Cell Organelles as Targets of Cadmium Toxicity

  • Wing-Kee LeeEmail author


Ever increasing environmental cadmium presence consequent of industrial activities is considered a health hazard and is closely linked to deteriorating global health status as general animal cadmium exposure expands from cigarette smoke and ingestion of foodstuffs sourced from heavily polluted hotspots to widespread contaminated air and water, including cadmium-containing microplastics found in household water. Cadmium exerts myriads of cellular perturbances based on its abilities to directly interact with macromolecules and to mimic or displace essential physiological ions. Cell organelles are membrane-bound structures that form complex tightly regulated compartmentalized networks with specialized functions which are fundamental to life. Interorganellar communication is mediated either by release of signaling molecules, mechanical force through change in organelle shape or direct membrane contacts and is crucial to orchestrate correct cell behavior and adaptive stress responses. In this chapter, cadmium effects on organellar structure and function will be reviewed with particular consideration to disruption of organelle physiology in vertebrates. Mitochondrial dysfunction (electron transport chain, mitochondrial membrane potential, permeability transition), mitochondrial dynamics, intralumenal homeostasis and stress response in the endoplasmic reticulum, altered nuclear architecture and chromatin organization, lysosomal expansion, instability and membrane permeabilization, autophagic flux, and disruption of vesicle trafficking will be discussed in the context of cadmium.



W. -K. L is financially supported by the Intramural Research Program at Witten/Herdecke University (IFF2016-20, IFF2017-14).


  1. 1.
    Voeltz GK, Barr FA (2013) Cell organelles. Curr Op Cell Biol 25(4):403–405PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Elbaz-Alon Y (2017) Mitochondria-organelle contact sites: the plot thickens. Biochem Soc Trans 45(2):477–488PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Le MT, Gailer J, Prenner EJ (2009) Hg2+ and Cd2+ interact differently with biomimetic erythrocyte membranes. Biometals 22(2):261–274PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Payliss BJ, Hassanin M, Prenner EJ (2015) The structural and functional effects of Hg(II) and Cd(II) on lipid model systems and human erythrocytes: a review. Chem Phys Lipids 193:36–51PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lee WK, Probst S, Santoyo-Sanchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thevenod F (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91(10):3225–3245CrossRefGoogle Scholar
  6. 6.
    Lee WK, Torchalski B, Kohistani N, Thevenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121(2):343–356CrossRefGoogle Scholar
  7. 7.
    Modi HR, Katyare SS (2009) Effect of treatment with cadmium on structure-function relationships in rat liver mitochondria: studies on oxidative energy metabolism and lipid/phospholipids profiles. J Membr Biol 232(1–3):47–57PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Modi HR, Katyare SS (2009) Cadmium exposure-induced alterations in the lipid/phospholipids composition of rat brain microsomes and mitochondria. Neurosci Lett 464(2):108–112PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Lee WK, Kolesnick RN (2017) Sphingolipid abnormalities in cancer multidrug resistance: chicken or egg? Cell Signal 38:134–145PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ribas V, Garcia-Ruiz C, Fernandez-Checa JC (2016) Mitochondria, cholesterol and cancer cell metabolism. Clin Trans Med 5(1):22CrossRefGoogle Scholar
  11. 11.
    Thevenod F, Lee WK (2013) Toxicology of cadmium and its damage to mammalian organs. Met Ions Life Sci 11:415–490PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci 11:491–507PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kerek EM, Prenner EJ (2016) Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. Biochim Biophys Acta 1858(12):3169–3181PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Thevenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yang XF, Han QG, Liu DY, Zhang HT, Fan GY, Ma JY, Wang ZL (2016) Microstructure and ultrastructure alterations in the pallium of immature mice exposed to cadmium. Biol Trace Elem Res 174(1):105–111PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Early JL 2nd, Nonavinakere VK, Weaver A (1992) Effect of cadmium and/or selenium on liver mitochondria and rough endoplasmic reticulum in the rat. Toxicol Lett 62(1):73–83PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Braeckman B, Brys K, Rzeznik U, Raes H (1999) Cadmium pathology in an insect cell line: ultrastructural and biochemical effects. Tissue Cell 31(1):45–53PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Asar M, Kayisli UA, Izgut-Uysal VN, Akkoyunlu G (2004) Immunohistochemical and ultrastructural changes in the renal cortex of cadmium-treated rats. Biol Trace Elem Res 97(3):249–263PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ord MJ, Bouffler SD, Chibber R (1988) Cadmium induced changes in cell organelles: an ultrastructural study using cadmium sensitive and resistant muntjac fibroblast cell lines. Arch Toxicol 62(2–3):133–145PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Takaki A, Jimi S, Segawa M, Hisano S, Takebayashi S, Iwasaki H (2004) Long-term cadmium exposure accelerates age-related mitochondrial changes in renal epithelial cells. Toxicology 203(1–3):145–154PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Xu S, Pi H, Zhang L, Zhang N, Li Y, Zhang H, Tang J, Li H, Feng M, Deng P, Guo P, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Wang W, Reiter RJ, Yu Z, Zhou Z (2016) Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria. J Pineal Res 60(3):291–302PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z (2013) Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 9(11):1780–1800PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Luz AL, Godebo TR, Smith LL, Leuthner TC, Maurer LL, Meyer JN (2017) Deficiencies in mitochondrial dynamics sensitize Caenorhabditis elegans to arsenite and other mitochondrial toxicants by reducing mitochondrial adaptability. Toxicology 387:81–94PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jones AW, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G (2012) PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 12(1):86–99PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Nair AR, Lee WK, Smeets K, Swennen Q, Sanchez A, Thevenod F, Cuypers A (2015) Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch Toxicol 89(12):2273–2289PubMedCrossRefGoogle Scholar
  27. 27.
    Guo P, Pi H, Xu S, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, Li R, He M, Lu Y, Liu C, Duan W, Yu Z, Zhou Z (2014) Melatonin improves mitochondrial function by promoting MT1/SIRT1/PGC-1 alpha-dependent mitochondrial biogenesis in cadmium-induced hepatotoxicity in vitro. Toxicol Sci 142(1):182–195PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thevenod F (2014) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28(5):2134–2145CrossRefGoogle Scholar
  29. 29.
    Choong G, Liu Y, Templeton DM (2014) Interplay of calcium and cadmium in mediating cadmium toxicity. Chem Biol Interact 211:54–65PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee WK, Bork U, Gholamrezaei F, Thevenod F (2005) Cd2+-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca2+ uniporter. Am J Physiol Renal Physiol 288(1):F27–39PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lee WK, Spielmann M, Bork U, Thevenod F (2005) Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am J Physiol Cell Physiol 289(3):C656–664CrossRefGoogle Scholar
  32. 32.
    Li M, Xia T, Jiang CS, Li LJ, Fu JL, Zhou ZC (2003) Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology 194(1–2):19–33PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Dorta DJ, Leite S, DeMarco KC, Prado IM, Rodrigues T, Mingatto FE, Uyemura SA, Santos AC, Curti C (2003) A proposed sequence of events for cadmium-induced mitochondrial impairment. J Inorg Biochem 97(3):251–257PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36(11):1434–1443PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Miccadei S, Floridi A (1993) Sites of inhibition of mitochondrial electron transport by cadmium. Chem Biol Interact 89(2–3):159–167PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17(15):2202–2208PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9(5):550–555PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427(6973):461–465PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Belyaeva EA, Glazunov VV, Korotkov SM (2002) Cyclosporin A-sensitive permeability transition pore is involved in Cd2+-induced dysfunction of isolated rat liver mitochondria: doubts no more. Arch Biochem Biophys 405(2):252–264PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lizana L, Bauer B, Orwar O (2008) Controlling the rates of biochemical reactions and signaling networks by shape and volume changes. Proc Nat Acad Sci USA 105(11):4099–4104PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kaasik A, Kuum M, Joubert F, Wilding J, Ventura-Clapier R, Veksler V (2010) Mitochondria as a source of mechanical signals in cardiomyocytes. Cardiovasc Res 87(1):83–91PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334(6054):358–362PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Sanchez-Wandelmer J, Ktistakis NT, Reggiori F (2015) ERES: sites for autophagosome biogenesis and maturation? J Cell Sci 128(2):185–192PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Balla T (2018) Ca2+ and lipid signals hold hands at ER-plasma membrane contact sites. J Physiol 596(14):2709–2716PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Woehlbier U, Hetz C (2011) Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci 36(6):329–337PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Margittai E, Enyedi B, Csala M, Geiszt M, Banhegyi G (2015) Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med 83:331–340PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43(2):184–195PubMedCrossRefGoogle Scholar
  49. 49.
    Liu F, Inageda K, Nishitai G, Matsuoka M (2006) Cadmium induces the expression of Grp78, an endoplasmic reticulum molecular chaperone, in LLC-PK1 renal epithelial cells. Environ Health Perspect 114(6):859–864PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Yokouchi M, Hiramatsu N, Hayakawa K, Okamura M, Du S, Kasai A, Takano Y, Shitamura A, Shimada T, Yao J, Kitamura M (2008) Involvement of selective reactive oxygen species upstream of proapoptotic branches of unfolded protein response. J Biol Chem 283(7):4252–4260PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gardarin A, Chedin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76(4):1034–1048PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hechtenberg S, Beyersmann D (1994) Interference of cadmium with ATP-stimulated nuclear calcium uptake. Environ Health Perspect 102(Suppl 3):265–267PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fighetti MA, Miele M, Montella A, Desole MS, Congiu AM, Anania V (1988) Possible involvement of nuclei in cadmium-induced modifications of cultured cells. Arch Toxicol 62(6):476–478PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Bryan SE, Hidalgo HA (1976) Nuclear 115cadmium: uptake and disappearance correlated with cadmium-binding protein synthesis. Biochem Biophys Res Commun 68(3):858–866PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Goering PL, Klaassen CD (1983) Altered subcellular distribution of cadmium following cadmium pretreatment: possible mechanism of tolerance to cadmium-induced lethality. Toxicol Appl Pharmacol 70(2):195–203PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Peereboom-Stegeman JH, Morselt AF (1981) Increase in liver cell nuclear size after chronic cadmium treatment. Arch Toxicol 48(2–3):209–211PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Matsuura K, Takasugi M, Kunifuji Y, Horie A, Kuroiwa A (1991) Morphological effects of cadmium on proximal tubular cells in rats. Biol Trace Elem Res 31(2):171–182PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Banfalvi G, Gacsi M, Nagy G, Kiss ZB, Basnakian AG (2005) Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10(3):631–642PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Puvion E, Lange M (1980) Functional significance of perichromatin granule accumulation induced by cadmium chloride in isolated rat liver cells. Exp Cell Res 128(1):47–58PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Cervera J, Alamar M, Martinez A, Renau-Piqueras J (1983) Nuclear alterations induced by cadmium chloride and l-canavanine in HeLa S3 cells. Accumulation of perichromatin granules. J Ultrastruc Res 82(3):241–263PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Neri LM, Raymond Y, Giordano A, Borgatti P, Marchisio M, Capitani S, Martelli AM (1999) Spatial distribution of lamin A and B1 in the K562 cell nuclear matrix stabilized with metal ions. J Cell Biochem 75(1):36–45PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ungricht R, Kutay U (2017) Mechanisms and functions of nuclear envelope remodelling. Nat Rev Mol Cell Biol 18(4):229–245PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Neri LM, Bortul R, Zweyer M, Tabellini G, Borgatti P, Marchisio M, Bareggi R, Capitani S, Martelli AM (1999) Influence of different metal ions on the ultrastructure, biochemical properties, and protein localization of the K562 cell nuclear matrix. J Cell Biochem 73(3):342–354PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mathers JC, Strathdee G, Relton CL (2010) Induction of epigenetic alterations by dietary and other environmental factors. Adv Genet 71:3–39PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Humphries B, Wang Z, Yang C (2016) The role of microRNAs in metal carcinogen-induced cell malignant transformation and tumorigenesis. Food Chem Toxicol 98(Pt A):58–65PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gadhia SR, O’Brien D, Barile FA (2015) Cadmium affects mitotically inherited histone modification pathways in mouse embryonic stem cells. Toxicol In Vitro 30(1 Pt B):583–592PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Xiao C, Liu Y, Xie C, Tu W, Xia Y, Costa M, Zhou X (2015) Cadmium induces histone H3 lysine methylation by inhibiting histone demethylase activity. Toxicol Sci 145(1):80–89PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Gaido ML, Cidlowski JA (1991) Identification, purification, and characterization of a calcium-dependent endonuclease (NUC18) from apoptotic rat thymocytes. NUC18 is not histone H2B. J Biol Chem 266(28):18580–18585Google Scholar
  69. 69.
    Lohmann RD, Beyersmann D (1994) Effects of zinc and cadmium on apoptotic DNA fragmentation in isolated bovine liver nuclei. Environ Health Perspect 102(Suppl 3):269–271PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Beyersmann D, Block C, Malviya AN (1994) Effects of cadmium on nuclear protein kinase C. Environ Health Perspect 102(Suppl 3):177–180PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bialkowski K, Bialkowska A, Kasprzak KS (1999) Cadmium(II), unlike nickel(II), inhibits 8-oxo-dGTPase activity and increases 8-oxo-dG level in DNA of the rat testis, a target organ for cadmium(II) carcinogenesis. Carcinogenesis 20(8):1621–1624PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Suzuki H, Tashiro S, Sun J, Doi H, Satomi S, Igarashi K (2003) Cadmium induces nuclear export of Bach1, a transcriptional repressor of heme oxygenase-1 gene. J Biol Chem 278(49):49246–49253PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Topisirovic I, Capili AD, Borden KL (2002) Gamma interferon and cadmium treatments modulate eukaryotic initiation factor 4E-dependent mRNA transport of cyclin D1 in a PML-dependent manner. Mol Cell Biol 22(17):6183–6198PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Petering DH (2017) Reactions of the Zn proteome with Cd2+ and other xenobiotics: trafficking and toxicity. Chem Res Toxicol 30(1):189–202PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Meplan C, Mann K, Hainaut P (1999) Cadmium induces conformational modifications of wild-type p53 and suppresses p53 response to DNA damage in cultured cells. J Biol Chem 274(44):31663–31670PubMedCrossRefGoogle Scholar
  76. 76.
    Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53(6):1713–1726PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wells TN, Coulin F, Payton MA, Proudfoot AE (1993) Phosphomannose isomerase from Saccharomyces cerevisiae contains two inhibitory metal ion binding sites. Biochemistry 32(5):1294–1301PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Messner B, Ploner C, Laufer G, Bernhard D (2012) Cadmium activates a programmed, lysosomal membrane permeabilization-dependent necrosis pathway. Toxicol Lett 212(3):268–275PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ferri S (1980) Effect of cadmium on Golgi complex of freshwater teleost (Pimelodus maculatus) hepatocytes. Protoplasma 103(1):99–103PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Petersen NH, Olsen OD, Groth-Pedersen L, Ellegaard AM, Bilgin M, Redmer S, Ostenfeld MS, Ulanet D, Dovmark TH, Lonborg A, Vindelov SD, Hanahan D, Arenz C, Ejsing CS, Kirkegaard T, Rohde M, Nylandsted J, Jaattela M (2013) Transformation-associated changes in sphingolipid metabolism sensitize cells to lysosomal cell death induced by inhibitors of acid sphingomyelinase. Cancer Cell 24(3):379–393PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fotakis G, Cemeli E, Anderson D, Timbrell JA (2005) Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicol In Vitro 19(4):481–489PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Giri SN, Hollinger MA (1995) Effect of cadmium on lung lysosomal enzymes in vitro. Arch Toxicol 69(5):341–345PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D (2002) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283(6):F1389–1402PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Covian-Nares JF, Smith RM, Vogel SS (2008) Two independent forms of endocytosis maintain embryonic cell surface homeostasis during early development. Dev Biol 316(1):135–148PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Katti S, Nyenhuis SB, Her B, Srivastava AK, Taylor AB, Hart PJ, Cafiso DS, Igumenova TI (2017) Non-native metal ion reveals the role of electrostatics in synaptotagmin 1-membrane interactions. Biochemistry 56(25):3283–3295PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15(7):713–720PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Thevenod F, Lee WK, Wolff NA (2015) Rapamycin: a therapy of choice for endoplasmic reticulum stress-induced renal proximal tubule toxicity? Toxicology 330:41–43PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Thevenod F, Lee WK (2015) Live and let die: roles of autophagy in cadmium nephrotoxicity. Toxics 3(2):130–151PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121(1):31–42PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Liu F, Wang XY, Zhou XP, Liu ZP, Song XB, Wang ZY, Wang L (2017) Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 383:13–23PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Li M, Pi H, Yang Z, Reiter RJ, Xu S, Chen X, Chen C, Zhang L, Yang M, Li Y, Guo P, Li G, Tu M, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Yu Z, Zhou Z (2016) Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J Pineal Res 61(3):353–369PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Limson J, Nyokong T, Daya S (1998) The interaction of melatonin and its precursors with aluminium, cadmium, copper, iron, lead, and zinc: an adsorptive voltammetric study. J Pineal Res 24(1):15–21PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Choi J, Jo M, Lee E, Choi D (2011) Induction of apoptotic cell death via accumulation of autophagosomes in rat granulosa cells. Fertil Steril 95(4):1482–1486PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Maas SL, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lee WK, Torchalski B, Thevenod F (2007) Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Physiol Cell Physiol 293(3):C839–847PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Serban KA, Rezania S, Petrusca DN, Poirier C, Cao D, Justice MJ, Patel M, Tsvetkova I, Kamocki K, Mikosz A, Schweitzer KS, Jacobson S, Cardoso A, Carlesso N, Hubbard WC, Kechris K, Dragnea B, Berdyshev EV, McClintock J, Petrache I (2016) Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci Rep 6:31596PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yamada H, Yamamoto A, Yodozawa S, Kozaki S, Takahashi M, Morita M, Michibata H, Furuichi T, Mikoshiba K, Moriyama Y (1996) Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes. J Pineal Res 21(3):175–191PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lodhi IJ, Semenkovich CF (2014) Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab 19(3):380–392PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Chen T, Li W, Schulz PJ, Furst A, Chien PK (1995) Induction of peroxisome proliferation and increase of catalase activity in yeast, Candida albicans, by cadmium. Biol Trace Elem Res 50(2):125–133PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Rao MS, Reddy JK (1991) An overview of peroxisome proliferator-induced hepatocarcinogenesis. Environ Health Perspect 93:205–209PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Orbea A, Ortiz-Zarragoitia M, Cajaraville MP (2002) Interactive effects of benzo(a)pyrene and cadmium and effects of di(2-ethylhexyl) phthalate on antioxidant and peroxisomal enzymes and peroxisomal volume density in the digestive gland of mussel Mytilus galloprovincialis Lmk. Biomarkers 7(1):33–48PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Wang J, Zhang H, Zhang T, Zhang R, Liu R, Chen Y (2015) Molecular mechanism on cadmium-induced activity changes of catalase and superoxide dismutase. Int J Biol Macromol 77:59–67PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicology 16(1):1–37PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Physiology, Pathophysiology and Toxicology, Centre for Education and Research (ZBAF), Faculty of Health, Witten/Herdecke UniversityWittenGermany

Personalised recommendations