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Aleman A, Sastre J, Quirce S, et al. Allergy to kiwi: a double-blind, placebo-controlled food challenge study in patients from a birch-free area. J Allergy Clin Immunol. 2004;113:543–50.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Le TM, Bublin M, Breiteneder H, et al. Kiwifruit allergy across Europe: clinical manifestation and IgE recognition patterns to kiwifruit allergens. J Allergy Clin Immunol. 2013;131(1):164–71.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Palacin A, Quirce S, Sanchez-Monge R, et al. Allergy to kiwi in patients with baker's asthma: identification of potential cross-reactive allergens. Ann Allergy Asthma Immunol. 2008;101:200–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hemmer W, Focke M, Gotz M, Jarisch R. Sensitization to Ficus benjamina: relationship to natural rubber latex allergy and identification of foods implicated in the Ficus-fruit syndrome. Clin Exp Allergy. 2004;34(8):1251.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Palacin A, Rodriguez J, Blanco C, et al. Immunoglobulin E recognition patterns to purified Kiwifruit (Actinidinia deliciosa) allergens in patients sensitized to Kiwi with different clinical symptoms. Clin Exp Allergy. 2008;38:1220–8.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pastorello EA, Vieths S, Pravettoni V, et al. Identification of hazelnut major allergens in sensitive patients with positive double-blind, placebo-controlled food challenge results. J Allergy Clin Immunol. 2002;109:563.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Datema MR, Zuidmeer-Jongejan L, Asero R, Barreales L, Belohlavkova S, de Blay F, et al. Hazelnut allergy across Europe dissected molecularly: a EuroPrevall outpatient clinic survey. J Allergy Clin Immunol. 2015;136(2):382–91.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bauermeister K, Ballmer-Weber BK, Bublin M, et al. Assessment of component-resolved in vitro diagnosis of celeriac allergy. J Allergy Clin Immunol. 2009;124:1273–81.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Beyer K, Bardina L, Grishina G, Sampson HA. Identification of sesame seed allergens by 2-dimensional proteomics and Edman sequencing: seed storage proteins as common food allergens. J Allergy Clin Immunol. 2002;110:154–9.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Leduc V, Moneret-Vautrin DA, Tzen JT, Morisset M, Guerin L, Kanny G. Identification of oleosins as major allergens in sesame seed allergic patients. Allergy. 2006;61:349–56.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Byrne AM, Malka-Rais J, Burks AW, Fleischer DM. How do we know when peanut and tree nut allergy have resolved, and how do we keep it resolved? Clin Exp Allergy. 2010;40(9):1303–11.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Posch A, Chen Z, Raulf-Heimsoth M, Baur X. Latex allergens. Clin Exp Allergy. 1998;28:134–40.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Raulf-Heimsoth M, Rihs HP, Rozynek P, et al. Quantitative analysis of immunoglobulin E reactivity profiles in patients allergic or sensitized to natural rubber latex (Hevea brasiliensis). Clin Exp Allergy. 2007;37:1657–67.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Chen Z, Posch A, Cremer R, Raulf-Heimsoth M, Baur X. Identification of hevein (Hev b 6.02) in Hevea latex as a major cross-reacting allergen with avocado fruit in patients with latex allergy. J Allergy Clin Immunol. 1998;102:476–81.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Chen Z, Cremer R, Posch A, Raulf-Heimsoth M, Rihs HP, Baur X. On the allergenicity of Hev b 1 among health care workers and patients with spina bifida allergic to natural rubber latex. J Allergy Clin Immunol. 1997;100:684–93.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Yeang HY, Cheong KF, Sunderasan E, et al. The 14.6 kd rubber elongation factor (Hev b 1) and 24 kd (Hev b 3) rubber particle proteins are recognized by IgE from patients with spina bifida and latex allergy. J Allergy Clin Immunol. 1996;98:628–39.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Slater JE, Vedvick T, Arthur-Smith A, Trybul DE, Kekwick RG. Identification, cloning, and sequence of a major allergen (Hev b 5) from natural rubber latex (Hevea brasiliensis). J Biol Chem. 1996;271:25394–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sastre J, Fernandez-Nieto M, Rico P, et al. Specific immunotherapy with a standardized latex extract in allergic workers: a double-blind, placebo-controlled study. J Allergy Clin Immunol. 2003;111:985–94.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ott H, Schröder C, Raulf-Heimsoth M, Mahler V, Ocklenburg C, Merk HF, Baron JM. Microarrays of recombinant Hevea brasiliensis proteins: a novel tool for the component-resolved diagnosis of natural rubber latex allergy. J Investig Allergol Clin Immunol. 2010;20(2):129–38.PubMedGoogle Scholar
  88. 88.
    Drew AC, Eusebius NP, Kenins L, et al. Hypoallergenic variants of the major latex allergen Hev b 6.01 retaining human T lymphocyte reactivity. J Immunol. 2004;173(9):5872.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Sutherland MF, Drew A, Rolland JM, Slater JE, Suphioglu C, O'Hehir RE. Specific monoclonal antibodies and human immunoglobulin E show that Hev b 5 is an abundant allergen in high protein powdered latex gloves. Clin Exp Allergy. 2002;32:583–9.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Sastre J, Raulf-Heimsoth M, Rihs HP, et al. IgE reactivity to latex allergens among sensitized healthcare workers before and after immunotherapy with latex. Allergy. 2006;61:206–10.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Karisola P, Kotovuori A, Poikonen S, et al. Isolated hevein-like domains, but not 31-kd endochitinases, are responsible for IgE-mediated in vitro and in vivo reactions in latex-fruit syndrome. J Allergy Clin Immunol. 2005;115:598–605.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Pamies R, Oliver F, Raulf-Heimsoth M, et al. Patterns of latex allergen recognition in children sensitized to natural rubber latex. Pediatr Allergy Immunol. 2006;17:55–9.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Malandain H, Giroux F, Cano Y. The influence of carbohydrate structures present in common allergen sources on specific IgE results. Eur Ann Allergy Clin Immunol. 2007;39:216–20.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Allergy Department Fundación Jiménez Díaz, Universidad Autónoma de Madrid, and CIBER de Enfermedades Respiratorias (CIBERES, Institute Carlos III, Ministry of Economy and Competitiveness)MadridSpain

Personalised recommendations