Advertisement

Pulmonary Cytology

  • Derek B. Allison
  • Qing Kay Li
Chapter
Part of the Atlas of Anatomic Pathology book series (AAP)

Abstract

The diagnostic sensitivity and specificity of pulmonary cytology have significantly improved over the past decade, mainly due to the advancement of sampling techniques and our increasing understanding of lung lesions. Both nonneoplastic and neoplastic pulmonary lesions make up many heterogeneous groups of diseases, many of which contain multiple histomorphological subtypes that are important for clinical management. Furthermore, the clinical and radiological presentations of many localized nonneoplastic lung lesions mimic malignant neoplasms. In these circumstances, an accurate diagnosis by tissue sampling is required for appropriate clinical management. In addition, recent large-scale genomic studies from the Clinical Lung Cancer Genome Project have identified actionable driver gene mutations in subtypes of non-small-cell lung carcinoma (NSCLC). These findings not only have led to remarkable progress in targeted therapies for lung cancer patients but also have provided missing fundamental knowledge for the accurate subclassification of NSCLC. In fact, in 2015, the World Health Organization (WHO) and the International Association for the Study of Lung Cancer (IASLC) updated their guidelines to reflect this progress. More recently, the advancement and clinical application of immunotherapy for patients with NSCLC have reinforced the need for accurate histologic subclassification. The WHO, recognizing the difficulty of evaluating cytological samples for the classification of NSCLC (in comparison to resected tumor tissue), has recommended specific criteria for cytological specimens. This chapter summarizes the cytological features of benign and malignant lung lesions and discusses the current WHO guidelines for the classification of lung cancer and the utility of immunomarkers in the diagnosis of lung lesions.

Keywords

Pulmonary cytology Benign lung diseases Reactive bronchial epithelial changes Non-small-cell lung carcinoma NSCLC Small-cell lung carcinoma SCLC Transbronchial fine needle aspiration TBNA 

References

  1. 1.
    French CA. Respiratory tract and mediastinum. In: Cibas ES, Ducatman BS, editors. Cytology: diagnostic principles and clinical correlates. 4th ed. Philadelphia: Saunders/Elsevier; 2014. p. 59–104.Google Scholar
  2. 2.
    DeMay RM. The art and science of cytopathology, exfoliative cytology, vol. 1. 2nd ed. Chicago: ASCP Press; 2012.Google Scholar
  3. 3.
    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO classification of tumours of the lung, pleura, thymus and heart. Lyon: International Agency for Research on Cancer; 2015.Google Scholar
  5. 5.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRefGoogle Scholar
  6. 6.
    Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.CrossRefPubMedGoogle Scholar
  7. 7.
    Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.CrossRefPubMedGoogle Scholar
  8. 8.
    Munfus-McCray D, Cui M, Zhang Z, Askin F, Gabrielson E, Li QK. Comparison of EGFR and KRAS mutations in primary and unpaired metastatic lung adenocarcinoma with potential chemotherapy effect. Hum Pathol. 2011;42:1447–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.CrossRefGoogle Scholar
  11. 11.
    Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.CrossRefGoogle Scholar
  12. 12.
    Li QK, Singh A, Biswal S, Askin F, Gabrielson E. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J Hum Genet. 2011;56:230–4.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget. 2014;5:1392–433.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn. 2013;15:415–53.CrossRefPubMedGoogle Scholar
  15. 15.
    Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 expression by oncogenic activation of the AKT/mTOR pathway in non-small cell lung cancer. Cancer Res. 2016;76:227–38.CrossRefPubMedGoogle Scholar
  17. 17.
    Facchinetti F, Marabelle A, Rossi G, Soria JC, Besse B, Tiseo M. Moving immune checkpoint blockade in thoracic tumors beyond NSCLC. J Thorac Oncol. 2016;11:1819–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JH, Beasley MB, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.CrossRefPubMedGoogle Scholar
  19. 19.
    Katis K, Inglesos E, Zachariadis E, Palamidas P, Paraskevopoulos I, Sideris G, et al. The role of transbronchial needle aspiration in the diagnosis of peripheral lung masses or nodules. Eur Respir J. 1995;8:963–6.PubMedGoogle Scholar
  20. 20.
    Harrow EM, Abi-Saleh W, Blum J, Harkin T, Gasparini S, Addrizzo-Harris DJ, et al. The utility of transbronchial needle aspiration in the staging of bronchogenic carcinoma. Am J Respir Crit Care Med. 2000;161:601–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Wallace MB, Pascual JM, Raimondo M, Woodward TA, McComb BL, Crook JE, et al. Minimally invasive endoscopic staging of suspected lung cancer. JAMA. 2008;299:540–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Feller-Kopman D, Yung RCW, Burroughs F, Li QK. Cytology of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA). A study of 135 cases with histology correlation. Cancer Cytopathol. 2009;117:482–90.Google Scholar
  23. 23.
    Stoll LM, Yung RCW, Clark DP, Li QK. Cytology of endobronchial ultrasound-guided transbronchial needle aspiration verse conventional transbronchial needle aspiration. Cancer Cytopathol. 2010;118:278–86.CrossRefPubMedGoogle Scholar
  24. 24.
    Cameron SHE, Andrade RS, Pambuccian SE. Endobronchial ultrasound-guided transbronchial needle aspiration cytology: a state of the art review. Cytopathology. 2010;21:6–26.CrossRefPubMedGoogle Scholar
  25. 25.
    Dietrich CF, Annema JT, Clementsen P, Cui XW, Borst MM, Jenssen C. Ultrasound techniques in the evaluation of the mediastinum, part I: endoscopic ultrasound (EUS), endobronchial ultrasound (EBUS) and transcutaneous mediastinal ultrasound (TMUS), introduction into ultrasound techniques. J Thorac Dis. 2015;7:E311–25.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Yung RCW, Otell S, Illei P, Clark DP, Feller-Kopman D, Yarmus L, et al. Improvement of cellularity on cell block preparations using the so-called tissue coagulum clot method during endobronchial ultrasound-guided transbronchial fine-needle aspiration. Cancer Cytopathol. 2012;120:185–95.CrossRefPubMedGoogle Scholar
  27. 27.
    Sing A, Freudenberg N, Kortsik C, Wertzel H, Klosa B, Hasse J. Comparison of the sensitivity of sputum and brush cytology in the diagnosis of lung carcinomas. Acta Cytol. 1997;41:399–408.CrossRefPubMedGoogle Scholar
  28. 28.
    Meyer KC, Raghu G, Baughman RP, Brown KK, Costabel U, du Bois RM, et al.. American Thoracic Society Committee on BAL in Interstitial Lung DiseaseAn official American Thoracic Society clinical practice guideline: the clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am J Respir Crit Care Med. 2012;185:1004–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Wang Y, Jiang F, Tan X, Tian P. CT-guided percutaneous transthoracic needle biopsy for paramediastinal and nonparamediastinal lung lesions: Diagnostic yield and complications in 1484 patients. Medicine (Baltimore). 2016;95:e4460.CrossRefGoogle Scholar
  30. 30.
    Labarca G, Aravena C, Ortega F, Arenas A, Majid A, Folch E, et al. Minimally invasive methods for staging in lung cancer: systematic review and meta-analysis. Pulm Med. 2016;2016:1024709.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Miao J, Li M, Fu Y, Hu X, Hu B, Li H. Ultrasound-guided video-assisted mediastinoscopic biopsy: a novel approach. Ann Thorac Surg. 2016;102:e465–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Sturgis CD, Nassar DL, D’Antonio JA, Raab SS. Cytologic features useful for distinguishing small cell from non-small cell carcinoma in bronchial brush and wash specimens. Am J Clin Pathol. 2000;114:197–202.CrossRefPubMedGoogle Scholar
  33. 33.
    Arora VK, Singh N, Chaturvedi S, Bhatia A. Significance of cytologic criteria in distinguishing small cell from non-small cell carcinoma of the lung. Acta Cytol. 2003;47:216–20.CrossRefPubMedGoogle Scholar
  34. 34.
    Gustafsson BI, Kidd M, Chan A, Malfertheiner MV, Modlin IM. Bronchopulmonary neuroendocrine tumors. Cancer. 2008;113:5–21.CrossRefPubMedGoogle Scholar
  35. 35.
    Stoll LM, Johnson MW, Burroughs F, Li QK. Cytological diagnosis and differential diagnosis of lung carcinoid tumors: a retrospective study of 63 cases with histological correlation. Cancer Cytopathol. 2010;118:457–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Khalbuss WE, Yang H, Lian Q, Elhosseiny A, Pantanowitz L, Monaco SE. The cytomorphologic spectrum of small-cell carcinoma and large-cell neuroendocrine carcinoma in body cavity effusions: a study of 68 cases. Cytojournal. 2011;8:18.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chudgar NP, Brennan MF, Munhoz RR, Bucciarelli PR, Tan KS, D’Angelo SP, et al. Pulmonary metastasectomy with therapeutic intent for soft-tissue sarcoma. J Thorac Cardiovasc Surg. 2017;154:319–30.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Stoll LM, Li QK. Cytology of fine-needle aspiration of inflammatory myofibroblastic tumor. Diagn Cytopathol. 2011;39:663–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Sampat D, Filopei J, Rao P, Fein D, Acquah S. Full circle: Extranodal marginal zone B-cell lymphoma of the trachea. Lung Cancer. 2017;111:12–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Crapanzano J, Zakowski MF. Diagnostic dilemmas in pulmonary cytology. Cancer Cytopathol. 2001;93:364–75.CrossRefGoogle Scholar
  41. 41.
    Savoy AD, Ravenel JG, Hoffman BJ, Wallace MB. Endoscopic ultrasound for thoracic malignancy: a review. Curr Probl Diagn Radiol. 2005;34:106–15.CrossRefPubMedGoogle Scholar
  42. 42.
    Mondoni M, D’Adda A, Terraneo S, Carlucci P, Radovanovic D, DI Marco F, Santus P. Choose the best route: ultrasound-guided transbronchial and transesophageal needle aspiration with echobronchoscope in the diagnosis of mediastinal and pulmonary lesions. Minerva Med. 2015;106(5 Suppl 1):13–9.PubMedGoogle Scholar
  43. 43.
    Marchianò AV, Cosentino M, Di Tolla G, Greco FG, Silva M, Sverzellati N, et al. FNA and CNB in the diagnosis of pulmonary lesions: a single-center experience on 665 patients, comparison between two periods. Tumori. 2017;103:360–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Samaratunga H, Gianduzzo T, Delahunt B. The ISUP system of staging, grading and classification of renal cell neoplasia. J Kidney Cancer VHL. 2014;1:26–39.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Banet N, Gown AM, Shih IM, Li QK, Roden RB, Nucci MR, et al. GATA-3 expression in trophoblastic tissues: an immunohistochemical study of 445 cases, including diagnostic utility. Am J Surg Pathol. 2015;39:101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bartosch C, Manuel Lopes J, Oliva E. Endometrial carcinomas: a review emphasizing overlapping and distinctive morphological and immunohistochemical features. Adv Anat Pathol. 2011;18:415–37.CrossRefPubMedGoogle Scholar
  47. 47.
    Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32:1291–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Kristiansen I, Stephan C, Jung K, Dietel M, Rieger A, Tolkach Y, Kristiansen G. Sensitivity of HOXB13 as a diagnostic immunohistochemical marker of prostatic origin in prostate cancer metastases: comparison to PSA, prostein, androgen receptor, ERG, NKX3.1, PSAP, and PSMA. Int J Mol Sci. 2017;18:pii:E1151.  https://doi.org/10.3390/ijms18061151.CrossRefGoogle Scholar
  49. 49.
    Bianchi G, Sambri A, Righi A, Dei Tos AP, Picci P, Donati D. Histology and grading are important prognostic factors in synovial sarcoma. Eur J Surg Oncol. 2017;43(9):1733.CrossRefPubMedGoogle Scholar
  50. 50.
    Li QK, Chhieng D. Rare metastatic tumors of non-epithelial origin. In: Michael C, Chhieng D, Bedrossian C, editors. Body fluid cytopathology. New York: Springer; 2015. p. 195–213.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Department of Pathology and OncologyThe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations