Advertisement

Reuse-Oriented Decentralized Wastewater and Sewage Sludge Treatment for Small Urbanized Rural Settlements in Brazil: An Environmental Cost-Benefit Analysis

  • Jaime CardonaEmail author
  • Alena Lepilova
  • Daniel Gieseler
  • Kristina Kreter
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Latin-American countries lack efficient solutions for wastewater and sewage sludge treatment. In particular, small urbanized rural settlements (SURUS) in many of these countries face significant challenges with respect to the selection and operation of sustainable sewage treatment facilities. Decentralized sanitation and reuse (DESAR) solutions can significantly contribute toward the improvement of wastewater sanitation coverage in SURUS in Latin-American regions. The major advantages of DESAR for SURUS are a reduction in final treatment costs because these systems allow for water reclamation and sewage sludge reuse for agriculture. To reflect the applicability of DESAR on a regional scale, we present here an integrative assessment, including a cost-benefit analysis (CBA) and geographic information systems (GIS) surveying, as a “decision support methodology” for conducting environmental-economic analyses. As a case study, this methodology was applied to six SURUS located at the Rio Dois Rios basin of Rio de Janeiro state. The CBA shows that DESAR could recover between 15% and 34% of total operational and maintenance costs for SURUS populations between 222 and 1,585 inhabitants. The findings suggest that DESAR systems can respond to the need to reduce costs and improve nutrient recovery capabilities of sanitation interventions in rural communities.

Keywords

Decentralized sanitation Rural development Sludge reuse Nutrient recovery INTECRAL project 

Resumen (Español) Tratamiento Descentralizado de Aguas Residuales y Lodos Descentralizadas para Pequeños Asentamientos Rurales Urbanizados en Brasil: Un Análisis de Costo-Beneficio Ambiental

En Latinoamérica existe una clara necesidad por mejorar el acceso a sistemas de tratamiento de aguas residuales y manejo de lodos. Especialmente en comunidades urbanas localizadas en zonas rurales (SURUS) en América Latina afrontan retos significativos para seleccionar, invertir y operar sistemas de tratamiento de aguas residuales y lodos de manera sostenible. Sistemas descentralizados de saneamiento y reuso (DESAR) pueden contribuir de manera significativa en mejorar el acceso a tratamiento de aguas residuales en las región. Las ventajas de incorporar soluciones DESAR en áreas SURUS incluyen su capacidad de reducir los costos finales de tratamiento mediante la integración de aguas residuales tratadas para irrigación, así como lodos tratados para ser empleados con fines agrícolas. Para evaluar la aplicabilidad de sistemas DESAR en una escala regional, se presenta una evaluación integral empleando técnicas de Análisis de Costo- Beneficio (ACB) Ambiental y sistemas de información geográficos (SIG) para realizar un evaluación económica y ambiental de la implementación de soluciones DESAR. Para tal fin, se desarrolló un caso de estudio para la implementación de la metodología en seis SURUS en la cuenca hidrográfica Río Dois Rio en el estado de Río de Janeiro en Brasil. Con base en los resultados obtenidos por el ACB, se encontró un claro potencial de recuperación de costos de operación y mantenimiento entre 15% y 34% para comunidades entre 222 a 1,585 habitantes respectivamente. Los resultados obtenidos sugieren que las soluciones DESAR constituyen una clara alternativa para reducir costos y mejorar las posibilidades de recuperación de nutrientes en sistemas de tratamiento de aguas residuales en zonas rurales.

Palavras-chave

Práticas agroflorestais Produção leitera Produção em pequena escala Manejo sustentável da terra Participação dos agricultores 

Resumo (Português) Sistemas Descentralizados de Tratamento de Águas Residuais de Lodos de Esgoto Reutilizáveis para Pequenos Assentamentos Rurais Urbanizados no Brasil: Análise de Custo-Benefício Ambiental

Em Países da América Latina há uma clara necessidade de soluções mais eficientes de tratamento de águas residuais e gestão de lodos. Especialmente em comunidades urbanas localizadas em áreas rurais (SURUS) de grande parte desses países enfrentam desafios significativos para selecionar, investir e operar de forma sustentável os sistemas de tratamento. Sistemas descentralizados de saneamento e reúso (DESAR) podem contribuir significativamente para melhorar o acesso ao tratamento de águas residuais nessas regiões. As vantagens de incorporar soluções DESAR em áreas SURUS incluem a sua capacidade de reduzir os custos finais de tratamento através da integração das águas residuais, e os lodos tratados para fins agrícolas. Para demonstrar a aplicabilidade dos sistemas DESAR em uma escala regional, uma avaliação integradora é apresentada utilizando técnicas de análise de custo-benefício (ACB) e sistemas de informação geográfica (SIG) como metodologia de suporte a decisão na condução de avaliações económica e ambiental. Com este fim, se desenvolveu um estudo de caso para a implementação da metodologia em seis SURUS na bacia hidrográfica Rio Dois Rios no estado do Rio de Janeiro, Brasil. Com base nos resultados obtidos pela ACB, verificou-se um claro potencial de recuperação de custos de operação e manutenção, de 15% a 34% para as comunidades entre 222 e 1,585 habitantes, respectivamente. Os resultados obtidos sugerem que as soluções DESAR são uma alternativa clara para reduzir custos e melhorar as possilidades de recuperação de nutrientes em sistemas de tratamento de águas residuais em áreas rurais.

Palavras-chave

Saneamento descentralizado Desenvolvimento rural Reutilização de lodo Recuperação de nutrientes Projeto INTECRAL 

References

  1. Andreoli CV, von Sperling M, Fernandes F (2007) Sludge treatment and disposal, vol 6. IWA publishing, LondonGoogle Scholar
  2. Bakir HA (2001) Sustainable wastewater management for small communities in the Middle East and North Africa. J Environ Manag 61(4):319–328CrossRefGoogle Scholar
  3. Cardona JA (2005) Análsis económico de sistemas de tratamiento de aguas residuales en Colombia. In: Conferencia Internacional: Ecotecnologías para el Tratamiento de Aguas Residuales, Pereira, July 2005 2005. Universidad Tecnológica de Pereira (UTP)Google Scholar
  4. Cardona J, Saraiva J, Boettger S, Prata Filho D (2014) Contribution to the sustainable managment of water resources through decentralized wastewater treatment and reuse solutions. Kick off the workshop in March, 19–21 at Terésopolis, Brazil. In: Kick off conference of the project: integrated eco technologies and services for a Rural Rio de Janeiro, TeresópilosGoogle Scholar
  5. Cardona J, Segovia O, Böttger S et al (2016) Reuse-oriented decentralized wastewater and sewage sludge treatment for rural settlements in Brazil: a cost-benefit analysis. In: Paper presented at the 13th IWA specialized conference on small water and wastewater systems &. 5th IWA specialized conference on resources-oriented sanitation, Athens, 14–16 September 2016Google Scholar
  6. CEIVAP (2014) Deliberação CEIVAP N° 218/2014. “Estabelece mecanismos e propõe valores para a cobrança pelo uso de recursos hídricos na bacia hidrográfica do rio Paraíba do Sul, a partir de 2015”. vol Deliberação CEIVAP N° 218/2014. Committee for the Integration of the Hydrographic Basin of Paraíba do Sul River, CEIVAP, ResendeGoogle Scholar
  7. Chen R, Wang XC (2009) Cost-benefit evaluation of a decentralized water system for wastewater reuse and environmental protection. Water Sci Technol 59(8):1515–1522. https://doi.org/10.2166/Wst.2009.156 CrossRefGoogle Scholar
  8. Cole S (1998) The emergence of treatment wetlands. Environ Sci Technol 32(9):218A–223ACrossRefGoogle Scholar
  9. CONAMA (2005) National Environmental Council (2005). Resolução no 357/2005Google Scholar
  10. CONAMA (2006) National Environmental Council (2006). Resolução no 375/2006Google Scholar
  11. CONAMA (2007) National Environmental Council (2007). Resolução no DZ 215.R4/2007Google Scholar
  12. Costa C, Guilhoto J (2012) Importância de uma política de saneamento rural no BrasilGoogle Scholar
  13. Crites R, Tchobanoglous G (1998) Small and decentralized wastewater management systems. McGraw-Hill series in water resources and environmental engineering. WCB McGraw-Hill, BostonGoogle Scholar
  14. de Sousa JT, van Haandel AC, Guimaraes AAV (2001) Post-treatment of anaerobic effluents in constructed wetland systems. Water Sci Technol 44(4):213–219CrossRefGoogle Scholar
  15. El-Khateeb M, El-Gohary F (2003) Combining UASB technology and constructed wetland for domestic wastewater reclamation and reuse. Water Recycl Mediterr Reg 3(4):201–208Google Scholar
  16. Gallotti R (2008) Tratamento Decentralizado de efluentes como alternativa a despoluição dos recursos hídricos da region metropolitana de Aracaju/SE Universidad Federal de SergipeGoogle Scholar
  17. Halalsheh M, Dalahmeh S, Sayed M et al (2008) Grey water characteristics and treatment options for rural areas in Jordan. Bioresour Technol 99(14):6635–6641. https://doi.org/10.1016/j.biortech.2007.12.029 CrossRefGoogle Scholar
  18. Hophmayer-Tokich S (2010) Wastewater management strategy: centralized v. Decentralized technologies for small communities. University of Twente at the Cartesius Institute, LeewardenGoogle Scholar
  19. IBGE – Instituto Brasileiro de Geografia e Estatística (2000) Population Census 2000. Base de informações municipais. 2 ed. (Brazilian Institute of Geography and Statistics. Municipal information base). Rio de JaneiroGoogle Scholar
  20. IBGE – Instituto Brasileiro de Geografia e Estatística (2007) Contagem Populacional de 2007. Brazilian Institute of Geography and Statistics. Population Census 2007. Rio de Janeiro, BrazilGoogle Scholar
  21. IBGE – Instituto Brasileiro de Geografia e Estatística (2010a) Population Census 2010. Instituto Brasileiro de Geografia e Estatística, IBGE, Pesquisa Nacional de Saneamento Básico 2008 (Brazilian Institute of Geography and Statistics. National Research of Basic Sanitation 2008). Rio de JaneiroGoogle Scholar
  22. IBGE – Instituto Brasileiro de Geografia e Estatística (2010b) Pesquisa Nacional de Saneamento Básico 2008. National Research of Basic Sanitation 2008. IBGE, Rio de JaneiroGoogle Scholar
  23. Lens P, Lens PNL, Zeeman G, Lettinga G (2001) Decentralised sanitation and reuse: concepts, systems and implementation. IWA Publishing, LondonGoogle Scholar
  24. Lienhoop N, Al-Karablieh EK, Salman AZ, Cardona JA (2014) Environmental cost–benefit analysis of decentralised wastewater treatment and re-use: a case study of rural Jordan. Water Policy 16(2):323. https://doi.org/10.2166/wp.2013.026 CrossRefGoogle Scholar
  25. Mara D (2013) Domestic wastewater treatment in developing countries. Routledge, LondonCrossRefGoogle Scholar
  26. Marcon MKF, Frigo EP, Nogueira CEC et al (2015) Economic viability of the agricultural recycling of sewage sludge in Brazil. Afr J Agric Res 10(20):2159–2164CrossRefGoogle Scholar
  27. Massoud MA, Tarhini A, Nasr JA (2009) Decentralized approaches to wastewater treatment and management: applicability in developing countries. J Environ Manag 90(1):652–659CrossRefGoogle Scholar
  28. Ministerio da Cidades (2010) Diretrizes para Elaboraçãode Projetos de Engenharia. Fonte de Recursos: Financiamento. Ministério das Cidades, Secretaria Nacional de Saneamento Ambiental, BrasiliaGoogle Scholar
  29. Otis R, Mara D (1995) The design of small bore sewer systems, TAG technical note, vol 14, Washington DC: World Bank Google Scholar
  30. Otterpohl R, Grottker M, Lange J (1997) Sustainable water and waste management in urban areas. Water Sci Technol 35(9):121–133. https://doi.org/10.1016/S0273-1223(97)00190-X CrossRefGoogle Scholar
  31. Pearce D, Atkinson G, Mourato S (2006) Cost-benefit analysis and the environment: recent developments. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  32. Quintana NRG, de Carvalho Bueno O, de Melo WJ (2012) Custo de transporte do esgoto para viabilidade no uso agricola de transporte de lodo de esgoto para viabilidad no uso agrícola energia na agricultura 27(3):90–96Google Scholar
  33. Rigo MM, Ramos RR, Cerqueira AA et al (2014) Destinação e reuso na agricultura do lodo de esgoto derivado do tratamento de águas residuária domésticas no Brasil. Gaia Scientia 8(1):174–186Google Scholar
  34. Sattler D, Murray LT, Kirchner A, Lindner A (2014) Influence of soil and topography on aboveground biomass accumulation and carbon stocks of afforested pastures in South East Brazil. Ecol Eng 73:126–131CrossRefGoogle Scholar
  35. Segovia O (2014) Environmental costs-benefit analysis of decentralized wastewater and sanitation technologies in the microbasin of Barracão dos Mendes, Brazil. Universidad Autónoma de San Luis de Potosí, Cologne UniversityGoogle Scholar
  36. Uggetti E, Ferrer I, Llorens E, Garcia J (2010) Sludge treatment wetlands: a review on the state of the art. Bioresour Technol 101(9):2905–2912. https://doi.org/10.1016/j.biortech.2009.11.102 CrossRefGoogle Scholar
  37. Uggetti E, Ferrer I, Molist J, Garcia J (2011) Technical, economic and environmental assessment of sludge treatment wetlands. Water Res 45(2):573–582. https://doi.org/10.1016/j.watres.2010.09.019 CrossRefGoogle Scholar
  38. UN-Habitat (2006) Meeting development goals in small urban centres: water and sanitation in the wold’s cities 2006. United Nations Human Settlements Programme (UN-HABITAT), NairobiGoogle Scholar
  39. van Afferden M, Cardona JA, Lee MY et al (2015) A new approach to implementing decentralized wastewater treatment concepts. Water Sci Technol 72(11):1923–1930. https://doi.org/10.2166/wst.2015.393 CrossRefGoogle Scholar
  40. Wendland C, Behrendt J, Elmitwalli TA et al (2006) UASB reactor followed by constructed wetland and UV radiation as an appropriate technology for municipal wastewater treatment in Mediterranean countries. In: Proceedings of the 7th specialised conference on small water and wastewater systems in Mexico, 2006Google Scholar
  41. Wilderer P, Shereff D (2000) Decentralised and centralised wastewater management: a challenge for technology developers. Water Sci Technol 41(1):1–8CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jaime Cardona
    • 2
    • 1
    Email author
  • Alena Lepilova
    • 2
  • Daniel Gieseler
    • 2
  • Kristina Kreter
    • 3
  1. 1.Centre for Environmental Biotechnology (UBZ)Helmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  2. 2.Training and Demonstration Centre for Decentralized Sewage Treatment – BDZ e.V.LeipzigGermany
  3. 3.Institute for Technology and Resources Management in the Tropics and SubtropicsTH Köln – University of Applied SciencesCologneGermany

Personalised recommendations