Advertisement

Density of Local Maxima of the Distance Function to a Set of Points in the Plane

  • Nina Amenta
  • Erin Wolf ChambersEmail author
  • Tegan Emerson
  • Rebecca Glover
  • Katharine Turner
  • Shirley Yap
Chapter
Part of the Association for Women in Mathematics Series book series (AWMS, volume 13)

Abstract

We show that the set of local maxima of the distance function to a set of points P in the plane, given certain density and packing restrictions, is also dense.

References

  1. 1.
    A.I. Bobenko, B. Springborn, A discrete Laplace-Beltrami operator for simplicial surfaces. Discret. Comput. Geom. 38(4), 740–756 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.-D. Boissonnat, A. Ghosh, Manifold reconstruction using tangential Delaunay complexes. Discret. Comput. Geom. 51(1), 221–267 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    J.-D. Boissonnat, L.J. Guibas, S. Oudot, Manifold reconstruction in arbitrary dimensions using witness complexes. Discret. Comput. Geom. 42(1), 37–70 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.-D. Boissonnat, R. Dyer, A. Ghosh, Stability of Delaunay-type structures for manifolds [extended abstract], in Symposuim on Computational Geometry 2012, SoCG ’12, Chapel Hill, 17–20 June 2012 (2012), pp. 229–238Google Scholar
  5. 5.
    T.K. Dey, J. Giesen, E.A. Ramos, B. Sadri, Critical points of the distance to an epsilon-sampling of a surface and flow-complex-based surface reconstruction, in Proceedings of the 21st ACM Symposium on Computational Geometry, Pisa, 6–8 June 2005 (2005), pp. 218–227Google Scholar
  6. 6.
    R. Dyer, H. Zhang, T. Möller, Delaunay mesh construction, in Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Barcelona, 4–6 July 2007 (2007), pp. 273–282Google Scholar
  7. 7.
    R. Dyer, G. Vegter, M. Wintraecken, Riemannian simplices and triangulations, in 31st International Symposium on Computational Geometry, SoCG 2015, Eindhoven, 22–25 June 2015 (2015), pp. 255–269Google Scholar
  8. 8.
    H. Edelsbrunner, Surface reconstruction by wrapping finite sets in space. Algorithms Comb. 25, 379–404 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    J. Giesen, M. John, The flow complex: a data structure for geometric modeling. Comput. Geom. 39(3), 178–190 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Khoury, J.R. Shewchuk, Fixed points of the restricted Delaunay triangulation operator, in 32nd International Symposium on Computational Geometry, SoCG 2016, Boston, 14–18 June 2016 (2016), pp. 47:1–47:15Google Scholar
  11. 11.
    S. Oudot, On the topology of the restricted delaunay triangulation and witness complex in higher dimensions. CoRR, abs/0803.1296 (2008)Google Scholar
  12. 12.
    E.A. Ramos, B. Sadri, Geometric and topological guarantees for the WRAP reconstruction algorithm, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, 7–9 January 2007 (2007), pp. 1086–1095Google Scholar

Copyright information

© The Author(s) and the Association for Women in Mathematics 2018

Authors and Affiliations

  • Nina Amenta
    • 1
  • Erin Wolf Chambers
    • 2
    Email author
  • Tegan Emerson
    • 3
  • Rebecca Glover
    • 4
  • Katharine Turner
    • 5
  • Shirley Yap
    • 6
  1. 1.University of California DavisDavisUSA
  2. 2.Saint Louis UniversitySt. LouisUSA
  3. 3.Colorado State UniversityFort CollinsUSA
  4. 4.University of St. ThomasSt PaulUSA
  5. 5.Australian National UniversityCanberraAustralia
  6. 6.California State University East BayHaywardUSA

Personalised recommendations