Advertisement

Estimation

  • Marius Hofert
  • Ivan Kojadinovic
  • Martin Mächler
  • Jun Yan
Chapter
Part of the Use R! book series (USE R)

Abstract

This chapter addresses the estimation of copulas from a parametric, semi-parametric, and nonparametric perspective.

References

  1. Bates, D., & Maechler, M. (2017). Matrix: Sparse and dense matrix classes and methods, R package version 1.2-12. http://CRAN.R-project.org/package=Matrix Google Scholar
  2. Belzile, L., & Genest, C. (2017). lcopula: Liouville Copulas, R package version 1.0. https://CRAN.R-project.org/package=lcopula
  3. Berghaus, B., Bücher, A., & Volgushev, S. (2017). Weak convergence of the empirical copula process with respect to weighted metrics. Bernoulli, 23(1), 743–772.MathSciNetCrossRefGoogle Scholar
  4. Capéraà, P., Fougères, A.-L., & Genest, C. (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84, 567–577.MathSciNetCrossRefGoogle Scholar
  5. Carley, H., & Taylor, M. D. (2002). A new proof of Sklar’s theorem. In C. M. Cuadras, J. Fortiana, & J. A. Rodríguez-Lallena (Eds.), Distributions with given marginals and statistical modelling (pp. 29–34). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  6. Charpentier, A., Fermanian, J.-D., & Scaillet, O. (2007). The estimation of copulas: Theory and practice. In J. Rank (Ed.), Copulas: From theory to application in finance (pp. 35–60). London: Risk Books.Google Scholar
  7. Chen, X., Fan, Y., & Tsyrennikov, V. (2006). Effcient estimation of semiparametric multivariate copula models. Journal of the American Statistical Association, 101, 1228–1240.MathSciNetCrossRefGoogle Scholar
  8. Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés: un test non paramétrique d’indépendance. Académie Royale de Belgique Bulletin de la Classe des Sciences 5th Series, 65, 274–292.zbMATHGoogle Scholar
  9. Deheuvels, P. (1981). A non parametric test for independence. Publications de l’Institut de Statistique de l’Université de Paris, 26, 29–50.zbMATHGoogle Scholar
  10. Deheuvels, P. (1991). On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Statistics & Probability Letters, 12, 429–439.MathSciNetCrossRefGoogle Scholar
  11. Demarta, S., & McNeil, A. J. (2005). The t copula and related copulas. International Statistical Review, 73(1), 111–129.CrossRefGoogle Scholar
  12. Embrechts, P., Lindskog, F., & McNeil, A. J. (2003). Modelling dependence with copulas and applications to risk management. In S. Rachev (Ed.), Handbook of heavy tailed distributions in finance (pp. 329–384). Amsterdam: Elsevier.CrossRefGoogle Scholar
  13. Fermanian, J.-D., Radulovic, D., & Wegkamp, M. (2004). Weak convergence of empirical copula processes. Bernoulli, 10(5), 847–860.MathSciNetCrossRefGoogle Scholar
  14. Fermanian, J.-D., & Scaillet, O. (2005). Some statistical pitfalls in copula modelling for financial applications. In E. Klein (Ed.), Capital formation, governance and banking (pp. 59–74). Hauppauge, NY: Nova Science.Google Scholar
  15. Gänssler, P., & Stute, W. (1987). Seminar on empirical processes, DMV Seminar 9. Basel: Birkhäuser.Google Scholar
  16. Genest, C. (1987). Frank’s family of bivariate distributions. Biometrika, 74(3), 549–555.MathSciNetCrossRefGoogle Scholar
  17. Genest, C., & Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrological Engineering, 12, 347–368.CrossRefGoogle Scholar
  18. Genest, C., Ghoudi, K., & Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, 543–552.MathSciNetCrossRefGoogle Scholar
  19. Genest, C., Kojadinovic, I., Nešlehová, J. G., & Yan, J. (2011). A goodness-of-fit test for bivariate extreme-value copulas. Bernoulli, 17(1), 253–275.MathSciNetCrossRefGoogle Scholar
  20. Genest, C., Masiello, E., & Tribouley, K. (2009). Estimating copula densities through wavelets. Insurance: Mathematics and Economics, 44, 170–181.MathSciNetzbMATHGoogle Scholar
  21. Genest, C., & Nešlehová, J. (2007). A primer on copulas for count data. The ASTIN Bulletin, 37, 475–515.MathSciNetCrossRefGoogle Scholar
  22. Genest, C., Nešlehová, J. G., & Rémillard, B. (2014). On the empirical multilinear copula process for count data. Bernoulli, 20, 1344–1371.MathSciNetCrossRefGoogle Scholar
  23. Genest, C., Nešlehová, J. G., & Rémillard, B. (2017). Asymptotic behavior of the empirical multilinear copula process under broad conditions. Journal of Multivariate Analysis, 20, 82–110.MathSciNetCrossRefGoogle Scholar
  24. Genest, C., & Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88, 1034–1043.MathSciNetCrossRefGoogle Scholar
  25. Genest, C., & Segers, J. (2009). Rank-based inference for bivariate extreme-value copulas. The Annals of Statistics, 37, 2990–3022.MathSciNetCrossRefGoogle Scholar
  26. Genest, C., & Werker, B. J. M. (2002). Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models. In C. M. Cuadras, J. Fortiana, & J. A. Rodríguez-Lallena (Eds.), Distributions with given marginals and statistical modelling (pp. 103–112). London: Kluwer Academic Publishers.CrossRefGoogle Scholar
  27. Gilbert, P., & Varadhan, R. (2016). numDeriv: Accurate numerical derivatives, R package version 2016.8-27. https://CRAN.R-project.org/package=numDeriv Google Scholar
  28. Gudendorf, G., & Segers, J. (2012). Nonparametric estimation of multivariate extreme-value copulas. Journal of Statistical Planning and Inference, 143, 3073–3085.MathSciNetCrossRefGoogle Scholar
  29. Higham, N. (2002). Computing the nearest correlation matrix – A problem from finance, IMA Journal of Numerical Analysis, 22, 329–343.MathSciNetCrossRefGoogle Scholar
  30. Hofert, M., & Hornik, K. (2017). qrmtools: Tools for quantitative risk management, R package version 0.0-7. https://CRAN.R-project.org/package=qrmtools
  31. Janssen, P., Swanepoel, J., & Veraverbeke, N. (2012). Large sample behavior of the Bernstein copula estimator. Journal of Statistical Planning and Inference, 142, 1189–1197.MathSciNetCrossRefGoogle Scholar
  32. Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.CrossRefGoogle Scholar
  33. Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analysis, 94, 401–419.MathSciNetCrossRefGoogle Scholar
  34. Joe, H., & Xu, J. J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical Report, Department of Statistics, University of British Columbia.Google Scholar
  35. Kim, G., Silvapulle, M. J., & Silvapulle, P. (2007). Comparison of semiparametric and parametric methods for estimating copulas. Computational Statistics & Data Analysis, 51(6), 2836–2850.MathSciNetCrossRefGoogle Scholar
  36. Klassen, C. A. J., & Wellner, J. A. (1997). Effcient estimation in the bivariate normal copula model: Normal marginals are least favourable. Bernoulli, 3, 55–77.MathSciNetCrossRefGoogle Scholar
  37. Kojadinovic, I., & Yan, J. (2010a). Comparison of three semiparametric methods for estimating dependence parameters in copula models. Insurance: Mathematics and Economics, 47, 52–63.MathSciNetzbMATHGoogle Scholar
  38. Kojadinovic, I., & Yan, J. (2010b). Nonparametric rank-based tests of bivariate extreme-value dependence. Journal of Multivariate Analysis, 101(9), 2234–2249.MathSciNetCrossRefGoogle Scholar
  39. Lehmann, E. L., & Casella, G. (1998). Theory of point estimation. New York: Springer.zbMATHGoogle Scholar
  40. Mashal, R., & Zeevi, A. (2002). Beyond correlation: Extreme co-movements between financial assets. Technical Report, Columbia School of Business, https://www0.gsb.columbia.edu/faculty/azeevi/PAPERS/BeyondCorrelation.pdf
  41. McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools (2nd ed.). Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  42. Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society Series B, 44, 414–422.MathSciNetzbMATHGoogle Scholar
  43. Omelka, M., Gijbels, I., & Veraverbeke, N. (2009). Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing. The Annals of Statistics, 37(5B), 3023–3058.MathSciNetCrossRefGoogle Scholar
  44. Pickands, J. (1981). Multivariate extreme value distributions. With a discussion. Proceedings of the 43rd session of the International Statistical Institute. Bulletin de l’Institut international de statistique, 49, 859–878, 894–902.Google Scholar
  45. Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. The Annals of Statistics, 4, 912–923.MathSciNetCrossRefGoogle Scholar
  46. Ruymgaart, F. H. (1978). Asymptotic theory of ranks tests for independence. Amsterdam: Mathematisch Centrum.Google Scholar
  47. Sancetta, A., & Satchell, S. (2004). The Bernstein copula and its applications to modeling and approximations of multivariate distributions. Econometric Theory, 20, 535–562.MathSciNetCrossRefGoogle Scholar
  48. Segers, J. (2012). Asymptotics of empirical copula processes under nonrestrictive smoothness assumptions. Bernoulli, 18, 764–782.MathSciNetCrossRefGoogle Scholar
  49. Segers, J., Sibuya, M., & Tsukahara, H. (2017). The empirical beta copula. Journal of Multivariate Analysis, 155, 35–51.MathSciNetCrossRefGoogle Scholar
  50. Shih, J. H., & Louis, T. A. (1995). Inferences on the association parameter in copula models for bivariate survival data. Biometrics, 51(4), 1384–1399.MathSciNetCrossRefGoogle Scholar
  51. Stute, W. (1984). The oscillation behavior of empirical processes: The multivariate case. The Annals of Probability, 12(2), 361–379.MathSciNetCrossRefGoogle Scholar
  52. Tsukahara, H. (2005). Semiparametric estimation in copula models. The Canadian Journal of Statistics, 33(3), 357–375.MathSciNetCrossRefGoogle Scholar
  53. Van der Vaart, A. W., & Wellner, J. A. (2007). Empirical processes indexed by estimated functions. In E. A. Cator (Ed.), Asymptotics: Particles, processes and inverse problems (pp. 234–252). Lithuania: Institute of Mathematical Statistics.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marius Hofert
    • 1
  • Ivan Kojadinovic
    • 2
  • Martin Mächler
    • 3
  • Jun Yan
    • 4
  1. 1.Department of Statistics and Actuarial ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Laboratory of Mathematics and its ApplicationsUniversity of Pau and Pays de l’AdourPauFrance
  3. 3.Seminar for StatisticsETH ZurichZurichSwitzerland
  4. 4.Department of StatisticsUniversity of ConnecticutStorrsUSA

Personalised recommendations