Advertisement

Molecular Pathology of Pediatric Renal Tumors

  • Selene C. Koo
  • Elizabeth J. Perlman
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Tumors of the kidney comprise approximately 7% of all childhood malignancies. The vast majority are Wilms tumors, which have an overall incidence of approximately 500 cases per year. In recent years, the systematic study of pediatric renal tumors has allowed for more accurate characterization of these different entities, including their histologic appearance and molecular features that aid in risk stratification. In this chapter, we discuss the pathologic and molecular features of the most common pediatric renal tumors, including genetic alterations with diagnostic and prognostic implications.

Keywords

Pediatric renal tumors Kidney Molecular pathology Wilms tumor Metanephric tumor Clear-cell sarcoma of the kidney Congenital mesoblastic nephroma Rhabdoid tumor Renal cell carcinoma 

References

  1. 1.
    Howlander N, Noone AM, Krapcho M, Miller D, Bishop K, Altekruse SF, et al., editors. SEER cancer statistics review, 1975–2013. Bethesda. http://seer.cancer.gov/csr/1975_2013/, based on November 2015 SEER data submission, posted to the SEER web site: National Cancer Institute; 2016.Google Scholar
  2. 2.
    Dome JS, Perlman EJ, Graf N. Risk stratification for Wilms tumor: current approach and future directions. Am Soc Clin Oncol Educ Book 2014:215–23.Google Scholar
  3. 3.
    Hamilton TE, Ritchey ML, Haase GM, Argani P, Peterson SM, Anderson JR, et al. The management of synchronous bilateral Wilms tumor: a report from the National Wilms Tumor Study Group. Ann Surg. 2011;253(5):1004–10.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Scott RH, Stiller CA, Walker L, Rahman N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43(9):705–15.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gadd S, Huff V, Huang CC, Ruteshouser EC, Dome JS, Grundy PE, et al. Clinically relevant subsets identified by gene expression patterns support a revised ontogenic model of Wilms tumor: a Children’s Oncology Group Study. Neoplasia. 2012;14(8):742–56.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Perlman EJ, Gadd S, Arold ST, Radhakrishnan A, Gerhard DS, Jennings L, et al. MLLT1 YEATS domain mutations in clinically distinctive Favorable Histology Wilms tumours. Nat Commun. 2015;6:10013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rakheja D, Chen KS, Liu Y, Shukla AA, Schmid V, Chang T, et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun. 2014;2:4802.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Torrezan GT, Ferreira EN, Nakahata AM, Barros BD, Castro MT, Correa BR, et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat Commun. 2014;5:4039.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Walz AL, Ooms A, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology WTs. Cancer Cell. 2015;27(2):286–97.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wegert J, Ishaque N, Vardapour R, Geörg C, Gu Z, Bieg M, et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type WTs. Cancer Cell. 2015;27(2):298–311.CrossRefPubMedGoogle Scholar
  11. 11.
    Gadd S, Huff V, Walz AL, Ooms AHAG, Armstrong AE, Gerhard DS, et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet. 2017;49(10):1487–94.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gratias EJ, Dome JS, Jennings LJ, Chi YY, Tian J, Anderson J, et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J Clin Oncol. 2016;34(26):3189–94.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Williams RD, Chagtai T, Alcaide-German M, Apps J, Wegert J, Popov S, et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget. 2015;6(9):7232–43.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Urbach A, Yermalovich A, Zhang J, Spina CS, Zhu H, Perez-Atayde AR, et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 2014;28(9):971–82.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S, et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet. 2009;41(7):843–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Grundy PE, Breslow NE, Li S, Perlman E, Beckwith JB, Ritchey ML, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23(29):7312–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Gratias EJ, Jennings LJ, Anderson JR, Dome JS, Grundy P, Perlman EJ. Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children’s Oncology Group. Cancer. 2013;119(21):3887–94.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms tumors: results from the First National Wilms’ Tumor Study. Cancer. 1978;41(5):1937–48.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Faria P, Beckwith JB, Mishra K, Zuppan C, Weeks DA, Breslow N, et al. Focal versus diffuse anaplasia in Wilms tumor--new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am J Surg Pathol. 1996;20(8):909–20.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dome JS, Cotton CA, Perlman EJ, Breslow NE, Kalapurakal JA, Ritchey ML, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol. 2006;24(15):2352–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Pritchard-Jones K, Moroz V, Vujanic G, Powis M, Walker J, Messahel B, et al. Treatment and outcome of Wilms’ tumour patients: an analysis of all cases registered in the UKW3 trial. Ann Oncol. 2012;23(9):2457–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Bardeesy N, Beckwith JB, Pelletier J. Clonal expansion and attenuated apoptosis in Wilms’ tumors are associated with p53 gene mutations. Cancer Res. 1995;55(2):215–9.PubMedGoogle Scholar
  23. 23.
    Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, et al. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet. 1994;7(1):91–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Malkin D, Sexsmith E, Yeger H, Williams BR, Coppes MJ. Mutations of the p53 tumor suppressor gene occur infrequently in Wilms’ tumor. Cancer Res. 1994;54(8):2077–9.PubMedGoogle Scholar
  25. 25.
    Ooms AH, Gadd S, Gerhard DS, Smith MA, Guidry Auvil JM, Meerzaman D, et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children’s Oncology Group. Clin Cancer Res. 2016;22(22):5582–91.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Franken J, Lerut E, Van Poppel H, Bogaert G. p53 Immunohistochemistry expression in Wilms tumor: a prognostic tool in the detection of tumor aggressiveness. J Urol. 2013;189(2):664–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Lahoti C, Thorner P, Malkin D, Yeger H. Immunohistochemical detection of p53 in Wilms’ tumors correlates with unfavorable outcome. Am J Pathol. 1996;148(5):1577–89.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Argani P, Beckwith JB. Metanephric stromal tumor: report of 31 cases of a distinctive pediatric renal neoplasm. Am J Surg Pathol. 2000;24(7):917–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Arroyo MR, Green DM, Perlman EJ, Beckwith JB, Argani P. The spectrum of metanephric adenofibroma and related lesions: clinicopathologic study of 25 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2001;25(4):433–44.CrossRefPubMedGoogle Scholar
  30. 30.
    Davis CJ Jr, Barton JH, Sesterhenn IA, Mostofi FK. Metanephric adenoma. Clinicopathological study of fifty patients. Am J Surg Pathol. 1995;19(10):1101–14.CrossRefPubMedGoogle Scholar
  31. 31.
    Chami R, Yin M, Marrano P, Teerapakpinyo C, Shuangshoti S, Thorner PS. BRAF mutations in pediatric metanephric tumors. Hum Pathol. 2015;46(8):1153–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Choueiri TK, Cheville J, Palescandolo E, Fay AP, Kantoff PW, Atkins MB, et al. BRAF mutations in metanephric adenoma of the kidney. Eur Urol. 2012;62(5):917–22.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Udager AM, Pan J, Magers MJ, Palapattu GS, Morgan TM, Montgomery JS, et al. Molecular and immunohistochemical characterization reveals novel BRAF mutations in metanephric adenoma. Am J Surg Pathol. 2015;39(4):549–57.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Argani P, Lee J, Netto GJ, Zheng G, Tseh-Lin M, Park BH. Frequent BRAF V600E mutations in metanephric stromal tumor. Am J Surg Pathol. 2016;40(5):719–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Mangray S, Breese V, Jackson CL, Lombardo K, Taliano R, Resnick M, et al. Application of BRAF V600E mutation analysis for the diagnosis of metanephric adenofibroma. Am J Surg Pathol. 2015;39(9):1301–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Marsden L, Jennings LJ, Gadd S, Yu M, Perlman EJ, Cajaiba MM. BRAF exon 15 mutations in pediatric renal stromal tumors: prevalence in metanephric stromal tumors. Hum Pathol. 2016;60:32–6.CrossRefPubMedGoogle Scholar
  37. 37.
    Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, et al. High frequency of BRAF mutations in nevi. Nat Genet. 2003;33(1):19–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefGoogle Scholar
  39. 39.
    Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95(8):625–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63(7):1454–7.PubMedGoogle Scholar
  41. 41.
    Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Furtwangler R, Gooskens SL, van Tinteren H, de Kraker J, Schleiermacher G, Bergeron C, et al. Clear cell sarcomas of the kidney registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 protocols: a report of the SIOP Renal Tumour Study Group. Eur J Cancer. 2013;49(16):3497–506.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Green DM, Breslow NE, Beckwith JB, Moksness J, Finklestein JZ, D’Angio GJ. Treatment of children with clear-cell sarcoma of the kidney: a report from the National Wilms’ Tumor Study Group. J Clin Oncol. 1994;12(10):2132–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Bonadio J, Perlman EJ. Immunohistochemical analysis of 61 clear cell sarcomas of the kidney for a panel including NGFR and CD99. Mod Pathol. 2008;21:218A.Google Scholar
  46. 46.
    Argani P, Perlman EJ, Breslow NE, Browning NG, Green DM, D’Angio GJ, et al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2000;24(1):4–18.CrossRefPubMedGoogle Scholar
  47. 47.
    Arva NC, Bonadio J, Perlman EJ, Cajaiba MM. Diagnostic utility of Pax8, Pax2 and NGFR immunohistochemical expression in pediatric renal tumors. Appl Immunohistochem Mol Morphol. 2017. [Epub ahead of print].Google Scholar
  48. 48.
    Mirkovic J, Calicchio M, Fletcher CD, Perez-Atayde AR. Diffuse and strong cyclin D1 immunoreactivity in clear cell sarcoma of the kidney. Histopathology. 2015;67(3):306–12.CrossRefPubMedGoogle Scholar
  49. 49.
    Astolfi A, Melchionda F, Perotti D, Fois M, Indio V, Urbini M, et al. Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget. 2015;6(38):40934–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gooskens SL, Gadd S, Guidry Auvil JM, Gerhard DS, Khan J, Patidar R, et al. TCF21 hypermethylation in genetically quiescent clear cell sarcoma of the kidney. Oncotarget. 2015;6(18):15828–41.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Karlsson J, Valind A, Gisselsson D. BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer. 2016;55(2):120–3.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kenny C, Bausenwein S, Lazaro A, Furtwängler R, Gooskens SL, van den Heuvel Eibrink M, Vokuhl C, Leuschner I, Graf N, Gessler M, O’Sullivan MJ. Mutually exclusive BCOR internal tandem duplications and YWHAE-NUTM2 fusions in clear cell sarcoma of kidney: not the full story. J Pathol. 2016;238(5):617–20.CrossRefPubMedGoogle Scholar
  53. 53.
    Roy A, Kumar V, Zorman B, Fang E, Haines KM, Doddapaneni H, et al. Recurrent internal tandem duplications of BCOR in clear cell sarcoma of the kidney. Nat Commun. 2015;6:8891.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ueno-Yokohata H, Okita H, Nakasato K, Akimoto S, Hata J, Koshinaga T, et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet. 2015;47(8):861–3.CrossRefPubMedGoogle Scholar
  55. 55.
    Junco SE, Wang R, Gaipa JC, Taylor AB, Schirf V, Gearhart MD, et al. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure. 2013;21(4):665–71.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, et al. BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol. 2016;40(12):1670–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gooskens SL, Gadd S, van den Heuvel-Eibrink MM, Perlman EJ. BCOR internal tandem duplications in clear cell sarcoma of the kidney. Genes Chromosomes Cancer. 2016;55(6):549–50.CrossRefPubMedGoogle Scholar
  58. 58.
    Lee CH, Marino-Enriquez A, Ou W, Zhu M, Ali RH, Chiang S, et al. The clinicopathologic features of YWHAE-FAM22 endometrial stromal sarcomas: a histologically high-grade and clinically aggressive tumor. Am J Surg Pathol. 2012;36(5):641–53.CrossRefPubMedGoogle Scholar
  59. 59.
    Kao YC, Sung YS, Zhang L, Huang SC, Argani P, Chung CT, et al. Recurrent BCOR internal tandem duplication and YWHAE-NUTM2B fusions in soft tissue undifferentiated round cell sarcoma of infancy: overlapping genetic features with clear cell sarcoma of kidney. Am J Surg Pathol. 2016;40(8):1009–20.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cutcliffe C, Kersey D, Huang CC, Zeng Y, Walterhouse D, Perlman EJ. Clear cell sarcoma of the kidney: up-regulation of neural markers with activation of the sonic hedgehog and Akt pathways. Clin Cancer Res. 2005;11(22):7986–94.CrossRefPubMedGoogle Scholar
  61. 61.
    England RJ, Haider N, Vujanic GM, Kelsey A, Stiller CA, Pritchard-Jones K, et al. Mesoblastic nephroma: a report of the United Kingdom Children’s Cancer and Leukaemia Group (CCLG). Pediatr Blood Cancer. 2011;56(5):744–8.CrossRefPubMedGoogle Scholar
  62. 62.
    van den Heuvel-Eibrink MM, Grundy P, Graf N, Pritchard-Jones K, Bergeron C, Patte C, et al. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: a collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms tumor study groups. Pediatr Blood Cancer. 2008;50(6):1130–4.CrossRefPubMedGoogle Scholar
  63. 63.
    Knezevich SR, McFadden DE, Tao W, et al. A novel ETV6–NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet. 1998;18(2):184–7.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Knezevich SR, Garnett MJ, Pysher TJ, et al. ETV6–NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58(22):5046–8.PubMedGoogle Scholar
  65. 65.
    Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP, et al. Congenital mesoblastic nephroma t(12;15) is associated with ETV6–NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol. 1998;153(5):1451–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tognon C, Knezevich SR, Huntsman D, Korskelley CD, Melnyk N, Mathers JA, et al. Expression of the ETV6–NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.CrossRefPubMedGoogle Scholar
  67. 67.
    Kazakov DV, Hantschke M, Vanecek T, Kacerkovska D, Michal M. Mammary-type secretory carcinoma of the skin. Am J Surg Pathol. 2010;34(8):1226–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y, et al. Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood. 1999;93(4):1355–63.PubMedGoogle Scholar
  69. 69.
    Rubnitz JE, Behm FG, Pui CH, Evans WE, Relling MV, Raimondi SC, et al. Genetic studies of childhood acute lymphoblastic leukemia with emphasis on p16, MLL and ETV6 gene abnormalities; results of St. Jude Total Therapy Study XII. Leukemia. 1997;11(8):1201–6.CrossRefPubMedGoogle Scholar
  70. 70.
    Ernfors P, Lee KF, Kucera J, Jaenisch R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents. Cell. 1994;77(4):503–12.CrossRefPubMedGoogle Scholar
  71. 71.
    Gadd S, Beezhold P, Jennings L, George D, Leuer K, Huang CC, et al. Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: A Children’s Oncology Group study. J Pathol. 2012;228(1):119–30.PubMedGoogle Scholar
  72. 72.
    Tannenbaum-Dvir S, Glade Bender JL, Church AJ, Janeway KA, Harris MH, Mansukhani MM, et al. Characterization of a novel fusion gene EML4-NTRK3 in a case of recurrent congenital fibrosarcoma. Cold Spring Harb Mol Case Stud. 2015;1(1):a000471.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wong V, Pavlick D, Brennan T, Yelensky R, Crawford J, Ross JS, et al. Evaluation of a congenital infantile fiborsarcoma by comprehensive genomic profiling reveals an LMNA-NTRK1 gene fusion responsive to crizotinib. J Natl Cancer Inst. 2015;108(1):djv307.PubMedGoogle Scholar
  74. 74.
    Watanabe N, Haruta M, Soejima H, Fukushi D, Yokomori K, Nakadate H, et al. Duplication of the paternal IGF2 allele in trisomy 11 and elevated expression levels of IGF2 mRNA in congenital mesoblastic nephroma of the cellular or mixed type. Genes Chromosomes Cancer. 2007;46(10):929–35.CrossRefPubMedGoogle Scholar
  75. 75.
    Anderson J, Gibson S, Sebire NJ. Expression of ETV6-NTRK in classical, cellular and mixed subtypes of congenital mesoblastic nephroma. Histopathology. 2006;48(6):748–53.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mascarello JT, Cajulis TR, Krous HF, Carpenter PM. Presence or absence of trisomy 11 is correlated with histologic subtype in congenital mesoblastic nephroma. Cancer Genet Cytogenet. 1994;77(1):50–4.CrossRefPubMedGoogle Scholar
  77. 77.
    Schofield DE, Yunis EJ, Fletcher JA. Chromosome aberrations in mesoblastic nephroma. Am J Pathol. 1993;143(3):714–24.PubMedPubMedCentralGoogle Scholar
  78. 78.
    El Demellawy D, Cundiff CA, Nasr A, Ozolek JA, Elawabdeh N, Caltharp SA, et al. Congenital mesoblastic nephroma: a study of 19 cases using immunohistochemistry and ETV6-NTRK3 fusion gene rearrangement. Pathology. 2016;48(1):47–50.CrossRefPubMedGoogle Scholar
  79. 79.
    Tomlinson GE, Breslow NE, Dome J, Guthrie KA, Norkool P, Li S, et al. Rhabdoid tumor of the kidney in the National Wilms’ Tumor Study: age at diagnosis as a prognostic factor. J Clin Oncol. 2005;23(30):7641–5.CrossRefPubMedGoogle Scholar
  80. 80.
    Weeks DA, Beckwith JB, Mierau GW, Luckey DW. Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms’ Tumor Study Pathology Center. Am J Surg Pathol. 1989;13(6):439–58.CrossRefPubMedGoogle Scholar
  81. 81.
    Amar AM, Tomlinson G, Green DM, Breslow NE, de Alarcon PA. Clinical presentation of rhabdoid tumors of the kidney. J Pediatr Hematol Oncol. 2001;23(2):105–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Hoot AC, Russo P, Judkins AR, Perlman EJ, Biegel JA. Immunohistochemical analysis of hSNF5/INI1 distinguishes renal and extra-renal malignant rhabdoid tumors from other pediatric soft tissue tumors. Am J Surg Pathol. 2004;28(11):1485–91.CrossRefPubMedGoogle Scholar
  83. 83.
    Sigauke E, Rakheja D, Maddox DL, Hladik CL, White CL, Timmons CF, et al. Absence of expression of SMARCB1/INI1 in malignant rhabdoid tumors of the central nervous system, kidneys and soft tissue: an immunohistochemical study with implications for diagnosis. Mod Pathol. 2006;19(5):717–25.CrossRefPubMedGoogle Scholar
  84. 84.
    Biegel JA, Zhou JY, Rorke LB, Stenstrom C, Wainwright LM, Fogelgren B. Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Res. 1999;59(1):74–9.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Versteege I, Sevenet N, Lange J, Rousseau-Merck MF, Ambros P, Handgretinger R, et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature. 1998;394(6689):203–6.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Biegel JA, Busse TM, Weissman BE. SWI/SNF chromatin remodeling complexes and cancer. Am J Med Genet C Semin Med Genet. 2014;166C(3):350–66.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chun HJ, Lim EL, Heravi-Moussavi A, Saberi S, Mungall KL, Bilenky M, et al. Genome-wide profiles of extra-cranial malignant rhabdoid tumors reveal heterogeneity and dysregulated developmental pathways. Cancer Cell. 2016;29(3):394–406.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Johann PD, Erkek S, Zapatka M, Kerl K, Buchhalter I, Hovestadt V, et al. Atypical teratoid/rhabdoid tumors are comprised of three epigenetic subgroups with distinct enhancer landscapes. Cancer Cell. 2016;29(3):379–93.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C, et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest. 2012;122(8):2983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Hasselblatt M, Nagel I, Oyen F, Bartelheim K, Russell RB, Schuller U, et al. SMARCA4-mutated atypical teratoid/rhabdoid tumors are associated with inherited germline alterations and poor prognosis. Acta Neuropathol. 2014;128(3):453–6.CrossRefPubMedGoogle Scholar
  91. 91.
    Schneppenheim R, Fruhwald MC, Gesk S, Hasselblatt M, Jeibmann A, Kordes U, et al. Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet. 2010;86(2):279–84.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP. SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol. 2008;28(10):3457–64.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Tolstorukov MY, Sansam CG, Lu P, Koellhoffer EC, Helming KC, Alver BH, et al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters. Proc Natl Acad Sci U S A. 2013;110(25):10165–70.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Eaton KW, Tooke LS, Wainwright LM, Judkins AR, Biegel JA. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56(1):7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Calderaro J, Moroch J, Pierron G, Pedeutour F, Grison C, Maille P, et al. SMARCB1/INI1 inactivation in renal medullary carcinoma. Histopathology. 2012;61(3):428–35.CrossRefPubMedGoogle Scholar
  96. 96.
    Sullivan LM, Folpe AL, Pawel BR, Judkins AR, Biegel JA. Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions. Mod Pathol. 2013;26(3):385–92.CrossRefPubMedGoogle Scholar
  97. 97.
    Hadfield KD, Newman WG, Bowers NL, Wallace A, Bolger C, Colley A, et al. Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. J Med Genet. 2008;45(6):332–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Pastore G, Znaor A, Spreafico F, Graf N, Pritchard-Jones K, Steliarova-Foucher E. Malignant renal tumours incidence and survival in European children (1978-1997): report from the Automated Childhood Cancer Information System project. Eur J Cancer. 2006;42(13):2103–14.CrossRefPubMedGoogle Scholar
  99. 99.
    Bruder E, Passera O, Harms D, Leuschner I, Ladanyi M, Argani P, et al. Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am J Surg Pathol. 2004;28(9):1117–32.CrossRefPubMedGoogle Scholar
  100. 100.
    Geller JI, Ehrlich PF, Cost NG, Khanna G, Mullen EA, Gratias EJ, et al. Characterization of adolescent and pediatric renal cell carcinoma: a report from the Children’s Oncology Group study AREN03B2. Cancer. 2015;121(14):2457–64.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Cajaiba MM, Dyer L, Geller JI, Rohan SM, Jennings LJ, Mullen EA, et al. Pathologic characterization of pediatric renal cell carcinomas registered on the Children’s Oncology Group (COG) protocol AREN03B2. (in press).Google Scholar
  102. 102.
    Rao Q, Chen YJ, Wang JD, Ma HH, Zhou HB, Lu ZF, et al. Renal cell carcinoma in children and young adults: clinicopathological, immunohistochemical, and VHL gene analysis of 46 cases with follow-up. Int J Surg Pathol. 2011;19(2):170–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Moch H, Humphrey PA, Ulbright TM, Reuter VE. WHO classification of tumours of the urinary system and male genital organs. Lyon: IARC Press; 2016.Google Scholar
  104. 104.
    Sidhar SK, Clark J, Gill S, Hamoudi R, Crew AJ, Gwilliam R, et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet. 1996;5(9):1333–8.CrossRefPubMedGoogle Scholar
  105. 105.
    Weterman MA, Wilbrink M, Geurts van Kessel A. Fusion of the transcription factor TFE3 gene to a novel gene, PRCC, in t(X;1)(p11;q21)-positive papillary renal cell carcinomas. Proc Natl Acad Sci U S A. 1996;93(26):15294–8.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159(1):179–92.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Clark J, Lu YJ, Sidhar SK, Parker C, Gill S, Smedley D, et al. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene. 1997;15(18):2233–9.CrossRefPubMedGoogle Scholar
  108. 108.
    Argani P, Lui MY, Couturier J, Bouvier R, Fournet JC, Ladanyi M. A novel CLTC-TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene. 2003;22(34):5374–8.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Argani P, Zhong M, Reuter VE, Fallon JT, Epstein JI, Netto GJ, et al. TFE3-fusion variant analysis defines specific clinicopathologic associations among Xp11 translocation cancers. Am J Surg Pathol. 2016;40(6):723–37.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Kauffman EC, Ricketts CJ, Rais-Bahrami S, Yang Y, Merino MJ, Bottaro DP, et al. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol. 2014;11(8):465–75.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Argani P, Hawkins A, Griffin CA, Goldstein JD, Haas M, Beckwith JB, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Pathol. 2001;158(6):2089–96.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Kuiper RP, Schepens M, Thijssen J, van Asseldonk M, van den Berg E, Bridge J, et al. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Hum Mol Genet. 2003;12(14):1661–9.CrossRefPubMedGoogle Scholar
  113. 113.
    Argani P, Lal P, Hutchinson B, Lui MY, Reuter VE, Ladanyi M. Aberrant nuclear immunoreactivity for TFE3 in neoplasms with TFE3 gene fusions: a sensitive and specific immunohistochemical assay. Am J Surg Pathol. 2003;27(6):750–61.CrossRefPubMedGoogle Scholar
  114. 114.
    Argani P, Lae M, Hutchinson B, Reuter VE, Collins MH, Perentesis J, et al. Renal carcinomas with the t(6;11)(p21;q12): clinicopathologic features and demonstration of the specific alpha-TFEB gene fusion by immunohistochemistry, RT-PCR, and DNA PCR. Am J Surg Pathol. 2005;29(2):230–40.CrossRefPubMedGoogle Scholar
  115. 115.
    Macher-Goeppinger S, Roth W, Wagener N, Hohenfellner M, Penzel R, Haferkamp A, et al. Molecular heterogeneity of TFE3 activation in renal cell carcinomas. Mod Pathol. 2012;25(2):308–15.CrossRefPubMedGoogle Scholar
  116. 116.
    Cajaiba MM, Jennings LJ, Rohan SM, Perez-Atayde A, Marino-Enriquez A, Fletcher JA, et al. ALK-rearranged renal cell carcinomas in children. Genes Chromosomes Cancer. 2016;55(5):442–51.CrossRefPubMedGoogle Scholar
  117. 117.
    Hong SB, Oh HB, Valera VA, Baba M, Schmidt LS, Linehan WM. Inactivation of the FLCN tumor suppressor gene induces TFE3 transcriptional activity by increasing its nuclear localization. PLoS One. 2010;5(12):e15793.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Marsaud A, Dadone B, Ambrosetti D, Baudoin C, Chamorey E, Rouleau E, et al. Dismantling papillary renal cell carcinoma classification: the heterogeneity of genetic profiles suggests several independent diseases. Genes Chromosomes Cancer. 2015;54(6):369–82.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Linehan WM, Spellman PT, Ricketts CJ, Creighton CJ, Fei SS, Davis C, et al. Comprehensive molecular characterization of papillary renal-cell carcinoma. N Engl J Med. 2016;374(2):135–45.CrossRefPubMedGoogle Scholar
  120. 120.
    Swartz MA, Karth J, Schneider DT, Rodriguez R, Beckwith JB, Perlman EJ. Renal medullary carcinoma: clinical, pathologic, immunohistochemical, and genetic analysis with pathogenetic implications. Urology. 2002;60(6):1083–9.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Liu Q, Galli S, Srinivasan R, Linehan WM, Tsokos M, Merino MJ. Renal medullary carcinoma: Molecular, immunohistochemistry, and morphologic correlation. Am J Surg Pathol. 2013;37(3):368–74.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Calderaro J, Masliah-Planchon J, Richer W, Maillot L, Maille P, Mansuy L, et al. Balanced translocations disrupting SMARCB1 are hallmark recurrent genetic alterations in renal medullary carcinomas. Eur Urol. 2016;69(6):1055–61.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Cajaiba MM, Jennings LJ, George D, Perlman EJ. Expanding the spectrum of ALK-rearranged renal cell carcinomas in children: identification of a novel HOOK1-ALK fusion transcript. Genes Chromosomes Cancer. 2016;55(10):814–7.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Cajaiba MM, Jennings LJ, Rohan SM, Leuer KM, Anagnost MR, Fahner JB, et al. Expanding the spectrum of renal tumors in children: primary renal myoepithelial carcinomas with a novel EWSR1-KLF15 fusion. Am J Surg Pathol. 2016;40(3):386–94.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineNationwide Children’s HospitalColumbusUSA
  2. 2.The Ann & Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA

Personalised recommendations