Ties, Time Series, and Regression

  • Marius Hofert
  • Ivan Kojadinovic
  • Martin Mächler
  • Jun Yan
Part of the Use R! book series (USE R)


This chapter is concerned with more advanced topics in copula modeling such as the handling of ties, time series, and covariates (in a regression-like setting).


  1. Abegaz, F., Gijbels, I., & Veraverbeke, N. (2012). Semiparametric estimation of conditional copulas. Journal of Multivariate Analysis, 110, 43–73.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Acar, E. F., Craiu, R. V., & Yao, Y. (2011). Dependence calibration in conditional copulas: A nonparametric approach. Biometrics, 67, 445–453.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Acar, E. F., Craiu, R. V., & Yao, Y. (2013). Statistical testing of covariate effects in conditional copula models. Electronic Journal of Statistics, 7, 2822–2850.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Agresti, A. (2010). Analysis of ordinal categorical data (2nd ed.). New York: Wiley.zbMATHCrossRefGoogle Scholar
  5. Aue, A., & Horváth, L. (2013). Structural breaks in time series. Journal of Time Series Analysis, 34(1), 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Beare, B. K. (2010). Copulas and temporal dependence. Econometrica, 78(1), 395–410.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ben Ghorbal, M., Genest, C., & Nešlehová, J. G. (2009). On the test of Ghoudi, Khoudraji, and Rivest for extreme-value dependence. The Canadian Journal of Statistics, 37(4), 534–552.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Bücher, A., Fermanian, J.-D., & Kojadinovic, I. (forthcoming). Combining cumulative sum change-point detection tests for assessing the stationarity of continuous univariate time series. Journal of Time Series Analysis.Google Scholar
  9. Bücher, A., & Kojadinovic, I. (2015). An overview of nonparametric tests of extreme-value dependence and of some related statistical procedures. In D. Dey & J. Yan (Eds.), Extreme value modeling and risk analysis: Methods and applications (pp. 377–398). Boca Baton, FL: Chapman & Hall/CRC.zbMATHCrossRefGoogle Scholar
  10. Bücher, A., & Kojadinovic, I. (2016). A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing. Bernoulli, 22(2), 927–968.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Bücher, A., Kojadinovic, I., Rohmer, T., & Segers, J. (2014). Detecting changes in cross-sectional dependence in multivariate time series. Journal of Multivariate Analysis, 132, 111–128.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Canty, A., & Ripley, B. D. (2017). boot: Bootstrap R (S-Plus) functions, R package version 1.3-20. Google Scholar
  13. Cardinali, A., & Nason, G. P. (2013). Costationarity of locally stationary time series using costat. Journal of Statistical Software, 55(1), 1–22.zbMATHCrossRefGoogle Scholar
  14. Chen, X., & Fan, Y. (2005). Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. The Canadian Journal of Statistics, 33, 389–414.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Chen, X., & Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecifcation. Journal of Econometrics, 135, 125–154.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Constantine, W., & Percival, D. (2016). fractal: Fractal time series modeling and analysis, R package version 2.0-1.
  17. Cormier, E., Genest, C., & Nešlehová, J. G. (2014). Using B-splines for nonparametric inference on bivariate extreme-value copulas. Extremes, 17, 633–659.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Côté, M.-P., Genest, C., & Abdallah, A. (2016). Rank-based methods for modeling dependence between loss triangles. European Actuarial Journal, 6, 377–408.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Csörgö, M., & Horváth, L. (1997). Limit theorems in change-point analysis. Chichester: Wiley.zbMATHGoogle Scholar
  20. Darsow, W. W. F., Nguyen, B., & Olsen, E. T. (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36, 600–642.MathSciNetzbMATHGoogle Scholar
  21. Deheuvels, P. (1981). A non parametric test for independence. Publications de l’Institut de Statistique de l’Université de Paris, 26, 29–50.zbMATHGoogle Scholar
  22. Dehling, H., Vogel, D., Wendler, M., & Wied, D. (2017). Testing for changes in Kendall’s tau. Econometric Theory, 33(6), 1352–1386.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Derumigny, A., & Fermanian, J.-D. (2017). About tests of the “simplifying” assumption for conditional copulas. Dependence Modeling, 5(1), 154–197.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Fermanian, J.-D., & Lopez, O. (2018). Single-index copulae. Journal of Multivariate Analysis, 165, 27–55.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Fermanian, J.-D., & Wegkamp, M. (2012). Time-dependent copulas. Journal of Multivariate Analysis, 110, 19–29.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Frees, E. W. (2010). Multivariate regression using copulas. University Lecture.Google Scholar
  27. Frees, E. W., & Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2, 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  28. Genest, C., Nešlehová, J. G., & Rémillard, B. (2014). On the empirical multilinear copula process for count data. Bernoulli, 20, 1344–1371.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Genest, C., Nešlehová, J. G., & Rémillard, B. (2017). Asymptotic behavior of the empirical multilinear copula process under broad conditions. Journal of Multivariate Analysis, 20, 82–110.MathSciNetzbMATHCrossRefGoogle Scholar
  30. Genest, C., Nešlehová, J. G., & Ruppert, M. (2011). Comment on the paper by S. Haug, C. Klüppelberg and L. Peng entitled “Statistical models and methods for dependence in insurance data”. Journal of the Korean Statistical Society, 40, 141–148.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Genest, C., & Rémillard, B. (2004). Tests of independence and randomness based on the empirical copula process. Test, 13(2), 335–369.MathSciNetzbMATHCrossRefGoogle Scholar
  32. Genest, C., Quessy, J.-F., & Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33, 337–366.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Ghalanos, A. (2017). rugarch: Univariate GARCH models. R package version 1.3-8. Google Scholar
  34. Gijbels, I., Omelka, M., & Veraverbeke, N. (2015). Estimation of a copula when a covariate affects only marginal distributions. Scandinavian Journal of Statistics, 42(4), 1109–1126.MathSciNetzbMATHCrossRefGoogle Scholar
  35. Gombay, E., & Horváth, L. (1999). Change-points and bootstrap, Environmetrics, 10(6), 725–736.CrossRefGoogle Scholar
  36. Grégoire, V., Genest, C., & Gendron, M. (2008). Using copulas to model price dependence in energy markets. Energy Risk, 5(5), 58–64.Google Scholar
  37. Hofert, M., Kojadinovic, I., Mächler, M., & Yan, J. (2017a). copulaData: Data sets for copula modeling. R package version 0.0-1.
  38. Holmes, M., Kojadinovic, I., & Quessy, J.-F. (2013). Nonparametric tests for change-point detection à la Gombay and Horváth. Journal of Multivariate Analysis, 115, 16–32.MathSciNetzbMATHCrossRefGoogle Scholar
  39. Ibragimov, R. (2009). Copula based characterizations for higher-order Markov processes. Econometric Theory, 25, 819–846.MathSciNetzbMATHCrossRefGoogle Scholar
  40. Joe, H. (2014). Dependence modeling with copulas. Boca Raton, FL: Chapman & Hall/CRC.zbMATHCrossRefGoogle Scholar
  41. Jondeau, E., & Rockinger, M. (2006). The Copula–GARCH model of conditional dependencies: An international stock market application. Journal of International Money and Finance, 25, 827–853.CrossRefGoogle Scholar
  42. Kendall, M. G. (1945). The treatment of ties in rank problems. Biometrika, 3, 239–251.zbMATHCrossRefGoogle Scholar
  43. Kojadinovic, I. (2017a). npcp: Some nonparametric tests for change-point detection in possibly multivariate observations. R package version 0.1-9.
  44. Kojadinovic, I. (2017b). Some copula inference procedures adapted to the presence of ties. Computational Statistics and Data Analysis, 142, 24–41.MathSciNetzbMATHCrossRefGoogle Scholar
  45. Kojadinovic, I., & Yan, J. (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software, 34(9), 1–20.CrossRefGoogle Scholar
  46. Kojadinovic, I., & Yan, J. (2011). Tests of serial independence for continuous multivariate time series based on a Möbius decomposition of the independence empirical copula process. Annals of the Institute of Statistical Mathematics, 63, 347–373.MathSciNetzbMATHCrossRefGoogle Scholar
  47. Lambert, P. (2007). Archimedean copula estimation using Bayesian splines smoothing techniques. Computational Statistics and Data Analysis, 51(12), 6307–6320.MathSciNetzbMATHCrossRefGoogle Scholar
  48. Li, Y., Li, Y., Qin, Y., & Yan, J. (2016). Copula modeling for data with ties. Tech. Rep., ArXiv E-prints. arxiv:1612.06968.Google Scholar
  49. Lindsey, J. K. (1997). Applying generalized linear models. New York: Springer.zbMATHGoogle Scholar
  50. McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools (2nd ed.). Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  51. Nason, G. (2016). locits: Tests of stationarity and localized autocovariance. R package version 1.7.3.
  52. Nason, G., & Cardinali, A. (2013). costat: Time series costationarity determination. R package version 2.3.
  53. Nason, G. P. (2013). A test for second-order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. Journal of the Royal Statistical Society Series B, 75, 879–904.MathSciNetCrossRefGoogle Scholar
  54. Pappadà, R., Durante, F., & Salvadori, G. (2017). Quantification of the environmental structural risk with spoiling ties: Is randomization worthwhile? Stochastic Environmental Research and Risk Assessment, 31, 2483–2497.CrossRefGoogle Scholar
  55. Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International Economic Review, 47(2), 527–556.MathSciNetCrossRefGoogle Scholar
  56. Patton, A. J. (2012). A review of copula models for economic time series. Journal of Multivariate Analysis, 110, 4–18.MathSciNetzbMATHCrossRefGoogle Scholar
  57. Patton, A. J. (2013). Copula methods for forecasting multivariate time series. In G. Elliott & A. Timmermann (Eds.), Handbook of economic forecasting (pp. 899–960). New York: Springer.Google Scholar
  58. Portier, F., & Segers, J. (2018). On the weak convergence of the empirical conditional copula under a simplifying assumption. Journal of Multivariate Analysis, 166, 160–181.MathSciNetzbMATHCrossRefGoogle Scholar
  59. Priestley, M. B., & Subba Rao, T. (1969). A test for stationarity of time series. Journal of the Royal Statistical Society Series B, 31, 140–149.MathSciNetzbMATHGoogle Scholar
  60. Quessy, J.-F., Saïd, M., & Favre, A.-C. (2013). Multivariate Kendall’s tau for change-point detection in copulas. The Canadian Journal of Statistics, 41, 65–82.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Rémillard, B. (2017). Goodness-of-fit tests for copulas of multivariate time series. Econometrics, 5(13), 1–23.Google Scholar
  62. Rémillard, B., Papageorgiou, N., & Soustra, F. (2012). Copula-based semiparametric models for multivariate time series. Journal of Multivariate Analysis, 110, 30–42.MathSciNetzbMATHCrossRefGoogle Scholar
  63. Ryan, J. A., & Ulrich, J. M. (2017). xts: eXtensible Time Series. R package version 0.10-0.
  64. Sun, J., Frees, E. W., & Rosenberg, M. A. (2008). Heavy-tailed longitudinal data modeling using copulas. Insurance: Mathematics and Economics, 42, 817–830.zbMATHGoogle Scholar
  65. Veraverbeke, N., Omelka, M., & Gijbels, I. (2011). Estimation of a conditional copula and association measures. Scandinavian Journal of Statistics, 38, 766–780.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marius Hofert
    • 1
  • Ivan Kojadinovic
    • 2
  • Martin Mächler
    • 3
  • Jun Yan
    • 4
  1. 1.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Laboratory of Mathematics and its ApplicationsUniversity of Pau and Pays de l’AdourPauFrance
  3. 3.Seminar for StatisticsETH ZurichZurichSwitzerland
  4. 4.Department of StatisticsUniversity of ConnecticutStorrsUSA

Personalised recommendations