Advertisement

Pediatric Brain Tumors

  • Peter Pytel
  • Carrie Fitzpatrick
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Recent insights into the biology of brain tumors form the basis for ongoing changes in their classification. Integrating appropriate molecular studies into the clinical diagnosis of pediatric brain tumors allows a better stratification of these tumors. For the future this approach also holds the promise of a more targeted and hopefully more effective treatment approach for affected patients. In the case of infiltrating gliomas, the molecular data supports the notion that most pediatric gliomas are biologically distinct from adult-age tumors even if they exhibit overlapping or identical histomorphologic features. For medulloblastomas and ependymomas, the integration of molecular information into the clinical diagnosis allows more accurate prognostication and a more nuanced approach in deciding on aggressive chemotherapy or radiation therapy.

Keywords

Astrocytoma Pilocytic Ependymoma Medulloblastoma KIAA1549-BRAF fusion Histone 3 

References

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Ellison DW, Figarella-Branger D, Perry A, Reifenberger G, von Deimling A, editors. WHO classification of tumours of the central nervous system. Lyon: IARC; 2016.Google Scholar
  2. 2.
    Huse JT, Rosenblum MK. The emerging molecular foundations of pediatric brain tumors. J Child Neurol. 2015;30(13):1838–50.CrossRefPubMedGoogle Scholar
  3. 3.
    Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98.CrossRefGoogle Scholar
  4. 4.
    Cahill DP, Louis DN, Cairncross JG. Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncol. 2015;4(5):287–94.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sturm D, Witt H, Hovestadt V, Khuong-Quang DA, Jones DT, Konermann C, et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell. 2012;22(4):425–37.CrossRefGoogle Scholar
  6. 6.
    Chiang JC, Ellison DW. Molecular pathology of paediatric central nervous system tumours. J Pathol. 2017;241(2):159–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28(20):2119–23.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reis GF, Bloomer MM, Perry A, Phillips JJ, Grenert JP, Karnezis AN, et al. Pilocytic astrocytomas of the optic nerve and their relation to pilocytic astrocytomas elsewhere in the central nervous system. Mod Pathol. 2013;26(10):1279–87.CrossRefPubMedGoogle Scholar
  9. 9.
    Helfferich J, Nijmeijer R, Brouwer OF, Boon M, Fock A, Hoving EW, et al. Neurofibromatosis type 1 associated low grade gliomas: a comparison with sporadic low grade gliomas. Crit Rev Oncol Hematol. 2016;104:30–41.CrossRefPubMedGoogle Scholar
  10. 10.
    Dias-Santagata D, Lam Q, Vernovsky K, Vena N, Lennerz JK, Borger DR, et al. BRAF V600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PLoS One. 2011;6(3):e17948.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chappe C, Padovani L, Scavarda D, Forest F, Nanni-Metellus I, Loundou A, et al. Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAF(V600E) mutation and expression. Brain Pathol. 2013;23(5):574–83.CrossRefPubMedGoogle Scholar
  12. 12.
    Qaddoumi I, Orisme W, Wen J, Santiago T, Gupta K, Dalton JD, et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 2016;131(6):833–45.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jones DT, Hutter B, Jager N, Korshunov A, Kool M, Warnatz HJ, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013;45(8):927–32.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Orillac C, Thomas C, Dastagirzada Y, Hidalgo ET, Golfinos JG, Zagzag D, et al. Pilocytic astrocytoma and glioneuronal tumor with histone H3 K27M mutation. Acta Neuropathol Commun. 2016;4(1):84.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Castel D, Philippe C, Calmon R, Le Dret L, Truffaux N, Boddaert N, et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol. 2015;130(6):815–27.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Korshunov A, Ryzhova M, Hovestadt V, Bender S, Sturm D, Capper D, et al. Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol. 2015;129(5):669–78.CrossRefGoogle Scholar
  17. 17.
    Kleinschmidt-DeMasters BK, Aisner DL, Birks DK, Foreman NK. Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol. 2013;37(5):685–98.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Thompson YY, Ramaswamy V, Diamandis P, Daniels C, Taylor MD. Posterior fossa ependymoma: current insights. Childs Nerv Syst. 2015;31(10):1699–706.CrossRefPubMedGoogle Scholar
  19. 19.
    Ellison DW, Kocak M, Figarella-Branger D, Felice G, Catherine G, Pietsch T, et al. Histopathological grading of pediatric ependymoma: reproducibility and clinical relevance in European trial cohorts. J Negat Results Biomed. 2011;10:7.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4):465–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC, Doz F, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131(6):821–31.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kool M, Korshunov A, Remke M, Jones DT, Schlanstein M, Northcott PA, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, group 3, and group 4 medulloblastomas. Acta Neuropathol. 2012;123(4):473–84.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ, Martin DC, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23):2927–35.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ellison DW, Dalton J, Kocak M, Nicholson SL, Fraga C, Neale G, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3):381–96.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Remke M, Ramaswamy V, Peacock J, Shih DJ, Koelsche C, Northcott PA, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 2013;126(6):917–29.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations