Interactions of Cadmium with Signaling Molecules

  • Douglas M. TempletonEmail author
  • Ying Liu


Cadmium has no known function in higher organisms, which have evolved in an essentially cadmium-free environment until the last several hundred years of industrial activity. Thus, cadmium’s interactions with biological molecules are generally fortuitous and determined by its inorganic chemistry. In biological systems, it exists exclusively in the Cd2+ state as the only ionized form, and it is somewhat unique in showing properties both of a Ca2+ mimic (by virtue of its ionic radius) and of a “soft” sulfur-binding ion (with polarizable d electrons). We review here the interactions of Cd2+ with cellular signaling systems; these are broad and non-specific, and result in interactions with both Ca2+ signaling and thiol-dependent redox systems, sometimes with ambiguous consequences. The chapter focuses on interactions more than consequences, as the latter are often very complex in origin, but can sometimes be simplified by collecting some of the interactions that have been observed. We discuss some of the general effects of Cd2+ on cellular Ca2+ levels, with signaling implications, and also some of the major interactions of Cd2+ with Ca2+ binding sites in proteins. A good part of our discussion is of effects of Cd2+ on signaling pathways through kinase activation, phosphatase inhibition, modulation of second messengers, and effects on levels of growth factors and transcription factors. It will be seen that there is a lot of empirical data here that are only partially understood on the basis of Cd2+ chemistry. Cadmium regulation of thiol-dependent redox chemistry is also discussed, and some new directions in redox sensing are suggested.


  1. 1.
    Kinraide TB (2009) Improved scales for metal ion softness and toxicity. Environ Toxicol Chem 28:525–533PubMedCrossRefGoogle Scholar
  2. 2.
    Jacobson KB, Turner JE (1980) The interaction of cadmium and certain other metal ions with proteins and nucleic acids. Toxicol 16:1–37CrossRefGoogle Scholar
  3. 3.
    Wang Z, Templeton DM (1996) Cellular factors mediate cadmium-dependent actin depolymerization. Toxicol Appl Pharmacol 139:115–121PubMedCrossRefGoogle Scholar
  4. 4.
    Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmiuminduced apoptosis. Cell Calcium 43:184–195PubMedCrossRefGoogle Scholar
  5. 5.
    Chow FA, Means AR (2007) The calcium/calmodulin-dependent protein kinase cascades. In: Krebs J, Michalak M (eds) New comprehensive biochemistry, vol 41. Elsevier, pp 345–364Google Scholar
  6. 6.
    Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529PubMedCrossRefGoogle Scholar
  7. 7.
    Falcke M (2004) Reading the patterns in living cells—The physics of Ca2+ signaling. Adv Phys 53:255–440CrossRefGoogle Scholar
  8. 8.
    Cheung WY (1988) Calmodulin and its activation by cadmium ion. Ann NY Acad Sci 522:74–87PubMedCrossRefGoogle Scholar
  9. 9.
    Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8:361–375PubMedCrossRefGoogle Scholar
  10. 10.
    Thévenod F (2009) Cadmium and cellular signaling cascades: to be or not to be? Toxicol Appl Pharmacol 238:221–239PubMedCrossRefGoogle Scholar
  11. 11.
    Wang Z, Chin TA, Templeton DM (1996) Calcium-independent effects of cadmium on actin assembly in mesangial and vascular smooth muscle cells. Cell Motil Cytoskelet 32:208–222CrossRefGoogle Scholar
  12. 12.
    Smith JB, Dwayer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem 264:7115–7118Google Scholar
  13. 13.
    Xie Z, Zhang Y, Li A, Li P, Ji W, Huang D (2010) Cd-induced apoptosis was mediated by the release of Ca2+ from intracellular Ca storage. Toxicol Lett 192:115–118PubMedCrossRefGoogle Scholar
  14. 14.
    Hague F, Matifat F, Louvet L, Brûle G, Collin T (2000) The carcinogen Cd2+ activates InsP(3)-mediated Ca2+ release through a specific metal ion receptor in Xenopus oocyte. Cell Signal 12:419–424PubMedCrossRefGoogle Scholar
  15. 15.
    Smith L, Pijuan V, Zhuang Y, Smith JB (1992) Reversible desensitization of fibroblasts to cadmium receptor stimuli: evidence that growth in high zinc represses a xenobiotic receptor. Exp Cell Res 202:174–182PubMedCrossRefGoogle Scholar
  16. 16.
    Chen YC, Smith JB (1992) A putative lectin-binding receptor mediates cadmium-evoked calcium release. Toxicol Appl Pharmacol 117:249–256PubMedCrossRefGoogle Scholar
  17. 17.
    Lawal AO, Ellis EM (2012) Phospholipase C mediates cadmium-dependent apoptosis in HEK 293 cells. Basic Clin Pharmacol Toxicol 110:510–517PubMedCrossRefGoogle Scholar
  18. 18.
    Åkerman KE, Honkaniemi J, Scott IG, Anderson LC (1985) Interaction of Cd2+ with the calmodulin-activated (Ca2+Mg2+)-ATPase activity of human erythrocyte ghosts. Biochim Biophys Acta 845:48–53PubMedCrossRefGoogle Scholar
  19. 19.
    Visser GJ, Peters PH, Theuvenet AP (1993) Cadmium ion is a non-competitive inhibitor of red cell Ca2+)-ATPase activity. Biochim Biophys Acta 1152:26–34PubMedCrossRefGoogle Scholar
  20. 20.
    Liu C-T, Chou M-Y, Lin C-H, Wu SM (2012) Effects of ambient cadmium with calcium on mRNA expressions of calcium uptake related transporters in zebrafish (Danio rerio) larvae. Fish Physiol Biochem 38:977–988PubMedCrossRefGoogle Scholar
  21. 21.
    Oshiro S, Nozawa K, Hori M, Zhang C, Hashimoto Y, Kitajima S, Kawamura K-I (2002) Modulation of iron regulatory protein-1 by various metals. Biochem Biophys Res Commun 290:213–218PubMedCrossRefGoogle Scholar
  22. 22.
    Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chemico-Biol Interact 188:267–275CrossRefGoogle Scholar
  23. 23.
    Wayman GA, Tokumitsu H, Davare MA, Soderling TR (2011) Analysis of CaM-kinase signaling in cells. Cell Calcium 50:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Chao SH, Suzuki Y, Zysk JR, Cheung WY (1984) Activation of calmodulin by various metal cations as a function of ionic radius. Mol Pharmacol 26:75–82PubMedGoogle Scholar
  25. 25.
    Blazka ME, Shaikh ZA (1991) Differences in cadmium and mercury uptakes by hepatocytes: role of calcium channels. Toxicol Appl Pharmacol 110:355–363PubMedCrossRefGoogle Scholar
  26. 26.
    Sutoo DE, Akiyama K, Fujii N, Matsushita K (1988) 1H-NMR studies of calmodulin: various divalent cation-induced conformational changes. Kitasato Arch Exp Med 61:149–160PubMedGoogle Scholar
  27. 27.
    Suzuki Y, Chao SH, Zysk JR, Cheung WY (1985) Stimulation of calmodulin by cadmium ion. Arch Toxicol 57:205–211PubMedCrossRefGoogle Scholar
  28. 28.
    Liu W, Zhao H, Wang Y, Jiang C, Xia P, Gu J, Liu X, Bian J, Yuan Y, Liu Z (2014) Calcium–calmodulin signaling elicits mitochondrial dysfunction and the release of cytochrome c during cadmium-induced apoptosis in primary osteoblasts. Toxicol Lett 224:1–6PubMedCrossRefGoogle Scholar
  29. 29.
    Xiao W, Liu Y, Templeton DM (2009) Pleiotropic effects of cadmium in mesangial cells. Toxicol Appl Pharmacol 238:315–326PubMedCrossRefGoogle Scholar
  30. 30.
    Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nature Rev Mol Cell Biol 11:502–514CrossRefGoogle Scholar
  31. 31.
    Marie PJ, Haÿ E, Modrowski D, Revollo L, Mbalaviele G, Civitelli R (2014) Cadherin-mediated cell–cell adhesion and signaling in the skeleton. Calcif Tiss Int 94:46–54CrossRefGoogle Scholar
  32. 32.
    Prozialeck WC (2000) Evidence that E-cadherin may be a target for cadmium toxicity in epithelial cells. Toxicol Appl Pharmacol 164:231–249PubMedCrossRefGoogle Scholar
  33. 33.
    Prozialeck WC, Lamar PC (1999) Interaction of cadmium (Cd2+) with a 13-residue polypeptide analog of a putative calcium-binding motif of E-cadherin. Biochim Biophys Acta 1451:93–100PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Prozialeck WC, Lamar PC (1997) Cadmium (Cd2+) disrupts E-cadherin-dependent cell-cell junctions in MDCK cells. In Vitro Cell Dev Biol Anim 33:516–526PubMedCrossRefGoogle Scholar
  35. 35.
    Prozialeck WC, Lamar PC, Lynch SM (2003) Cadmium alters the localization of N-cadherin, E-cadherin, and beta-catenin in the proximal tubule epithelium. Toxicol Appl Pharmacol 189:180–195PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Park CS, Kim OS, Yun S-M, Jo SA, Jo I, Koh YH (2008) Presenilin 1/gamma-secretase is associated with cadmium-induced E-cadherin cleavage and COX-2 gene expression in T47D breast cancer cells. Toxicol Sci 106:413–422PubMedCrossRefGoogle Scholar
  37. 37.
    Li Z, Kim SH, Higgins JM, Brenner MB, Sacks DB (1999) IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 274:37885–37892PubMedCrossRefGoogle Scholar
  38. 38.
    Chua BT, Guo K, Li P (2000) Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem 275:5131–5135PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Choong G, Liu Y, Templeton DM (2014) Interplay of cadmium and calcium in mediating cadmium toxicity. Chemico-Biol Interact 211:54–65CrossRefGoogle Scholar
  40. 40.
    Khorchid A, Ikura M (2002) How calpain is activated by calcium. Nature Struct Biol 9:239–241PubMedCrossRefGoogle Scholar
  41. 41.
    Oh S-H, Lee B-H, Lim S-C (2004) Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem Pharmacol 68:1845–1855PubMedCrossRefGoogle Scholar
  42. 42.
    Yang PM, Chen HC, Tsai JS, Lin LY (2007) Cadmium induces Ca2+-dependent necrotic cell death through calpain-triggered mitochondrial depolarization and reactive oxygen species-mediated inhibition of nuclear factor-κB activity. Chem Res Toxicol 20:406–415PubMedCrossRefGoogle Scholar
  43. 43.
    Thévenod F, Lee W-K (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786PubMedCrossRefGoogle Scholar
  44. 44.
    Venkataraman K, Futerman AH (2000) Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol 10:408–412PubMedCrossRefGoogle Scholar
  45. 45.
    Lee W-K, Thévenod F (2008) Novel roles for ceramides, calpains and caspases in kidney proximal tubule cell apoptosis: lessons from in vitro cadmium toxicity studies. Biochem Pharmacol 76:1323–1332PubMedCrossRefGoogle Scholar
  46. 46.
    Liu F, Wang XY, Zhou XP, Liu ZP, Song XB, Wang ZY, Wang L (2017) Cadmium disrupts autophagic flux by inhibiting cytosolic Ca2+-dependent autophagosome-lysosome fusion in primary rat proximal tubular cells. Toxicology 383:13–23PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Wang H, Zhai N, Chen Y, Xu H, Huang K (2017) Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells. J Inorg Biochem 172:16–22PubMedCrossRefGoogle Scholar
  48. 48.
    Templeton DM (2000) Metal ions and the cytoskeleton. In: Zalups RF, Koropatnick J (eds) Molecular biology and toxicology of metals. Taylor and Francis, London, pp 460–476Google Scholar
  49. 49.
    Carlier M-F (1991) Actin: protein structure and filament dynamics. J Biol Chem 266:1–4PubMedGoogle Scholar
  50. 50.
    Carlier M-F, Valentin-Ranc C, Combeau C, Fievez S, Pantoloni D (1994) Actin polymerization: regulation by divalent metal ion and nucleotide binding, ATP hydrolysis and binding of myosin. Adv Exp Biol Med 358:71–81CrossRefGoogle Scholar
  51. 51.
    Gershman LG, Selden LA, Kinosian HJ, Estes JE (1994) Actin-bound nucleotide/divalent cation interactions. Adv Exp Biol Med 358:35–49CrossRefGoogle Scholar
  52. 52.
    Furukawa R, Maselli A, Thomson SA, Lim RW, WStokes JV, Fechheimer M (2003) Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 116:187–196PubMedCrossRefGoogle Scholar
  53. 53.
    Mills JW, Ferm VH (1989) Effect of cadmium on F-actin and microtubules of Madin-Darby canine kidney cells. Toxicol Appl Pharmacol 101:245–254PubMedCrossRefGoogle Scholar
  54. 54.
    Prozialeck WC, Niewenhuis RJ (1991) Cadmium (Cd2+) disrupts intercellular junctions and actin filaments in LLC-PK1 cells. Toxicol Appl Pharmacol 107:81–97PubMedCrossRefGoogle Scholar
  55. 55.
    Barrouillet MP, Potier M, Cambar J (1999) Cadmium nephrotoxicity assessed in isolated rat glomeruli and cultured mesangial cells: evidence for contraction of glomerular cells. Exp Nephrol 7:251–258PubMedCrossRefGoogle Scholar
  56. 56.
    L’Azou B, Dubus I, Ohayon-Courtès C, Labouyrie JP, Perez L, Pouvreau C, Juvet L, Cambar J (2002) Cadmium induces direct morphological changes in mesangial cell culture. Toxicol 179:233–245CrossRefGoogle Scholar
  57. 57.
    Dalle-Donne I, Milzani A, Colombo R (1997) Actin assembly by cadmium ions. Biochim Biophys Acta 1357:5–17CrossRefGoogle Scholar
  58. 58.
    Go Y-M, Orr M, Jones DP (2013) Actin cytoskeleton redox proteome oxidation by cadmium. Am J Physiol 305:L831–L843Google Scholar
  59. 59.
    Ayscough KR (1998) In vivo functions of actin binding proteins. Curr Opin Cell Biol 10:102–111PubMedCrossRefGoogle Scholar
  60. 60.
    Carpenter CL (2000) Actin cytoskeleton and cell signaling. Crit Care Med 28(4 Suppl):N94–N99PubMedCrossRefGoogle Scholar
  61. 61.
    Vandekerchove J (1993) Actins. In: Kreis T, Vale R (eds) Guidebook to the cytoskeletal and motor proteins. Oxford University Press, Oxford, pp 13–15Google Scholar
  62. 62.
    Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288PubMedCrossRefGoogle Scholar
  63. 63.
    Gremm D, Wegner A (1999) Co-operative binding of Ca2+ ions to the regulatory binsing sites of gelsolin. Eur J Biochem 262:330–334PubMedCrossRefGoogle Scholar
  64. 64.
    Gremm D, Wegner A (2000) Gelsolin as a calcium-regulated actin filament-capping protein. Eur J Biochem 267:4339–4345PubMedCrossRefGoogle Scholar
  65. 65.
    Apostolova MD, Christova T, Templeton DM (2006) Involvement of gelsolin in cadmium-induced disruption of the mesangial cell cytoskeleton. Tox Sci 89:465–474CrossRefGoogle Scholar
  66. 66.
    Kazmirski SL, Isaacson RL, An C, Buckle A, Johnson CM, Daggett V, Fersht AR (2002) Loss of a metal-binding site in gelsolin leads to familial amyloidosis–finnish type. Nature Struct Biol 9:112–116PubMedCrossRefGoogle Scholar
  67. 67.
    Chang LF, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40PubMedCrossRefGoogle Scholar
  68. 68.
    Chuang SM, Wang IC, Yang JL (2000) Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcino 21:1423–1432CrossRefGoogle Scholar
  69. 69.
    Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opini Cell Biol 11:211–218CrossRefGoogle Scholar
  70. 70.
    Tibbles LA, Woodgett JR (1999) The stress-activated protein kinase pathways. Cell Mol Life Sci 55:1230–1254PubMedCrossRefGoogle Scholar
  71. 71.
    Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849PubMedCrossRefGoogle Scholar
  72. 72.
    Galan A, Garcia-Bermejo ML, Troyano A, Vilaboa NE, De Blas E, Kazanietz MG, Aller P (2000) Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J Biol Chem 275:11418–11424PubMedCrossRefGoogle Scholar
  73. 73.
    Huang CS, Zhang QW, Li JX, Shi XL, Castranova V, Ju G, Costa M, Dong ZG (2001) Involvement of Erks activation in cadmium-induced AP-1 transactivation in vitro and in vivo. Mol Cell Biochem 222:141–147PubMedCrossRefGoogle Scholar
  74. 74.
    Elbirt KK, Whitmarsh AJ, Davis RJ, Bonkovsky HL (1998) Mechanism of sodium arsenite-mediated induction of heme oxygenase-1 in hepatoma cells. J Biol Chem 273:8922–8931PubMedCrossRefGoogle Scholar
  75. 75.
    Chuang SM, Yang JL (2001) Comparison of roles of three mitogen-activated protein kinases induced by chromium(VI) and cadmium in non-small-cell lung carcinoma cells. Mol Cell Biochem 222:85–95PubMedCrossRefGoogle Scholar
  76. 76.
    Hung J-J, Cheng T-J, Lai Y-K, Chang MD (1998) Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J Biol Chem 273:31924–31931PubMedCrossRefGoogle Scholar
  77. 77.
    Wang Z, Templeton DM (1998) Induction of c-fos proto-oncogene in mesangial cells by cadmium. J Biol Chem 273:73–79PubMedCrossRefGoogle Scholar
  78. 78.
    Templeton DM, Wang Z, Miralem T (1998) Cadmium, cell signaling, and oncogene expression. Toxicol Lett 95:1–8PubMedCrossRefGoogle Scholar
  79. 79.
    Ding W, Templeton DM (2000) Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol Appl Pharmacol 162:93–99PubMedCrossRefGoogle Scholar
  80. 80.
    Ding W, Templeton DM (2000) Stress-activated protein kinase-dependent induction of c-fos by Cd2+ is mediated by MKK7. Biochem Biophys Res Commun 273:718–722PubMedCrossRefGoogle Scholar
  81. 81.
    Liu Y, Templeton DM (2008) Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. J Cell Physiol 217:307–318PubMedCrossRefGoogle Scholar
  82. 82.
    Gunawardana CG, Martinez RE, Xiao W, Templeton DM (2006) Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesaqngial cells. Am J Physiol 290:F1074–F1082Google Scholar
  83. 83.
    Brama M, Politi L, Santini P, Migliaccio S, Scandurra R (2012) Cadmium-induced apoptosis and necrosis in human osteoblasts: role of caspases and mitogen-activated protein kinases pathways. J Endocrinol Invest 35:198–208PubMedGoogle Scholar
  84. 84.
    Zhao H, Liu W, Wang Y, Dai N, Gu J, Yuan Y, Liu X, Bian J, Liu Z-P (2015) Cadmium induces apoptosis in primary rat osteoblasts through caspase and mitogen-activated protein kinase pathways. J Vet Sci 16:297–306PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wei T, Jia J, Wada Y, Kapron CM, Liu J (2017) Dose dependent effects of cadmium on tumor angiogenesis. Oncotarget 8:44944–44959PubMedPubMedCentralGoogle Scholar
  86. 86.
    Hook SS, Means AR (2001) Ca2+/CaM-dependent kinases: from activation to function. Annu Rev Pharmacol Toxicol 41:471–505PubMedCrossRefGoogle Scholar
  87. 87.
    Hudmon A, Schulman H (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510PubMedCrossRefGoogle Scholar
  88. 88.
    Lin YC, Redmond L (2008) CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc Natl Acad Sci U S A 105:15791–15796PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Sanabria H, Swulius MT, Kolodziej SJ, Liu J, Waxham MN (2009) βCaMKII regulates actin assembly and structure. J Biol Chem 284:9770–9780PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Jones RJ, Jourd’heuil D, Salerno JC, Smith SM, Singer HA (2007) iNOS regulation by calcium/calmodulin-dependent protein kinase II in vascular smooth muscle. Am J Physiol 292:H2634–H2642Google Scholar
  91. 91.
    Liu Y, Templeton DM (2013) Involvement of CaMK-IIδ and gelsolin in Cd2+-dependent cytoskeletal effects in mesangial cells. J Cell Physiol 228:78–86CrossRefGoogle Scholar
  92. 92.
    Caran N, Johnson LD, Jenkins KJ, Tombes RM (2001) Cyosolic targeting domains of gamma and delta calmodulin-dependent protein kinase II. J Biol Chem 276:42514–42519PubMedCrossRefGoogle Scholar
  93. 93.
    Liu Y, Templeton DM (2010) Role of the cytoskeleton in Cd2+-induced death of mouse mesangial cells. Can J Physiol Pharmacol 88:341–352Google Scholar
  94. 94.
    Liu Y, Templeton DM (2007) Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett 581:1481–1486PubMedCrossRefGoogle Scholar
  95. 95.
    Templeton DM, Liu Y (2013) Effects of cadmium on the actin cytoskeleton in renal mesangial cells. Can J Physiol Pharmacol 91:1–7PubMedCrossRefGoogle Scholar
  96. 96.
    Lin WN, Luo SF, Wu CB, Lin CC, Yang CM (2008) Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: involvement of Src/EGFR/PI3-K/Akt pathway. Toxicol Appl Pharmacol 228:256–268PubMedCrossRefGoogle Scholar
  97. 97.
    Yano N, Suzuki D, Endoh M, Zhao TC, Padbury JF, Tseng YT (2007) A novel phosphoinositide 3-kinase-dependent pathway for angiotensin II/AT-1 receptor mediated induction of collagen synthesis in MES-13 mesangial cells. J Biol Chem 282:18819–18830PubMedCrossRefGoogle Scholar
  98. 98.
    Fujiki K, Inamura H, Matsuoka M (2013) Phosphorylation of FOXO3a by PI3K/Akt pathway in HK-2 renal proximal tubular epithelial cells exposed to cadmium. Arch Toxicol 87:2119–2127PubMedCrossRefGoogle Scholar
  99. 99.
    Ahmad F, Nidadavolu P, Durgadoss L, Ravindranath V (2014) Critical cysteines in Akt1 regulate its activity and proteasomal degradation: implications for neurodegenerative diseases. Free Radic Biol Med 74:118–128PubMedCrossRefGoogle Scholar
  100. 100.
    Li FJ, Surolia R, Li H, Wang Z, Liu G, Liu RM, Mirov SB, Athar M, Thannickal VJ, Antony VB (2017) Low-dose cadmium exposure induces peribronchiolar fibrosis through site-specific phosphorylation of vimentin. Am J Physiol 313:L80–L91CrossRefGoogle Scholar
  101. 101.
    Yuan Y, Wang Y, Hu FF, Jiang C, Y., Zhang YJ, Yang JL, Zhao SW, Gu JH, Liu XZ, Bian JC, Liu ZP (2016) Cadmium activates reactive oxygen species-dependent AKT/mTOR and mitochondrial apoptotic pathways in neuronal cells. Biomed Environ Sci 29:117–126Google Scholar
  102. 102.
    Fujiki K, Inamura H, Miyayama T, Matsuoka M (2017) Involvement of Notch1 signaling in malignant progression of A549 cells subjected to prolonged cadmium exposure. J Biol Chem 292:7942–7953PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wehrle-Haller B (2012) Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 24:1–13CrossRefGoogle Scholar
  104. 104.
    Katz BZ, Romer L, Miyamoto S, Volberg T, Matsumoto K, Cukierman E, Geiger B, Yamada KM (2003) Targeting membrane-localized focal adhesion kinase to focal adhesions: roles of tyrosine phosphorylation and Src family kinases. J Biol Chem 278:29115–29120PubMedCrossRefGoogle Scholar
  105. 105.
    Choong G, Liu Y, Templeton DM (2013) Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton. J Cell Biochem 114:1832–1842PubMedCrossRefGoogle Scholar
  106. 106.
    Wei Z, Shaikh ZA (2017) Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and beta-catenin signaling. Toxicol Appl Pharmacol 328:70–80PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Hu X, Fernandes J, Jones DP, Go Y-M (2017) Cadmium stimulates myofibroblast differentiation and mouse lung fibrosis. Toxicol 383:50–56CrossRefGoogle Scholar
  108. 108.
    Brooks SA, Martin E, Smeester L, Grace MR, Boggess K, Fry RC (2016) miRNAs as common regulators of the transforming growth factor (TGF)-b pathway in the preeclamptic placenta and cadmium-treated trophoblasts: Links between the environment, the epigenome and preeclampsia. Food Chem Toxicol 98:50–57PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Brooks SA, Fry RC (2017) Cadmium inhibits placental trophoblast cell migration via miRNA regulation of the transforming growth factor beta (TGF-β) pathway. Food Chem Toxicol 109:721–726PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang Q, Zou P, Zhan H, Zhang M, Zhng L, Ge R-S, Huang Y (2011) Dihydrolipoamide dehydrogenase and cAMP are associated with cadmium-mediated Leydig cell damage. Toxicol Lett 205:183–189PubMedCrossRefGoogle Scholar
  112. 112.
    Wätjen W, Benters J, Haase H, Schwede F, Jastorff B, Beyersmann D (2001) Zn2+ and Cd2+ increase the cyclic GMP level in PC12 cells by inhibition of the cyclic nucleotide phosphodiesterase. Toxicol 157:167–175PubMedCrossRefGoogle Scholar
  113. 113.
    Veeriah V, Saran U, Swaminathan A, Balaguru UM, Thangaraj P, Nagarajan S, Rajendran VK, Chatterjee S (2015) Cadmium-induced embryopathy: nitric oxide rescues teratogenic effects of cadmium. Toxicol Sci 144:90–104PubMedCrossRefGoogle Scholar
  114. 114.
    Muldoon LL, Rodland KD, Magun BE (1988) Transforming growth factor beta and epidermal growth factor alter calcium influx and phosphatidylinositol turnover in rat-1 fibroblasts. J Biol Chem 263:18834–18841PubMedGoogle Scholar
  115. 115.
    Vignes M, Blanc E, Davos F, Guiramand J, Recasens M (1996) Cadmium rapidly and irreversibly blocks presynaptic phospholipase C-linked metabotropic glutamate receptors. Neurochem Int 29:371–381PubMedCrossRefGoogle Scholar
  116. 116.
    Zhou X, Hao W, Shi H, Hou Y, Xu Q (2015) Calcium homeostasis disruption—a bridge connecting cadmium-induced apoptosis, autophagy and tumorigenesis. Oncol Res Treat 38:311–315PubMedCrossRefGoogle Scholar
  117. 117.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFα-induced death and sustained Jnk activitation by inhibiting MAP kinase phosphatases. Cell 120:649–661PubMedCrossRefGoogle Scholar
  118. 118.
    Levinthal DJ, Defranco DB (2005) Reversible oxidation of Erk-directed protein phosphatases drives oxidative toxicity in neuron. J Biol Chem 280:5875–5883PubMedCrossRefGoogle Scholar
  119. 119.
    Singh KB, Maret W (2017) The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B. Biometals 30:517–527PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Barajas-Espinosa A, Basye A, Jesse E, Yan H, Quan D, Chen C-A (2014) Redox activation of DUSP4 by N-acetyl cysteine protects endothelial cells from Cd2+-induced apoptosis. Free Radic Biol Med 74:188–199PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Delalande O, Desvaux H, Godat E, Valleix A, Juno C, Labarre J, Boulard Y (2010) Cadmium—glutathione solution structures provide new insights into heavy metal detoxification. FEBS J 277:5086–5096PubMedCrossRefGoogle Scholar
  122. 122.
    Go Y-M, Jones DP (2013) Thiol/disulfide redox states in signaling and sensing. Crit Rev Biochem Mol Biol 48:173–191PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Chin TA, Templeton DM (1993) Protective elevations of glutathione and metallothionein in cadmium-exposed mesangial cells. Toxicol 77:145–156CrossRefGoogle Scholar
  124. 124.
    Chen J, Shaikh ZA (2009) Activation of Nrf2 by cadmium and its role in protection against cadmium-induced apoptosis in rat kidney cells. Toxicol Appl Pharmacol 241:81–89PubMedCrossRefGoogle Scholar
  125. 125.
    Nair AR, Lee W-K, Smeets K, Swennen Q, Sanchez A, Thévenod F, Cuypers A (2015) Glutathione and mitochondria determine acute defense responses and adaptive processes in cadmium-induced oxidative stress and toxicity of the kidney. Arch Toxicol 89:2273–2289PubMedCrossRefGoogle Scholar
  126. 126.
    Johansson M, Lundberg M (2007) Glutathionylation of beta-actin via a cysteinyl-sulfenic acid intermediary. BMC Biochem 8:26PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gallogly MM, Starke DW, Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antiox Redox Signal 11:1059–1081CrossRefGoogle Scholar
  128. 128.
    Barrett WC, DeGnore JP, König S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB (1999) Regulation of PTP1B via glutathionylation of the active site cysteine. Biochem 38:6699–6705CrossRefGoogle Scholar
  129. 129.
    Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282:18427–18436PubMedCrossRefGoogle Scholar
  130. 130.
    Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB (2001) Reversible glutathionylation regulates actin polymerization in A431 cells. J Biol Chem 276:47763–47766PubMedCrossRefGoogle Scholar
  131. 131.
    Dalle-Donne I, Giustarini D, Rossi R, Colombo R, Milzani A (2003) Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 34:23–32PubMedCrossRefGoogle Scholar
  132. 132.
    Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S, Bonetto V, Casoni F, Carrozzo R, Federici G, Piemonte F (2003) Actin glutathionylation increases in fibroblasts of patients with Friedreich’s ataxia. J Biol Chem 278:42588–42595PubMedCrossRefGoogle Scholar
  133. 133.
    Chen FC, Ogut O (2006) Decline of contractility during ischemia—reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol 290:C719–C727CrossRefGoogle Scholar
  134. 134.
    Dailianis S, Patetsini E, Kaloyianni M (2009) The role of signalling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel Mytilus galloprovincialis (Lmk). J Exp Biol 212:3612–3620PubMedCrossRefGoogle Scholar
  135. 135.
    Choong G, Liu Y, Xiao W, Templeton DM (2013) Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: implications for cytoskeletal integrity. Toxicol Appl Pharmacol 272:423–430PubMedCrossRefGoogle Scholar
  136. 136.
    Sakai J, Li J, Subramanian KK, Mondal S, Bajrami B, Hattori H, Jia Y, Dickinson BC, Zhong J, Ye K, Chang CJ, Ho YS, Zhou J, Luo HR (2012) Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immun 37:1037–1049CrossRefGoogle Scholar
  137. 137.
    Wang J, Tekle E, Oubrahim H, Mieyal JJ, Stadtman ER, Chock PB (2003) Stable and controllable RNA interference: investigating the physiological function of glutathionylated actin. Proc Natl Acad Sci U S A 100:5103–5106PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Shelton MD, Mieyal JJ (2008) Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cell 25:332–346Google Scholar
  139. 139.
    Kil IS, Shin SW, Yeo HS, Lee YS, Park JW (2006) Mitochondrial NADP+-dependent isocitrate dehydrogenase protects cadmium-induced apoptosis. Mol Pharmacol 70:1053–1061PubMedCrossRefGoogle Scholar
  140. 140.
    Liao BC, Hsieh CW, Lin YC, Wung BS (2010) The glutaredoxin/glutathione system modulates NF-κB activity by glutathionylation of p65 in cinnamaldehyde-treated endothelial cells. Toxicol Sci 116:151–163PubMedCrossRefGoogle Scholar
  141. 141.
    Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565PubMedCrossRefGoogle Scholar
  142. 142.
    Chen C-A, De Pascali F, Basye A, Hemann C, Zweier JL (2013) Redox modulation of eNOS by glutaredoxin-1 through reversible oxidative post-translational modification. Biochem 52:6712–6723CrossRefGoogle Scholar
  143. 143.
    Comini MA (2016) Measurement and meaning of cellular thiol:disulfide redox status. Free Radic Res 50:246–271PubMedCrossRefGoogle Scholar
  144. 144.
    Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40:138–145PubMedCrossRefGoogle Scholar
  145. 145.
    Go Y-M, Orr M, Jones DP (2013) Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity. Toxicol Sci 131:84–94PubMedCrossRefGoogle Scholar
  146. 146.
    Banerjee R, Smith W (2012) Thematic minireview series on redox sensing and regulation. J Biol Chem 287:4395–4396PubMedCrossRefGoogle Scholar
  147. 147.
    Cemers CM, Jakob U (2012) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288:26489–26496CrossRefGoogle Scholar
  148. 148.
    Jiang F (2016) The expanding list of redox-sensing transcription factors in mammalian cells. J Cell Signal 1:e101.
  149. 149.
    Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425PubMedCrossRefGoogle Scholar
  150. 150.
    Klomsiri C, Karplus PA, Poole LB (2011) Cysteine-based redox switches in enzymes. Antiox Redox Signal 14:1065–1077CrossRefGoogle Scholar
  151. 151.
    Wang Y, Yang J, Yi J (2012) Redox sensing by proteins: oxidative modifications on cysteines and the consequent events. Antiox Redox Signal 16:649–657CrossRefGoogle Scholar
  152. 152.
    Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, Iso T, Yamamoto H, Morita M, Baird L, Furusawa Y, Negishi T, Ichinose M, Yamamoto M (2015) Characterizations of three major cysteine sensors of Keap1 in stress response. Mol Cell Biol 36:271–284PubMedGoogle Scholar
  153. 153.
    Stewart D, Killeen E, Naquin R, Alam S, Alam J (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278:2396–2402PubMedCrossRefGoogle Scholar
  154. 154.
    He X, Chen MG, Ma Q (2008) Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem Res Toxicol 21:1375–1383PubMedCrossRefGoogle Scholar
  155. 155.
    Wang X-Y, Wang Z-Y, Zhu Y-S, Zhu S-M, Fan R-F, Wang L (2018) Alleviation of cadmium-induced oxidative stress by trehalose via inhibiting the Nrf2-Keap1 signaling pathway in primary rat proximal tubular cells. J Biochem Mol Toxicol 32:e22011. Scholar
  156. 156.
    Dinkova-Kostova AT, Holtzclaw WD, Wakabayashi N (2005) Keap1, the sensor for electrophiles and oxidants that regulates the phase 2 response, is a zinc metalloprotein. Biochem 44:6889–6899CrossRefGoogle Scholar
  157. 157.
    Bruegge K, Jelkmann W, Metzen E (2007) Hydroxylation of hypoxia-inducible transcription factors and chemical compounds targeting the HIF-hydroxylases. Curr Med Chem 14:1853–1862PubMedCrossRefGoogle Scholar
  158. 158.
    Lee G, Won H-S, Lee Y-M, Choi J-W, Oh T-I, Jang J-H, Choi D-K, Lim B-O, Kim YJ, Park J-W, Puigserver P, Lim J-H (2016) Oxidative dimerization of PHD2 is responsible for its inactivation and contributes to metabolic reprogramming via HIF-1α activation. Sci Rep 6:18928.
  159. 159.
    Chun YS, Choi E, Kim GT, Choi H, Kim CH, Lee MJ, Kim MS, Park JW (2000) Cadmium blocks hypoxia-inducible factor (HIF)-1-mediated response to hypoxia by stimulating the proteasome-dependent degradation of HIF-1α. Eur J Biochem 267:4198–4204PubMedCrossRefGoogle Scholar
  160. 160.
    Jing Y, Liu L-Z, Jiang Y, Zhu Y, Guo NL, Barnett J, Rojanasakul Y, Agani F, Jiang B-H (2012) Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol Sci 125:10–19PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Li NX, Karin M (1999) Is NF-κB the sensor of oxidative stress? FASEB J 13:1137–1143PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Brigelius-Flohe R, Flohe L (2011) Basic principles and emerging concepts in the redox control of transcription factors. Antiox Redox Sig 15:2335–2381CrossRefGoogle Scholar
  163. 163.
    Ghosh G, Wang VY, Huang DB, Fusco A (2012) NF-κB regulation: lessons from structures. Immunol Rev 246:36–58PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-κB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896CrossRefGoogle Scholar
  165. 165.
    Lizotte J, Abed E, Signor C, Malu DT, Cuevas J, Kevorkova O, Sanchez-Dardon J, Satoskar A, Scorza T, Jumarie C, Moreau R (2012) Expression of macrophage migration inhibitory factor by osteoblastic cells: protection against cadmium toxicity. Toxicol Lett 215:167–173PubMedCrossRefGoogle Scholar
  166. 166.
    Xie J, Shaikh ZA (2006) Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91:299–308PubMedCrossRefGoogle Scholar
  167. 167.
    Zhang H, Li L, Wang Y, Dong F, Chen X, Liu F, Xu D, Yi F, Capron CM, Liu J (2016) NF-κB signaling maintains the survival of cadmium-exposed human renal glomerular endothelial cells. Int J Mol Med 38:417–422PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Field J, Vojtek A, Ballester R, Bolger G, Colicelli J, Ferguson K, Gerst J, Kataoka T, Michaeli T, Powers S, Riggs M, Rodgers L, Wieland I, Wheland B, Wigler M (1990) Cloning and characterization of CAP, the S. cerevisiae gene encoding the 70 kd adenylyl cyclase-associated protein. Cell 61:319–327PubMedCrossRefGoogle Scholar
  169. 169.
    Shima F, Okada T, Kido M, Sen H, Tanaka Y, Tamada M, Hu C-D, Yamawaki-Kataoka Y, Kariya K-I, Kataoka T (2000) Association of yeast adenylyl cyclase with cyclase-associated protein CAP forms a second Ras-binding site which mediates its Ras-dependent activation. Mol Cell Biol 20:26–33PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Chaudhry F, Breitsprecher D, Little K, Sharov G, Sokolova O, Goode BL (2013) Srv2/cyclase-associated protein forms hexameric shurikens that directly catalyze actin filament severing by cofilin. Mol Biol Cell 24:31–41PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Freeman NL, Field J (2000) Mammalian homolog of the yeast adenylyl cyclase associated protein, CAP/Srv2p, regulates actin filament assembly. Cell Motil Cytoskel 45:106–120Google Scholar
  172. 172.
    Jansen S, Collins A, Golden L, Sokolova O, Goode BL (2014) Structure and mechanism of mouse cyclase-associated protein (CAP1) in regulating actin dynamics. J Biol Chem 289:30732–39742PubMedCrossRefGoogle Scholar
  173. 173.
    Liu Y, Xiao W, Shinde M, Field J, Templeton DM (2018) Cadmium favors F-actin depolymerization in rat renal mesangial cells by site-specific, disulfide-based dimerization of the CAP1 protein. Arch Toxicol 92:1049–1064PubMedCrossRefGoogle Scholar
  174. 174.
    Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823:1468–1483PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662PubMedCrossRefGoogle Scholar
  176. 176.
    Vashisht AA, Zumbrennen KB, Huang X, Powers DN, Durazo A, Sun D, Bhaskaran N, Persson A, Uhlen M, Sangfelt O, Spruck C, Leibold EA, Wohlschlegel JA (2009) Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326:718–721PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Kühn LC (2003) Regulation of mRNA translation and stability in iron metabolism: is there a redox switch? In: Gitler C, Danon A (eds) Cellular implications of redox signaling. Imperial College Press, London, pp 327–360CrossRefGoogle Scholar
  178. 178.
    Popovic Z, Templeton DM (2007) Inhibition of an iron-responsive element/iron regulatory protein-1 complex by ATP binding and hydrolysis. FEBS J 274:3108–3119PubMedCrossRefGoogle Scholar
  179. 179.
    Liu Y, Xiao W, Templeton DM (2014) Cadmium-induced aggregation of iron regulatory protein-1. Toxicol 324:108–115CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada

Personalised recommendations