Advertisement

Membrane Transport Proteins and Receptors for Cadmium and Cadmium Complexes

  • Frank ThévenodEmail author
Chapter

Abstract

Cadmium (Cd2+) is a non-essential divalent metal ion without physiological function in animal cells. For toxicity to occur, Cd2+ must first enter cells by utilizing physiological transport pathways for essential divalent metal ions, such as Fe2+, Zn2+, Cu2+, Ca2+, or Mn2+. ‘Free’ Cd2+ ions and Cd2+ ions bound to small organic molecules are transported via ion channels, carrier proteins or ATP hydrolyzing pumps, whereas metalloproteins are internalized by receptor-mediated endocytosis (RME). This review describes Cd2+ transport (influx/efflux) pathways that were validated by electrophysiology (e.g. patch clamp), 109Cd2+ flux, inductively coupled plasma mass spectrometry, atomic absorption spectroscopy, Cd2+-sensitive fluorescent dyes, specific ligand binding, and ligand internalization assays that are ideally studied in heterologous expression systems. Convincing evidence has been obtained for Cd2+ permeation for Ca2+ channels at toxicologically relevant concentrations (CaV3.1, CatSper) TRP channels (TRPA1, TRPV5/6, TRPML1), solute carriers (DMT1, ZIP8, ZIP14, system (b0, + AT)) and RME of Cd2+-protein complexes (Lipocalin-2 receptor). The carrier OCT2 mediates Cd2+ influx and MATE1/2 and the ATPase ABCB1 Cd2+ efflux at high, toxicologically irrelevant Cd2+ concentrations. L- and N-type voltage-, ligand-gated, store-operated Ca2+ channels, CFTR, connexins and the transporter ferroportin-1 are not permeated by Cd2+. More experimental evidence is needed for the mitochondrial Ca2+ uniporter, the ATPase ABCC1 and the transferrin receptor 1. Although the receptor megalin: cubilin mediates RME of Cd2+-metallothionein complex at high, but toxicologically irrelevant concentrations, its in vivo Cd2+-protein–ligand complexes still need to be identified. A stringent methodology is mandatory to prove additional Cd2+ transport pathways instead of propagating unsubstantiated speculations.

Notes

Acknowledgments

Research is supported by a grant from BMBF (01DN16039), the University of Witten/Herdecke and ZBAF. The author thanks Dr. Wing-Kee Lee (University of Witten/Herdecke) for valuable discussions.

References

  1. 1.
    Thévenod F, Lee WK (2013) Toxicology of cadmium and its damage to Mammalian organs. Met Ions Life Sci 11:415–490PubMedCrossRefGoogle Scholar
  2. 2.
    Jarup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Elinder CG, Friberg L, Lind B, Jawaid M (1983) Lead and cadmium levels in blood samples from the general population of Sweden. Environ Res 30:233–253PubMedCrossRefGoogle Scholar
  4. 4.
    Cornelis R, Heinzow B, Herber RF, Christensen JM, Poulsen OM, Sabbioni E, Templeton DM, Thomassen Y, Vahter M, Vesterberg O (1996) Sample collection guidelines for trace elements in blood and urine. IUPAC Commission of Toxicology. J Trace Elem Med Biol 10:103–127PubMedCrossRefGoogle Scholar
  5. 5.
    Maret W, Moulis JM (2013) The bioinorganic chemistry of cadmium in the context of its toxicity. Met Ions Life Sci 11:1–29PubMedCrossRefGoogle Scholar
  6. 6.
    Clarkson TW (1993) Molecular and ionic mimicry of toxic metals. Annu Rev Pharmacol Toxicol 33:545–571PubMedCrossRefGoogle Scholar
  7. 7.
    Thévenod F (2010) Catch me if you can! Novel aspects of cadmium transport in mammalian cells. Biometals 23:857–875PubMedCrossRefGoogle Scholar
  8. 8.
    Jorge-Nebert LF, Galvez-Peralta M, Landero Figueroa J, Somarathna M, Hojyo S, Fukada T, Nebert DW (2015) Comparing gene expression during cadmium uptake and distribution: untreated versus oral Cd-treated wild-type and ZIP14 knockout mice. Toxicol Sci 143:26–35PubMedCrossRefGoogle Scholar
  9. 9.
    Ohrvik H, Tyden E, Artursson P, Oskarsson A, Tallkvist J (2013) Cadmium transport in a model of neonatal intestinal cells correlates to MRP1 and Not DMT1 or FPN1. ISRN Toxicology 2013:892364PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nemmiche S, Guiraud P (2016) Cadmium-induced oxidative damages in the human BJAB cells correlate with changes in intracellular trace elements levels and zinc transporters expression. Toxicol In Vitro 37:169–177CrossRefGoogle Scholar
  11. 11.
    Fujishiro H, Kubota K, Inoue D, Inoue A, Yanagiya T, Enomoto S, Himeno S (2011) Cross-resistance of cadmium-resistant cells to manganese is associated with reduced accumulation of both cadmium and manganese. Toxicology 280:118–125PubMedCrossRefGoogle Scholar
  12. 12.
    Thévenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786PubMedCrossRefGoogle Scholar
  13. 13.
    Thévenod F, Friedmann JM, Katsen AD, Hauser IA (2000) Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J Biol Chem 275:1887–1896PubMedCrossRefGoogle Scholar
  14. 14.
    Kimura O, Endo T, Hotta Y, Sakata M (2005) Effects of P-glycoprotein inhibitors on transepithelial transport of cadmium in cultured renal epithelial cells, LLC-PK1 and LLC-GA5-COL 150. Toxicology 208:123–132PubMedCrossRefGoogle Scholar
  15. 15.
    Lee WK, Torchalski B, Kohistani N, Thévenod F (2011) ABCB1 protects kidney proximal tubule cells against cadmium-induced apoptosis: roles of cadmium and ceramide transport. Toxicol Sci 121:343–356PubMedCrossRefGoogle Scholar
  16. 16.
    Beyersmann D, Hechtenberg S (1997) Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol Appl Pharmacol 144:247–261PubMedCrossRefGoogle Scholar
  17. 17.
    Thévenod F, Jones SW (1992) Cadmium block of calcium current in frog sympathetic neurons. Biophys J 63:162–168PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161PubMedCrossRefGoogle Scholar
  19. 19.
    Yunker AM, McEnery MW (2003) Low-voltage-activated (“T-Type”) calcium channels in review. J Bioenerg Biomembr 35:533–575PubMedCrossRefGoogle Scholar
  20. 20.
    Lopin KV, Thévenod F, Page JC, Jones SW (2012) Cd(2)(+) block and permeation of CaV3.1 (alpha1G) T-type calcium channels: candidate mechanism for Cd(2)(+) influx. Mol Pharmacol 82:1183–1193PubMedCrossRefGoogle Scholar
  21. 21.
    Garza-Lopez E, Chavez JC, Santana-Calvo C, Lopez-Gonzalez I, Nishigaki T (2016) Cd(2+) sensitivity and permeability of a low voltage-activated Ca(2+) channel with CatSper-like selectivity filter. Cell Calcium 60:41–50PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hirning LD, Fox AP, McCleskey EW, Olivera BM, Thayer SA, Miller RJ, Tsien RW (1988) Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science 239:57–61PubMedCrossRefGoogle Scholar
  23. 23.
    Lacinova L, Klugbauer N, Hofmann F (2000) Regulation of the calcium channel alpha(1G) subunit by divalent cations and organic blockers. Neuropharmacology 39:1254–1266PubMedCrossRefGoogle Scholar
  24. 24.
    Shuba YM (2014) Models of calcium permeation through T-type channels. Pflugers Arch 466:635–644PubMedCrossRefGoogle Scholar
  25. 25.
    Cai X, Clapham DE (2008) Evolutionary genomics reveals lineage-specific gene loss and rapid evolution of a sperm-specific ion channel complex: CatSpers and CatSperbeta. PLoS ONE 3:e3569PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Bouron A, Kiselyov K, Oberwinkler J (2015) Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch 467:1143–1164PubMedCrossRefGoogle Scholar
  28. 28.
    Nilius B, Appendino G, Owsianik G (2012) The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflugers Arch 464:425–458PubMedCrossRefGoogle Scholar
  29. 29.
    Miura S, Takahashi K, Imagawa T, Uchida K, Saito S, Tominaga M, Ohta T (2013) Involvement of TRPA1 activation in acute pain induced by cadmium in mice. Molecular pain 9:7PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    van Goor MKC, Hoenderop JGJ, van der Wijst J (2017) TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta 1864:883–893CrossRefGoogle Scholar
  31. 31.
    Kovacs G, Danko T, Bergeron MJ, Balazs B, Suzuki Y, Zsembery A, Hediger MA (2011) Heavy metal cations permeate the TRPV6 epithelial cation channel. Cell Calcium 49:43–55PubMedCrossRefGoogle Scholar
  32. 32.
    Kovacs G, Montalbetti N, Franz MC, Graeter S, Simonin A, Hediger MA (2013) Human TRPV5 and TRPV6: key players in cadmium and zinc toxicity. Cell Calcium 54:276–286PubMedCrossRefGoogle Scholar
  33. 33.
    Chubanov V, Mittermeier L, Gudermann T (2018) Role of kinase-coupled TRP channels in mineral homeostasis. Pharmacol Ther 184:159–176CrossRefGoogle Scholar
  34. 34.
    Levesque M, Martineau C, Jumarie C, Moreau R (2008) Characterization of cadmium uptake and cytotoxicity in human osteoblast-like MG-63 cells. Toxicol Appl Pharmacol 231:308–317PubMedCrossRefGoogle Scholar
  35. 35.
    Martineau C, Abed E, Medina G, Jomphe LA, Mantha M, Jumarie C, Moreau R (2010) Involvement of transient receptor potential melastatin-related 7 (TRPM7) channels in cadmium uptake and cytotoxicity in MC3T3-E1 osteoblasts. Toxicol Lett 199:357–363PubMedCrossRefGoogle Scholar
  36. 36.
    Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wang W, Zhang X, Gao Q, Xu H (2014) TRPML1: an ion channel in the lysosome. Handb Exp Pharmacol 222:631–645PubMedCrossRefGoogle Scholar
  39. 39.
    Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H (2008) The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455:992–996PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:48–56PubMedCrossRefGoogle Scholar
  41. 41.
    Zeevi DA, Lev S, Frumkin A, Minke B, Bach G (2010) Heteromultimeric TRPML channel assemblies play a crucial role in the regulation of cell viability models and starvation-induced autophagy. J Cell Sci 123:3112–3124PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wolff NA, Abouhamed M, Verroust PJ, Thévenod F (2006) Megalin-dependent internalization of cadmium-metallothionein and cytotoxicity in cultured renal proximal tubule cells. J Pharmacol Exp Ther 318:782–791PubMedCrossRefGoogle Scholar
  43. 43.
    Lee WK, Probst S, Santoyo-Sanchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thévenod F (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91:3225–3245PubMedCrossRefGoogle Scholar
  44. 44.
    Yeung PS, Yamashita M, Prakriya M (2017) Pore opening mechanism of CRAC channels. Cell Calcium 63:14–19PubMedCrossRefGoogle Scholar
  45. 45.
    Usai C, Barberis A, Moccagatta L, Marchetti C (1999) Pathways of cadmium influx in mammalian neurons. J Neurochem 72:2154–2161PubMedCrossRefGoogle Scholar
  46. 46.
    Hinkle PM, Shanshala ED 2nd, Nelson EJ (1992) Measurement of intracellular cadmium with fluorescent dyes. Further evidence for the role of calcium channels in cadmium uptake. J Biol Chem 267:25553–25559PubMedGoogle Scholar
  47. 47.
    Smith JB, Dwyer SD, Smith L (1989) Cadmium evokes inositol polyphosphate formation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes. J Biol Chem 264:7115–7118PubMedGoogle Scholar
  48. 48.
    Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578PubMedCrossRefGoogle Scholar
  49. 49.
    Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364PubMedCrossRefGoogle Scholar
  50. 50.
    Kamer KJ, Mootha VK (2015) The molecular era of the mitochondrial calcium uniporter. Nat Rev Mol Cell Biol 16:545–553PubMedCrossRefGoogle Scholar
  51. 51.
    Lee WK, Bork U, Gholamrezaei F, Thévenod F (2005) Cd(2+)-induced cytochrome c release in apoptotic proximal tubule cells: role of mitochondrial permeability transition pore and Ca(2+) uniporter. Am J Physiol Renal Physiol 288:F27–39CrossRefGoogle Scholar
  52. 52.
    Adiele RC, Stevens D, Kamunde C (2012) Features of cadmium and calcium uptake and toxicity in rainbow trout (Oncorhynchus mykiss) mitochondria. Toxicol In Vitro 26:164–173CrossRefGoogle Scholar
  53. 53.
    Onukwufor JO, Kibenge F, Stevens D, Kamunde C (2015) Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 158:75–87PubMedCrossRefGoogle Scholar
  54. 54.
    Lee WK, Spielmann M, Bork U, Thévenod F (2005) Cd2+ -induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force. Am J Physiol Cell Physiol 289:C656–C664PubMedCrossRefGoogle Scholar
  55. 55.
    Riordan JR (2008) CFTR function and prospects for therapy. Annu Rev Biochem 77:701–726PubMedCrossRefGoogle Scholar
  56. 56.
    Kogan I, Ramjeesingh M, Li C, Kidd JF, Wang Y, Leslie EM, Cole SP, Bear CE (2003) CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J 22:1981–1989PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    L’Hoste S, Chargui A, Belfodil R, Duranton C, Rubera I, Mograbi B, Poujeol C, Tauc M, Poujeol P (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031PubMedCrossRefGoogle Scholar
  58. 58.
    Fiori MC, Reuss L, Cuello LG, Altenberg GA (2014) Functional analysis and regulation of purified connexin hemichannels. Front Physiol 5:71PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Beyer EC, Berthoud VM (2017) Gap junction structure: unraveled, but not fully revealed. F1000Research 6:568PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ramachandran S, Xie LH, John SA, Subramaniam S, Lal R (2007) A novel role for connexin hemichannel in oxidative stress and smoking-induced cell injury. PLoS ONE 2:e712PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fang X, Huang T, Zhu Y, Yan Q, Chi Y, Jiang JX, Wang P, Matsue H, Kitamura M, Yao J (2011) Connexin43 hemichannels contribute to cadmium-induced oxidative stress and cell injury. Antioxid Redox Signal 14:2427–2439PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Vinken M, Ceelen L, Vanhaecke T, Rogiers V (2010) Inhibition of gap junctional intercellular communication by toxic metals. Chem Res Toxicol 23:1862–1867PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488PubMedCrossRefGoogle Scholar
  64. 64.
    Coffey R, Ganz T (2017) Iron homeostasis: an anthropocentric perspective. J Biol Chem 292:12727–12734PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shawki A, Knight PB, Maliken BD, Niespodzany EJ, Mackenzie B (2012) H(+)-coupled divalent metal-ion transporter-1: functional properties, physiological roles and therapeutics. Curr Top Membr 70:169–214PubMedCrossRefGoogle Scholar
  66. 66.
    Wolff NA, Ghio AJ, Garrick LM, Garrick MD, Zhao L, Fenton RA, Thévenod F (2014) Evidence for mitochondrial localization of divalent metal transporter 1 (DMT1). FASEB J 28:2134–2145PubMedCrossRefGoogle Scholar
  67. 67.
    Okubo M, Yamada K, Hosoyamada M, Shibasaki T, Endou H (2003) Cadmium transport by human Nramp 2 expressed in Xenopus laevis oocytes. Toxicol Appl Pharmacol 187:162–167PubMedCrossRefGoogle Scholar
  68. 68.
    Illing AC, Shawki A, Cunningham CL, Mackenzie B (2012) Substrate profile and metal-ion selectivity of human divalent metal-ion transporter-1. J Biol Chem 287:30485–30496PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bressler JP, Olivi L, Cheong JH, Kim Y, Bannona D (2004) Divalent metal transporter 1 in lead and cadmium transport. Ann N Y Acad Sci 1012:142–152PubMedCrossRefGoogle Scholar
  70. 70.
    Kippler M, Goessler W, Nermell B, Ekstrom EC, Lonnerdal B, El Arifeen S, Vahter M (2009) Factors influencing intestinal cadmium uptake in pregnant Bangladeshi women–a prospective cohort study. Environ Res 109:914–921PubMedCrossRefGoogle Scholar
  71. 71.
    Smith CP, Thévenod F (2009) Iron transport and the kidney. Biochim Biophys Acta 1790:724–730PubMedCrossRefGoogle Scholar
  72. 72.
    Abouhamed M, Wolff NA, Lee WK, Smith CP, Thévenod F (2007) Knockdown of endosomal/lysosomal divalent metal transporter 1 by RNA interference prevents cadmium-metallothionein-1 cytotoxicity in renal proximal tubule cells. Am J Physiol Renal Physiol 293:F705–712CrossRefGoogle Scholar
  73. 73.
    Barbier O, Jacquillet G, Tauc M, Poujeol P, Cougnon M (2004) Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo. Am J Physiol Renal Physiol 287:F1067–1075CrossRefGoogle Scholar
  74. 74.
    Jenkitkasemwong S, Wang CY, Mackenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. Biometals 25:643–655PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287:34032–34043PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Girijashanker K, He L, Soleimani M, Reed JM, Li H, Liu Z, Wang B, Dalton TP, Nebert DW (2008) Slc39a14 gene encodes ZIP14, a metal/bicarbonate symporter: similarities to the ZIP8 transporter. Mol Pharmacol 73:1413–1423PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    He L, Girijashanker K, Dalton TP, Reed J, Li H, Soleimani M, Nebert DW (2006) ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties. Mol Pharmacol 70:171–180PubMedGoogle Scholar
  78. 78.
    Wang B, Schneider SN, Dragin N, Girijashanker K, Dalton TP, He L, Miller ML, Stringer KF, Soleimani M, Richardson DD, Nebert DW (2007) Enhanced cadmium-induced testicular necrosis and renal proximal tubule damage caused by gene-dose increase in a Slc39a8-transgenic mouse line. Am J Physiol Cell Physiol 292:C1523–1535CrossRefGoogle Scholar
  79. 79.
    Koepsell H (2013) The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med 34:413–435PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Bruggeman IM, Temmink JH, van Bladeren PJ (1992) Effect of glutathione and cysteine on apical and basolateral uptake and toxicity of CdCl(2) in kidney cells (LLC-PK(1)). Toxicol In Vitro 6:195–200PubMedCrossRefGoogle Scholar
  81. 81.
    Thévenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Keller T, Al-Monajjed R, Gorboulev V, Koepsell H (2013) Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate cd2+. Mol Pharm 10:3045–3056PubMedCrossRefGoogle Scholar
  82. 82.
    Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V (2011) Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 204:38–42PubMedCrossRefGoogle Scholar
  83. 83.
    Nies AT, Damme K, Kruck S, Schaeffeler E, Schwab M (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. Arch Toxicol 90:1555–1584PubMedCrossRefGoogle Scholar
  84. 84.
    Yang H, Guo D, Obianom ON, Su T, Polli JE, Shu Y (2017) Multidrug and toxin extrusion proteins mediate cellular transport of cadmium. Toxicol Appl Pharmacol 314:55–62PubMedCrossRefGoogle Scholar
  85. 85.
    Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188PubMedCrossRefGoogle Scholar
  86. 86.
    Wang Y, Zalups RK, Barfuss DW (2010) Potential mechanisms involved in the absorptive transport of cadmium in isolated perfused rabbit renal proximal tubules. Toxicol Lett 193:61–68PubMedCrossRefGoogle Scholar
  87. 87.
    Fotiadis D, Kanai Y, Palacin M (2013) The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 34:139–158PubMedCrossRefGoogle Scholar
  88. 88.
    Drakesmith H, Nemeth E, Ganz T (2015) Ironing out Ferroportin. Cell Metab 22:777–787PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Donovan A, Brownlie A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnara C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Palis J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403:776–781PubMedCrossRefGoogle Scholar
  90. 90.
    Wolff NA, Liu W, Fenton RA, Lee WK, Thévenod F, Smith CP (2011) Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J Cell Mol Med 15:209–219PubMedCrossRefGoogle Scholar
  91. 91.
    Mitchell CJ, Shawki A, Ganz T, Nemeth E, Mackenzie B (2014) Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol 306:C450–459CrossRefGoogle Scholar
  92. 92.
    Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485PubMedCrossRefGoogle Scholar
  93. 93.
    Carriere P, Mantha M, Champagne-Paradis S, Jumarie C (2011) Characterization of basolateral-to-apical transepithelial transport of cadmium in intestinal TC7 cell monolayers. Biometals 24:857–874PubMedCrossRefGoogle Scholar
  94. 94.
    Zimmerhackl LB, Momm F, Wiegele G, Brandis M (1998) Cadmium is more toxic to LLC-PK1 cells than to MDCK cells acting on the cadherin-catenin complex. Am J Physiol 275:F143–153PubMedGoogle Scholar
  95. 95.
    Achard-Joris M, van den Berg van Saparoea HB, Driessen AJ, Bourdineaud JP (2005) Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli. Biochemistry 44:5916–5922PubMedCrossRefGoogle Scholar
  96. 96.
    Cole SP (2014) Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future. Annu Rev Pharmacol Toxicol 54:95–117PubMedCrossRefGoogle Scholar
  97. 97.
    Tommasini R, Evers R, Vogt E, Mornet C, Zaman GJ, Schinkel AH, Borst P, Martinoia E (1996) The human multidrug resistance-associated protein functionally complements the yeast cadmium resistance factor 1. Proc Natl Acad Sci U S A 93:6743–6748PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Della Torre C, Bocci E, Focardi SE, Corsi I (2014) Differential ABCB and ABCC gene expression and efflux activities in gills and hemocytes of Mytilus galloprovincialis and their involvement in cadmium response. Marine environmental research 93:56–63PubMedCrossRefGoogle Scholar
  99. 99.
    Tian J, Hu J, Chen M, Yin H, Miao P, Bai P, Yin J (2017) The use of mrp1-deficient (Danio rerio) zebrafish embryos to investigate the role of Mrp1 in the toxicity of cadmium chloride and benzo[a]pyrene. Aquat Toxicol 186:123–133PubMedCrossRefGoogle Scholar
  100. 100.
    Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432PubMedGoogle Scholar
  101. 101.
    Abergel RJ, Clifton MC, Pizarro JC, Warner JA, Shuh DK, Strong RK, Raymond KN (2008) The siderocalin/enterobactin interaction: a link between mammalian immunity and bacterial iron transport. J Am Chem Soc 130:11524–11534PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX, Schmidt-Ott KM, Viltard M, Yu W, Forster CS, Gong G, Liu Y, Kulkarni R, Mori K, Kalandadze A, Ratner AJ, Devarajan P, Landry DW, D’Agati V, Lin CS, Barasch J (2011) The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat Med 17:216–222PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bao G, Clifton M, Hoette TM, Mori K, Deng SX, Qiu A, Viltard M, Williams D, Paragas N, Leete T, Kulkarni R, Li X, Lee B, Kalandadze A, Ratner AJ, Pizarro JC, Schmidt-Ott KM, Landry DW, Raymond KN, Strong RK, Barasch J (2010) Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat Chem Biol 6:602–609PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Devireddy LR, Hart DO, Goetz DH, Green MR (2010) A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141:1006–1017PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Devireddy LR, Teodoro JG, Richard FA, Green MR (2001) Induction of apoptosis by a secreted lipocalin that is transcriptionally regulated by IL-3 deprivation. Science 293:829–834PubMedCrossRefGoogle Scholar
  107. 107.
    Hvidberg V, Jacobsen C, Strong RK, Cowland JB, Moestrup SK, Borregaard N (2005) The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake. FEBS Lett 579:773–777PubMedCrossRefGoogle Scholar
  108. 108.
    Langelueddecke C, Roussa E, Fenton RA, Wolff NA, Lee WK, Thévenod F (2012) Lipocalin-2 (24p3/neutrophil gelatinase-associated lipocalin (NGAL)) receptor is expressed in distal nephron and mediates protein endocytosis. J Biol Chem 287:159–169PubMedCrossRefGoogle Scholar
  109. 109.
    Langelueddecke C, Roussa E, Fenton RA, Thévenod F (2013) Expression and function of the lipocalin-2 (24p3/NGAL) receptor in rodent and human intestinal epithelia. PLoS ONE 8:e71586PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Langelueddecke C, Lee WK, Thévenod F (2014) Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity. Toxicol Lett 226:228–235PubMedCrossRefGoogle Scholar
  111. 111.
    Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266PubMedCrossRefGoogle Scholar
  112. 112.
    Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–236Google Scholar
  113. 113.
    Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Freisinger E, Vasak M (2013) Cadmium in metallothioneins. Met Ions Life Sci 11:339–371PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Harris WR, Madsen LJ (1988) Equilibrium studies on the binding of cadmium(II) to human serum transferrin. Biochemistry 27:284–288PubMedCrossRefGoogle Scholar
  116. 116.
    Goumakos W, Laussac JP, Sarkar B (1991) Binding of cadmium(II) and zinc(II) to human and dog serum albumins. An equilibrium dialysis and 113Cd-NMR study. Biochem Cell Biol 69:809–820PubMedCrossRefGoogle Scholar
  117. 117.
    Erfurt C, Roussa E, Thévenod F (2003) Apoptosis by Cd2+ or CdMT in proximal tubule cells: different uptake routes and permissive role of endo/lysosomal CdMT uptake. Am J Physiol Cell Physiol 285:C1367–1376PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Thévenod F, Wolff NA (2016) Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 8:17–42CrossRefGoogle Scholar
  119. 119.
    Milnerowicz H, Bizon A (2010) Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody. Acta Biochim Pol 57:99–104PubMedGoogle Scholar
  120. 120.
    Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, Atrian S, Allen PL, Hammond TG (2004) Megalin mediates renal uptake of heavy metal metallothionein complexes. Am J Physiol Renal Physiol 287:F393–403CrossRefGoogle Scholar
  121. 121.
    Liu J, Liu Y, Habeebu SS, Klaassen CD (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46:197–203PubMedGoogle Scholar
  122. 122.
    Liu J, Habeebu SS, Liu Y, Klaassen CD (1998) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58PubMedCrossRefGoogle Scholar
  123. 123.
    Eakin CM, Knight JD, Morgan CJ, Gelfand MA, Miranker AD (2002) Formation of a copper specific binding site in non-native states of beta-2-microglobulin. Biochemistry 41:10646–10656PubMedCrossRefGoogle Scholar
  124. 124.
    Santoyo-Sanchez MP, Pedraza-Chaverri J, Molina-Jijon E, Arreola-Mendoza L, Rodriguez-Munoz R, Barbier OC (2013) Impaired endocytosis in proximal tubule from subchronic exposure to cadmium involves angiotensin II type 1 and cubilin receptors. BMC Nephrology 14:211PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Prozialeck WC, VanDreel A, Ackerman CD, Stock I, Papaeliou A, Yasmine C, Wilson K, Lamar PC, Sears VL, Gasiorowski JZ, DiNovo KM, Vaidya VS, Edwards JR (2016) Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals 29:131–146PubMedCrossRefGoogle Scholar
  126. 126.
    Chasteen DN (1977) Human serotransferrin: structure and function. Coord Chem Rev 22:1–36CrossRefGoogle Scholar
  127. 127.
    Frazer DM, Anderson GJ (2014) The regulation of iron transport. BioFactors 40:206–214PubMedCrossRefGoogle Scholar
  128. 128.
    Vincent JB, Love S (2012) The binding and transport of alternative metals by transferrin. Biochim Biophys Acta 1820:362–378PubMedCrossRefGoogle Scholar
  129. 129.
    De Smet H, Blust R, Moens L (2001) Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp Biochem Physiol C Toxicol Pharmacol 128:45–53PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Physiology, Pathophysiology & Toxicology and Centre for Biomedical Education and Research (ZBAF), Faculty of HealthUniversity of Witten/HerdeckeWittenGermany

Personalised recommendations