Advertisement

Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes

  • Ravindra N. Singh
  • Natalia N. Singh
Chapter
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 20)

Abstract

Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinraza™/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes.

Keywords

SMN SMA Splicing ISS-N1 ISS-N2 Cryptic splice site U1 snRNA 

Notes

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01 NS055925 and R21 NS101312), Iowa Center for Advanced Neurotoxicology (ICAN), and Salsbury Endowment (Iowa State University, Ames, IA, USA) to RNS. The authors acknowledge and regret not being able to include several references due to lack of space.

Disclosures and Competing Interests

The ISS-N1 target (US Patent# US7838657) was discovered in the Singh laboratory at UMass Medical School (MA, USA). Inventors, including RN Singh, NN Singh and UMASS Medical School, are currently benefiting from licensing of the ISS-N1 target to Ionis Pharmaceuticals and Biogen. Iowa State University holds intellectual property rights on GC-rich and ISS-N2 targets. Therefore, inventors including RN Singh, NN Singh and Iowa State University could potentially benefit from any future commercial exploitation of GC-rich and ISS-N2 targets.

References

  1. 1.
    Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–18.  https://doi.org/10.1016/j.cell.2009.02.009.CrossRefPubMedGoogle Scholar
  2. 2.
    Hertel KJ. Combinatorial control of exon recognition. J Biol Chem. 2008;283(3):1211–5.  https://doi.org/10.1074/jbc.R700035200.CrossRefPubMedGoogle Scholar
  3. 3.
    Raj B, Blencowe BJ. Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron. 2015;87:14–27.  https://doi.org/10.1016/j.neuron.2015.05.004.CrossRefPubMedGoogle Scholar
  4. 4.
    Erkelenz S, Mueller WF, Evans MS, Busch A, Schöneweis K, Hertel KJ, Schaal H. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. RNA. 2013;19(1):96–102.  https://doi.org/10.1261/rna.037044.112.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, Yan BY, Donohue JP, Shiue L, Hoon S, Brenner S, Ares M Jr, Yeo GW. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012;1(2):167–78.  https://doi.org/10.1016/j.celrep.2012.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee Y, Rio DC. Mechanisms and regulation of alternative pre-mRNA splicing. Annu Rev Biochem. 2015;84:291–323.  https://doi.org/10.1146/annurev-biochem-060614-034316.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shepard PJ, Hertel KJ. Conserved RNA secondary structures promote alternative splicing. RNA. 2008;14(8):1463–9.  https://doi.org/10.1261/rna.1069408.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fu XD, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet. 2014;15(10):689–701.  https://doi.org/10.1038/nrg3778.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J Mol Biol. 2016;428(12):2623–35.  https://doi.org/10.1016/j.jmb.2016.04.017.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cooper TA, Wan L, Dreyfuss G. RNA and disease. Cell. 2009;136(4):777–93.  https://doi.org/10.1016/j.cell.2009.02.011.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Deschênes M, Chabot B. The emerging role of alternative splicing in senescence and aging. Aging Cell. 2017;16(5):918–33.  https://doi.org/10.1111/acel.12646.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M, Le Paslier D, Frézal J, Cohen D, Weissenbach J, Munnich A, Melki J. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155–65.CrossRefPubMedGoogle Scholar
  13. 13.
    Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochim Biophys Acta. 2017;1860(3):299–315.  https://doi.org/10.1016/j.bbagrm.2016.12.008.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ottesen EW, Howell MD, Singh NN, Seo J, Whitley EM, Singh RN. Severe impairment of male reproductive organ development in a low SMN expressing mouse model of spinal muscular atrophy. Sci Rep. 2016;6:17.  https://doi.org/10.1038/srep20193.CrossRefGoogle Scholar
  15. 15.
    Burnett BG, Muñoz E, Tandon A, Kwon DY, Sumner CJ, Fischbeck KH. Regulation of SMN protein stability. Mol Cell Biol. 2009;29(5):1107–15.  https://doi.org/10.1128/MCB.01262-08.CrossRefPubMedGoogle Scholar
  16. 16.
    Cho SC, Dreyfuss G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. 2010;24(5):438–42.  https://doi.org/10.1101/gad.1884910.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vitte J, Fassier C, Tiziano FD, Dalard C, Soave S, Roblot N, Brahe C, Saugier-Veber P, Bonnefont JP, Melki J. Refined characterization of the expression and stability of the SMN gene products. Am J Pathol. 2007;171(4):1269–80.  https://doi.org/10.2353/ajpath.2007.070399.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ahmad S, Bhatia K, Kannan A, Gangwani L. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy. J Exp Neuro. 2016;10:39–49.  https://doi.org/10.4137/jen.s33122.CrossRefGoogle Scholar
  19. 19.
    Nash LA, Burns JK, Chardon JW, Kothary R, Parks RJ. Spinal muscular atrophy: more than a disease of motor neurons? Curr Mol Med. 2016;16(9):779–92.  https://doi.org/10.2174/1566524016666161128113338.CrossRefPubMedGoogle Scholar
  20. 20.
    Bowerman M, Michalski JP, Beauvais A, Murray LM, DeRepentigny Y, Kothary R. Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology. Hum Mol Genet. 2014;23(13):3432–44.  https://doi.org/10.1093/hmg/ddu052.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dominguez CE, Cunningham D, Chandler DS. SMN regulation in SMA and in response to stress: new paradigms and therapeutic possibilities. Hum Genet. 2017;136:1173.  https://doi.org/10.1007/s00439-017-1835-2.CrossRefPubMedGoogle Scholar
  22. 22.
    Rodriguez-Muela N, Litterman NK, Norabuena EM, Mull JL, Galazo MJ, Sun C, Ng SY, Makhortova NR, White A, Lynes MM, Chung WK, Davidow LS, Macklis JD, Rubin LL. Single-cell analysis of SMN reveals its broader role in neuromuscular disease. Cell Rep. 2017;18(6):1484–98.  https://doi.org/10.1016/j.celrep.2017.01.035.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Howell MD, Singh NN, Singh RN. Advances in therapeutic development for spinal muscular atrophy. Future Med Chem. 2014;6(9):1081–99.  https://doi.org/10.4155/fmc.14.63.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Seo J, Howell MD, Singh NN, Singh RN. Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta. 2013;1832(12):2180–90.  https://doi.org/10.1016/j.bbadis.2013.08.005.CrossRefPubMedGoogle Scholar
  25. 25.
    Ottesen EW. ISS-N1 makes the first FDA-approved drug for spinal muscular atrophy. Transl Neurosci. 2017;8:1–6.  https://doi.org/10.1515/tnsci-2017-0001.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 2017b;24:520–6.  https://doi.org/10.1038/gt.2017.34.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    d’Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM, Ling K, Kong L, Ward AJ, Rubin LL, Rigo F, Bennett CF, Sumner CJ. Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron. 2017;93(1):66–79.  https://doi.org/10.1016/j.neuron.2016.11.033.CrossRefPubMedGoogle Scholar
  28. 28.
    Woo CJ, Maier VK, Davey R, Brennan J, Li G, Brothers J 2nd, Schwartz B, Gordo S, Kasper A, Okamoto TR, Johansson HE, Mandefro B, Sareen D, Bialek P, Chau BN, Bhat B, Bullough D, Barsoum J. Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc Natl Acad Sci U S A. 2017;114(8):E1509–18.  https://doi.org/10.1073/pnas.1616521114.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Germain-Desprez D, Brun T, Rochette C, Semionov A, Rouget R, Simard LR. The SMN genes are subject to transcriptional regulation during cellular differentiation. Gene. 2001;279(2):109–17.  https://doi.org/10.1016/S0378-1119(01)00758-2.CrossRefPubMedGoogle Scholar
  30. 30.
    Echaniz-Laguna A, Miniou P, Bartholdi D, Melki J. The promoters of the survival motor neuron gene (SMN) and its copy (SMNc) share common regulatory elements. Am J Hum Genet. 1999;64(5):1365–70.  https://doi.org/10.1086/302372.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Monani UR, McPherson JD, Burghes AH. Promoter analysis of the human centromeric and telomeric survival motor neuron genes (SMNC and SMNT). Biochim Biophys Acta. 1999b;1445(3):330–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Boda B, Mas C, Giudicelli C, Nepote V, Guimiot F, Levacher B, Zvara A, Santha M, LeGall I, Simonneau M. Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. Eur J Hum Genet. 2004;12(9):729–37.  https://doi.org/10.1038/sj.ejhg.5201217.CrossRefPubMedGoogle Scholar
  33. 33.
    Seo J, Singh NN, Ottesen EW, Lee BM, Singh RN. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein. Sci Rep. 2016a;6:14.  https://doi.org/10.1038/srep30778.CrossRefGoogle Scholar
  34. 34.
    Setola V, Terao M, Locatelli D, Bassanini S, Garattini E, Battaglia G. Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis. Proc Nat Acad Sci U S A. 2007;104(6):1959–64.  https://doi.org/10.1073/pnas.0610660104.CrossRefGoogle Scholar
  35. 35.
    Rochette CF, Gilbert N, Simard LR. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet. 2001;108(3):255–66.  https://doi.org/10.1007/s004390100473.CrossRefPubMedGoogle Scholar
  36. 36.
    Schmutz J, Martin J, Terry A, Couronne O, Grimwood J, Lowry S, Gordon LA, Scott D, Xie G, Huang W, Hellsten U, Tran-Gyamfi M, She X, Prabhakar S, Aerts A, et al. The DNA sequence and comparative analysis of human chromosome 5. Nature. 2004;431(7006):268–74.  https://doi.org/10.1038/nature02919.CrossRefPubMedGoogle Scholar
  37. 37.
    Kashima T, Rao N, Manley JL. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc Natl Acad Sci U S A. 2007b;104(9):3426–31.  https://doi.org/10.1073/pnas.0700343104.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. 1999;96(11):6307–11.  https://doi.org/10.1073/pnas.96.11.6307.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. 1999a;8(7):1177–83.  https://doi.org/10.1093/hmg/8.7.1177.CrossRefPubMedGoogle Scholar
  40. 40.
    Wu X, Wang SH, Sun J, Krainer AR, Hua Y, Prior TW. A-44G transition in SMN2 intron 6 protects patients with spinal muscular atrophy. Hum Mol Genet. 2017;26(14):2768–80.  https://doi.org/10.1093/hmg/ddx166.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cucchiarini M, Madry H, Terwilliger EF. Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med. 2014;18(1):115–24.  https://doi.org/10.1111/jcmm.12170.CrossRefPubMedGoogle Scholar
  42. 42.
    Lim SR, Hertel KJ. Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairing. J Biol Chem. 2001;276(48):45476–83.  https://doi.org/10.1074/jbc.M107632200.CrossRefPubMedGoogle Scholar
  43. 43.
    Singh NN, Lee BM, Singh RN. Splicing regulation in spinal muscular atrophy by a RNA structure formed by long distance interactions. Ann N Y Acad Sci. 2015b;1341:176–87.  https://doi.org/10.1111/nyas.12727.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Singh RN. Evolving concepts on human SMN Pre-mRNA splicing. RNA Biol. 2007a;4(1):7–10.  https://doi.org/10.4161/rna.4.1.4535.CrossRefPubMedGoogle Scholar
  45. 45.
    Singh RN. Unfolding the mystery of alternative splicing through a unique method of in vivo selection. Front Biosci. 2007b;12:3263–72.  https://doi.org/10.2741/2310.CrossRefPubMedGoogle Scholar
  46. 46.
    Cartegni L, Krainer AR. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet. 2002;30(4):377–84.  https://doi.org/10.1038/ng854.CrossRefPubMedGoogle Scholar
  47. 47.
    Kashima T, Manley JL. (2003). A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet. 2003;34(4):460–3.  https://doi.org/10.1038/ng1207.CrossRefPubMedGoogle Scholar
  48. 48.
    Wee CD, Havens MA, Jodelka FM, Hastings ML. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells. PLoS One. 2014;9(12):e115205.  https://doi.org/10.1371/journal.pone.0115205.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Singh NN, Del Rio-Malewski JB, Luo D, Ottesen EW, Howell MD, Singh RN. Activation of a cryptic 5′ splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Nucleic Acids Res. 2017a;45:12214.  https://doi.org/10.1093/nar/gkx824.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Singh NN, Lawler MN, Ottesen EW, Upreti D, Kaczynski JR, Singh RN. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucleic Acids Res. 2013;41(17):8144–65.  https://doi.org/10.1093/nar/gkt609.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Doktor TKd, Schroeder LD, Vested A, Palmfeldt J, Andersen HS, Gregersen N, Andresen BS. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3’ splice site. Hum Mutat. 2011;32(2):220–30.  https://doi.org/10.1002/humu.21419.CrossRefPubMedGoogle Scholar
  52. 52.
    Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet. 2008;82(4):834–48.  https://doi.org/10.1016/j.ajhg.2008.01.014.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kashima T, Rao N, David CJ, Manley JL. hnRNP A1 functions with specificity in repression of SMN2 exon 7 splicing. Hum Mol Genet. 2007a;16(24):3149–59.  https://doi.org/10.1093/hmg/ddm276.CrossRefPubMedGoogle Scholar
  54. 54.
    Liu TY, Chen YC, Jong YJ, Tsai HJ, Lee CC, Chang YS, Chang JG, Chang YF. Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 knockout mice. Open Biol. 2017;7(1):pii: 160303.  https://doi.org/10.1098/rsob.160303.CrossRefGoogle Scholar
  55. 55.
    Pedrotti S, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Stamm S, Manley JL, Sette C. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J. 2010;29(7):1235–47.  https://doi.org/10.1038/emboj.2010.19.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen YC, Yuo CY, Yang WK, Jong YJ, Lin HH, Chang YS, Chang JG. Extracellular pH change modulates the exon 7 splicing in SMN2 mRNA. Mol Cell Neurosci. 2008b;39(2):268–72.  https://doi.org/10.1016/j.mcn.2008.07.002.CrossRefPubMedGoogle Scholar
  57. 57.
    Singh NN, Androphy EJ, Singh RN. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy. Biochem Biophys Res Commun. 2004a;315(2):381–8.  https://doi.org/10.1016/j.bbrc.2004.01.067.CrossRefPubMedGoogle Scholar
  58. 58.
    De Conti L, Baralle M, Buratti E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip Rev RNA. 2013;4(1):49–60.  https://doi.org/10.1002/wrna.1140.CrossRefPubMedGoogle Scholar
  59. 59.
    Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci U S A. 2000;97(17):9618–23.  https://doi.org/10.1073/pnas.160181697.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bose JK, Wang I-F, Hung L, Tarn W-Y. Shen C-KJ (2008). TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J Biol Chem. 2008;283(43):28852–9.  https://doi.org/10.1074/jbc.M805376200.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cho S, Moon H, Loh TJ, Oh HK, Cho S, Choy HE, Song WK, Chun J-S, Zheng X, Shen H. hnRNP M facilitates exon 7 inclusion of SMN2 pre-mRNA in spinal muscular atrophy by targeting an enhancer on exon 7. Biochim Biophys Acta. 2014a;1839(4):306–15.  https://doi.org/10.1016/j.bbagrm.2014.02.006.88.CrossRefPubMedGoogle Scholar
  62. 62.
    Cho S, Moon H, Loh TJ, Oh HK, Williams DR, Liao DJ, Zhou J, Green MR, Zheng X, Shen H. PSF contacts exon 7 of SMN2 pre-mRNA to promote exon 7 inclusion. Biochim Biophys Acta. 2014b;1839(6):517–25.  https://doi.org/10.1016/j.bbagrm.2014.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hofmann Y, Wirth B. hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1. Hum Mol Genet. 2002;11(17):2037–49.  https://doi.org/10.1093/hmg/11.17.2037.CrossRefPubMedGoogle Scholar
  64. 64.
    Young PJ, DiDonato CJ, Hu D, Kothary R, Androphy EJ, Lorson CL. SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum Mol Genet. 2002;11(5):577–87.  https://doi.org/10.1093/hmg/11.5.577.CrossRefPubMedGoogle Scholar
  65. 65.
    Mende Y, Jakubik M, Riessland M, Schoenen F, Rossbach K, Kleinridders A, Köhler C, Buch T, Wirth B. (2010). Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing. Hum Mol Genet. 2010;19(11):2154–67.  https://doi.org/10.1093/hmg/ddq094.CrossRefPubMedGoogle Scholar
  66. 66.
    Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. 2006;78(1):63–77.  https://doi.org/10.1086/498853.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen H-H, Chang J-G, Lu R-M, Peng T-Y, Tarn W-Y. The RNA Binding Protein hnRNP Q Modulates the Utilization of Exon 7 in the Survival Motor Neuron 2 (SMN2) Gene. Mol Cell Biol. 2008a;28(22):6929–38.  https://doi.org/10.1128/MCB.01332-08.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Irimura S, Kitamura K, Kato N, Saiki K, Takeuchi A, Gunadi, Matsuo M, Nishio H, Lee MJ. HnRNP C1/C2 may regulate exon 7 splicing in the spinal muscular atrophy gene SMN1. Kobe J Med Sci. 2009;54(5):E227–36.PubMedGoogle Scholar
  69. 69.
    Xiao R, Tang P, Yang B, Huang J, Zhou Y, Shao C, Li H, Sun H, Zhang Y, Fu X-D. Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol Cell. 2012;45(5):656–68.  https://doi.org/10.1016/j.molcel.2012.01.009.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cléry A, Jayne S, Benderska N, Dominguez C, Stamm S, Allain FH-T. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nat Struct Mol Biol. 2011;18(4):443–50.  https://doi.org/10.1038/nsmb.2001.CrossRefPubMedGoogle Scholar
  71. 71.
    Li J, Chen X, Xiao P, Li L, Lin W, Huang J, Xu P. Expression pattern and splicing function of mouse ZNF265. Neurochem Res. 2008;33(3):483–9.  https://doi.org/10.1007/s11064-007-9461-3.CrossRefPubMedGoogle Scholar
  72. 72.
    Heinrich B, Zhang Z, Raitskin O, Hiller M, Benderska N, Hartmann AM, Bracco L, Elliott D, Ben-Ari S, Soreq H, Sperling J, Sperling R, Stamm S. Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA. J Biol Chem. 2009;284(21):14303–15.  https://doi.org/10.1074/jbc.M901026200.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Moursy A, Allain FH-T, Cléry A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 2014;42(10):6659–72.  https://doi.org/10.1093/nar/gku244.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hastings ML, Allemand E, Duelli DM, Myers MP, Krainer AR. Control of pre-mRNA splicing by the general splicing factors PUF60 and U2AF(65). PLoS One. 2007;2(6):e538.  https://doi.org/10.1371/journal.pone.0000538.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Singh NN, Seo JB, Ottesen EW, Shishimorova M, Bhattacharya D, Singh RN. TIA1 prevents skipping of a critical exon associated with spinal muscular atrophy. Mol Cell Biol. 2011;31(5):935–54.  https://doi.org/10.1128/mcb.00945-10.CrossRefPubMedGoogle Scholar
  76. 76.
    Sutherland LC, Thibault P, Durand M, Lapointe E, Knee JM, Beauvais A, Kalatskaya I, Hunt SC, Loiselle JJ, Roy JG, Tessier SJ, Ybazeta G, Stein L, Kothary R, Klinck R, Chabot B. Splicing arrays reveal novel RBM10 targets, including SMN2 pre-mRNA. BMC Mol Biol. 2017;18(1):19.  https://doi.org/10.1186/s12867-017-0096-x.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Jodelka FM, Ebert AD, Duelli DM, Hastings ML. A feedback loop regulates splicing of the spinal muscular atrophy-modifying gene, SMN2. Hum Mol Genet. 2010;19(24):4906–17.  https://doi.org/10.1093/hmg/ddq425.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Singh NN, Androphy EJ, Singh RN. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA. 2004b;10(8):1291–305.  https://doi.org/10.1261/rna.7580704.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Singh RN, Saldanha RJ, D’Souza LM, Lambowitz AM. Binding of a group II intron-encoded reverse transcriptase/maturase to its high affinity intron RNA binding site involves sequence-specific recognition and autoregulates translation. J Mol Biol. 2002;318(2):287–303.  https://doi.org/10.1016/S0022-2836(02)00054-2.CrossRefPubMedGoogle Scholar
  80. 80.
    Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol. 2007;5(4):e73.  https://doi.org/10.1371/journal.pbio.0050073.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D, Yuen RKC, Hua Y, Gueroussov S, Najafabadi HS, Hughes TR, Morris Q, Barash Y, Krainer AR, Jojic N, Scherer SW, Blencowe BJ, Frey BJ. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347(6218):1254806.  https://doi.org/10.1126/science.1254806.CrossRefPubMedGoogle Scholar
  82. 82.
    Singh NN, Singh RN, Androphy EJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res. 2007;35(2):371–89.  https://doi.org/10.1093/nar/gkl1050.CrossRefPubMedGoogle Scholar
  83. 83.
    Singh NN, Singh RN. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol. 2011;8(4):600–6.  https://doi.org/10.4161/rna.8.4.16224.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Singh NN, Androphy EJ, Singh RN. The regulation and regulatory activities of alternative splicing of the SMN gene. Crit Rev Eukaryot Gene Expr. 2004c;14(4):271–85.  https://doi.org/10.1615/CritRevEukaryotGeneExpr.v14.i4.30.CrossRefPubMedGoogle Scholar
  85. 85.
    Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. 2006;26(4):1333–46.  https://doi.org/10.1128/mcb.26.4.1333-1346.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Miyaso H, Okumura M, Kondo S, Higashide S, Miyajima H, Imaizumi K. An intronic splicing enhancer element in survival motor neuron (SMN) pre-mRNA. J Biol Chem. 2003;278(18):15825–31.  https://doi.org/10.1074/jbc.M209271200.CrossRefPubMedGoogle Scholar
  87. 87.
    Miyajima H, Miyaso H, Okumura M, Kurisu J, Imaizumi K. Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J Biol Chem. 2002;277(26):23271–7.  https://doi.org/10.1074/jbc.M200851200.CrossRefPubMedGoogle Scholar
  88. 88.
    Baughan TD, Dickson A, Osman EY, Lorson CL. Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum Mol Genet. 2009;18(9):1600–11.  https://doi.org/10.1093/hmg/ddp076.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Singh NN, Lee BM, DiDonato CJ, Singh RN. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem. 2015a;7:1793–808.  https://doi.org/10.4155/fmc.15.101.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Aartsma-Rus A. FDA approval of nusinersen for spinal muscular atrophy makes 2016 the year of splice modulating oligonucleotides. Nucleic Acid Ther. 2017;27(2):67–9.  https://doi.org/10.1089/nat.2017.0665.CrossRefPubMedGoogle Scholar
  91. 91.
    Glascock J, Lenz M, Hobby K, Jarecki J. Cure SMA and our patient community celebrate the first approved drug for SMA. Gene Ther. 2017;24(9):498–500.  https://doi.org/10.1038/gt.2017.39.CrossRefPubMedGoogle Scholar
  92. 92.
    Wan L, Dreyfuss G. Splicing-correcting therapy for SMA. Cell. 2017;170(1):5.  https://doi.org/10.1016/j.cell.2017.06.028.CrossRefPubMedGoogle Scholar
  93. 93.
    Wood MJA, Talbot K, Bowerman M. Spinal muscular atrophy: antisense oligonucleotide therapy opens the door to an integrated therapeutic landscape. Hum Mol Genet. 2017;26(R2):R151–9.  https://doi.org/10.1093/hmg/ddx215.CrossRefPubMedGoogle Scholar
  94. 94.
    Sivanesan S, Howell MD, DiDonato CJ, Singh RN. Antisense oligonucleotide mediated therapy of spinal muscular atrophy. Transl Neurosci. 2013;4:1–7.  https://doi.org/10.2478/s13380-013-0109-2.CrossRefGoogle Scholar
  95. 95.
    Beusch I, Barraud P, Moursy A, Cléry A, Allain FH. Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. Elife. 2017;6:pii: e25736.  https://doi.org/10.7554/eLife.25736.CrossRefGoogle Scholar
  96. 96.
    Singh NN, Hollinger K, Bhattacharya D, Singh RN. An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing. RNA. 2010;16:1167–81.  https://doi.org/10.1261/rna.2154310.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Singh NN, Shishimorova M, Cao LC, Gangwani L, Singh RN. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol. 2009;6:341–50.  https://doi.org/10.4161/rna.6.3.8723.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Seo J, Ottesen EW, Singh RN. Antisense methods to modulate pre-mRNA splicing. Methods Mol Biol. 2014;1126:271–83.  https://doi.org/10.1007/978-1-62703-980-2_20.CrossRefPubMedGoogle Scholar
  99. 99.
    Kiel JM, Seo J, Howell MD, Hsu WH, Singh RN, DiDonato CJ. A short antisense oligonucleotide ameliorates symptoms of severe mouse models of spinal muscular atrophy. Mol Ther Nucleic Acids. 2014;3:e174.  https://doi.org/10.1038/mtna.2014.23.CrossRefGoogle Scholar
  100. 100.
    Förch P, Puig O, Martínez C, Séraphin B, Valcárcel J. The splicing regulator TIA-1 interacts with U1-C to promote U1 snRNP recruitment to 5′ splice sites. EMBO J. 2002;21(24):6882–92.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Klar J, Sobol M, Melberg A, Mäbert K, Ameur A, Johansson ACV, Feuk L, Entesarian M, Orlén H, Casar-Borota O, Dahl N. Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat. 2013;34(4):572–7.  https://doi.org/10.1002/humu.22282.CrossRefPubMedGoogle Scholar
  102. 102.
    Hirsch-Reinshagen V, Pottier C, Nicholson AM, Baker M, Hsiung GR, Krieger C, Sengdy P, Boylan KB, Dickson DW, Mesulam M, Weintraub S, Bigio E, Zinman L, Keith J, Rogaeva E, Zivkovic SA, Lacomis D, Taylor JP, Rademakers R, Mackenzie IRA. Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathol Commun. 2017;5(1):96.  https://doi.org/10.1186/s40478-017-0493-x.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Heck MV, Azizov M, Stehning T, Walter M, Kedersha N, Auburger G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics. 2014;15(2):135–44.  https://doi.org/10.1007/s10048-014-0397-x.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Howell MD, Ottesen EW, Singh NN, Anderson RL, Seo J, Sivanesan S, Whitley EM, Singh RN. TIA1 is a gender-specific disease modifier of a mild mouse model of spinal muscular atrophy. Sci Rep. 2017a;7:18.  https://doi.org/10.1038/s41598-017-07468-2.CrossRefGoogle Scholar
  105. 105.
    Díaz-Muñoz MD, Kiselev VY, Novère NL, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun. 2017;8(1):530.  https://doi.org/10.1038/s41467-017-00454-2.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E, Jansen-West K, Frame AA, Citro A, Leszyk JD, Ivanov P, Abisambra JF, Steffen M, Li H, Petrucelli L, Wolozin B. Interaction of tau with the RNA-binding Protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 2016;15(7):1455–66.  https://doi.org/10.1016/j.celrep.2016.04.045.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Howell MD, Ottesen EW, Singh NN, Anderson RL, Singh RN. Gender-specific amelioration of SMA phenotype upon disruption of a deep intronic structure by an oligonucleotide. Mol Ther. 2017b;25(6):1328–41.  https://doi.org/10.1016/j.ymthe.2017.03.036.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ronchi D, Previtali SC, Sora MGN, Barera G, Del Menico B, Corti S, Bresolin N, Comi GP. Novel splice-site mutation in SMN1 associated with a very severe SMA-I phenotype. J Mol Neurosci. 2015;56:212–5.  https://doi.org/10.1007/s12031-014-0483-4.CrossRefPubMedGoogle Scholar
  109. 109.
    Wirth B, Herz M, Wetter A, Moskau S, Hahnen E, Rudnik-Schöneborn S, Wienker T, Zerres K. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet. 1999;64(5):1340–56.  https://doi.org/10.1086/302369.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sheng-Yuan Z, Xiong F, Chen YJ, Yan TZ, Zeng J, Li L, Zhang YN, Chen WQ, Bao XH, Zhang C, Xu XM. Molecular characterization of SMN copy number derived from carrier screening and from core families with SMA in a Chinese population. Eur J Hum Genet. 2010;18(9):978–84.  https://doi.org/10.1038/ejhg.2010.54.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Vezain M, Gérard B, Drunat S, Funalot B, Fehrenbach S, N’Guyen-Viet V, Vallat JM, Frébourg T, Tosi M, Martins A, Saugier-Veber P. A leaky splicing mutation affecting SMN1 exon 7 inclusion explains an unexpected mild case of spinal muscular atrophy. Hum Mutat. 2011;32(9):989–94.  https://doi.org/10.1002/humu.21528.CrossRefPubMedGoogle Scholar
  112. 112.
    Osman EY, Washington CW 3rd, Kaifer KA, Mazzasette C, Patitucci TN, Florea KM, Simon ME, Ko CP, Ebert AD, Lorson CL. Optimization of morpholino antisense oligonucleotides targeting the intronic repressor element1 in spinal muscular atrophy. Mol Ther. 2016;24(9):1592–601.  https://doi.org/10.1038/mt.2016.145.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Zarnack K, Konig J, Tajnik M, Martincorena I, Eustermann S, Stevant I, Reyes A, Anders S, Luscombe NM, Ule J. Direct Competition between hnRNP C and U2AF65 Protects the Transcriptome from the Exonization of Alu Elements. Cell. 2013;152(3):453–66.  https://doi.org/10.1016/j.cell.2012.12.023.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12(12):12.  https://doi.org/10.1186/gb-2011-12-12-236.CrossRefGoogle Scholar
  115. 115.
    Bouttier M, Laperriere D, Memari B, Mangiapane J, Fiore A, Mitchell E, Verway M, Behr MA, Sladek R, Barreiro LB, Mader S, White JH. Alu repeats as transcriptional regulatory platforms in macrophage responses to M-tuberculosis infection. Nucleic Acids Res. 2016;44(22):10571–87.  https://doi.org/10.1093/nar/gkw782.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Daniel C, Silberberg G, Behm M, Ohman M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol. 2014;15(2):17.  https://doi.org/10.1186/gb-2014-15-2-r28.CrossRefGoogle Scholar
  117. 117.
    Singh NN, Seo J, Rahn SJ, Singh RN. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. Plos One. 2012;7(11):17.  https://doi.org/10.1371/journal.pone.0049595.CrossRefGoogle Scholar
  118. 118.
    Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12(7):1060–7.  https://doi.org/10.1101/gr.229302.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH. AndrophyEJ (1998). SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet. 1998;19(1):63–6.  https://doi.org/10.1038/ng0598-63.CrossRefPubMedGoogle Scholar
  120. 120.
    Seo J, Singh NN, Ottesen EW, Sivanesan S, Shishimorova M, Singh RN. Oxidative stress triggers body-wide skipping of multiple exons of the spinal muscular atrophy gene. PLoS One. 2016b;11(4):31.  https://doi.org/10.1371/journal.pone.0154390.CrossRefGoogle Scholar
  121. 121.
    Oh JM, Di C, Venters CC, Guo J, Arai C, So BR, Pinto AM, Zhang Z, Wan L, Younis I, Dreyfuss G. U1 snRNP telescripting regulates a size-function-stratified human genome. Nat Struct Mol Biol. 2017;24:993.  https://doi.org/10.1038/nsmb.3473.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Aktaş T, Ilik IA, Maticzka D, Bhardwaj V, Rodrigues CP, Mittler G, Manke T, Backofen R, Akhtar A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017;544(7648):115–9.  https://doi.org/10.1038/nature21715.CrossRefPubMedGoogle Scholar
  123. 123.
    Ottesen EW, Seo J, Singh NN, Singh RN. A multilayered control of the human Survival Motor Neuron gene expression by Alu elements. Front Microbiol. 2017;8:2252.  https://doi.org/10.3389/fmicb.2017.02252.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Acuña LIG, Kornblihtt AR. Long range chromatin organization: a new layer in splicing regulation? Transcription. 2014;5(3):e28726.  https://doi.org/10.4161/trns.28726.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Singh NN, Howell MD, Singh RN. Transcriptional and splicing regulation of spinal muscular atrophy genes. In: Charlotte SJ, Paushkin S, Ko C-P, editors. Spinal muscular atrophy: disease mechanisms and therapy. Amsterdam: Elsevier Inc.; 2016.Google Scholar
  126. 126.
    Martinez-Contreras R, Fisette JF, Nasim FU, Madden R, Cordeau M, Chabot B. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol. 2006;4(2):e21.  https://doi.org/10.1371/journal.pbio.0040021.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Spellman R, Smith CW. Novel modes of splicing repression by PTB. Trends Biochem Sci. 2006;31(2):73–6.  https://doi.org/10.1016/j.tibs.2005.12.003.CrossRefPubMedGoogle Scholar
  128. 128.
    Taube JR, Sperle K, Banser L, Seeman P, Cavan BC, Garbern JY, Hobson GM. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing. Hum Mol Genet. 2014;23(20):5464–78.  https://doi.org/10.1093/hmg/ddu271.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Liang DM, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28(20):2233–47.  https://doi.org/10.1101/gad.251926.114.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesIowa State UniversityAmesUSA

Personalised recommendations