Advertisement

Involvement of Heat Shock Protein 70 (Hsp70) in Gastrointestinal Cancers

  • Dipamoy Datta
  • Suparna Banerjee
  • Anupama Ghosh
  • Soumyajit Banerjee Mustafi
  • Prosenjit Sen
  • Sanghamitra Raha
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 14)

Abstract

Intracellular protein homeostasis is largely controlled by Heat shock proteins (Hsp). Heat shock proteins (Hsp) impart an age-old defense mechanism for all forms of life on earth. Misfolded proteins are refolded with the aid of Hsp and proteins which are damaged beyond repair are eliminated with assistance from Hsp. Hsp are known as molecular chaperones for their cytoprotective roles. In cancer cells the Hsp are frequently overexpressed and are assumed to be associated with tumor formation. Hsp demonstrate specific affinity to particular classes of oncogenic peptides and client proteins in cancer cells, and are able to stabilize mutated oncogene proteins. They play a key regulatory role in prevention of apoptotic cell death during tumorigenesis and thereby enhance cell growth and proliferation. They may also promote chemoresistance in cancer cells. Here we present the current knowledge on the role of molecular chaperones in particular heat shock protein 70 (Hsp70) in human gastrointestinal cancers along with their therapeutic targeting. This review will focus on the role of Hsp 70 and related chaperones in several gastrointestinal cancers such as pancreatic, gastric, and liver cancers.

Keywords

Chaperone Gastric cancer Gastrointestinal cancer Heat shock protein 70 (Hsp 70) Liver cancer Pancreatic cancer 

Abbreviations

α-SMA

α-smooth muscle actin protein

CHIP

carboxyl-terminus of Hsp70 interacting Protein

CSC

cancer stem cells

GC

gastric cancer

GI

gastrointestinal

HCC

hepatocellular carcinoma

HNSCC

head and neck squamous cell cancer

HOP

Hsp70/Hsp90 organizing protein

MAPK

mitogen activated protein kinase

Notes

Acknowledgements

D. Datta acknowledges financial support from Visva-Bharati University.

References

  1. Aghdassi, A., Phillips, P., Dudeja, V., et al. (2007). Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Research, 67(2), 616–625.CrossRefPubMedGoogle Scholar
  2. Alcolea, M. P., & Jones, P. H. (2013). Tracking cells in their native habitat: Lineage tracing in epithelial neoplasia. Nature Reviews Cancer, 13, 161–171.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Arora, N., Alsaied, O., Dauer, P., et al. (2017). Downregulation of Sp1 by Minnelide leads to decrease in HSP70 and decrease in tumor burden of gastric cancer. PLoS One, 12(2), e0171827.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Axsen, W. S., Styer, C. M., & Solnick, J. V. (2009). Inhibition of heat shock protein expression by Helicobacter pylori. Microbial Pathogenesis, 47, 231–236.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Banerjee, S., Majumdar, N., Dudeja, V., et al. (2012). MUC1c regulates cell survival in pancreatic cancer by preventing lysosomal permeabilization. PLoS One, 7(8), e43020.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bekaii-Saab, T., & El-Rayes, B. (2017). Identifying and targeting cancer stem cells in the treatment of gastric cancer. Cancer, 123(8), 1303–1312.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bertuccio, P., Chatenoud, L., Levi, F., et al. (2009). Recent patterns in gastric cancer: A global overview. International Journal of Cancer, 125(3), 666–673.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bilimoria, K. Y., Bentrem, D. J., Ko, C. Y., et al. (2007). National failure to operate on early stage pancreatic cancer. Annals of Surgery, 246, 173–180.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bray, F., Jemal, A., Grey, N., et al. (2012). Global cancer transitions according to the human development index (2008–2030): A population-based study. The Lancet Oncology, 13, 790–801.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brocchieri, L., Conway de Macario, E., & Macario, A. J. L. (2007). Chaperonomics, a new tool to study ageing and associated diseases. Mechanisms of Ageing and Development, 128, 125–136.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brungs, D., Aghmesheh, M., Vine, K.,. L., et al. (2016). Gastric cancer stem cells: Evidence, potential markers, and clinical implications. Journal of Gastroenterology, 51(4), 313–326.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cao, Z., Xu, J., Huang, H., et al. (2015). MiR-1178 promotes the proliferation, G1/S transition, migration and invasion of pancreatic cancer cells by targeting CHIP. PLoS One, 10(1), e0116934.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Cappello, F., Bellafiore, M., Palma, A., et al. (2002). Defective apoptosis and tumorigenesis: Role of p53 mutation and Fas/FasL system dysregulation. European Journal of Histochemistry, 46, 199–208.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen, L., & Yu, J. (2016). Modulation of toll-like receptor signaling in innate immunity by natural products. International Immunopharmacology, 37, 65–70.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen, W., Lin, K., Zhang, L., et al. (2016). The cytomegalovirus protein UL138 induces apoptosis of gastric cancer cells by binding to heat shock protein 70. Oncotarget, 7, 5630–5645.PubMedPubMedCentralGoogle Scholar
  16. Chou, S. D., Prince, T., & Gong, J. (2012). mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One, 7, e39679.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chuma, M., Sakamoto, M., Yamazaki, K., et al. (2003). Expression profiling in multistage hepatocarcinogenesis: Identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology, 37, 198–207.PubMedCrossRefPubMedCentralGoogle Scholar
  18. de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., et al. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Di Tommaso, L., & Roncalli, M. (2017). Tissue biomarkers in hepatocellular tumors: Which, when, and how. Frontiers in Medicine, 4, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Di Tommaso, L., Franchi, G., Park, Y. N., et al. (2007). Diagnostic value of HSP70, glypican 3, and glutamine synthetase in hepatocellular nodules in cirrhosis. Hepatology, 45, 725–734.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ding, S. Z., Fischer, W., Kaparakis-Liaskos, M., et al. (2010). Helicobacter pylori-induced histone modification, associated gene expression in gastric epithelial cells, and its implication in pathogenesis. PLoS One, 5(4), e9875.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ferro, A., Peleteiro, B., Malvezzi, M., et al. (2014). Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype. European Journal of Cancer, 50, 1330–1344.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gao, H., Wang, Y., Liu, X., et al. (2004). Global transcriptome analysis of the heat shock response of Shewanella oneidensis. Journal of Bacteriology, 186,(22), 7796–7803.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gao, Q., Zhao, Y. J., Wang, X. Y., et al. (2012). CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Research, 72, 3546–3556.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Gehrmann, M., Cervello, M., Montalto, G., et al. (2014). Heat shock protein 70 serum levels differ significantly in patients with chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Frontiers in Immunology, 5, 307.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gheldof, A., & Berx, G. (2013). Cadherins and epithelial-to-mesenchymal transition. Progress in Molecular Biology and Translational Science, 116, 317–336.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Giessrigl, B., Krieger, S., Rosner, M., et al. (2012). Hsp90 stabilizes Cdc25A and counteracts heat shock-mediated Cdc25A degradation and cell-cycle attenuation in pancreatic carcinoma cells. Human Molecular Genetics, 21(21), 4615–4627.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Gogate, S. S., Fujita, N., Skubutyte, R., et al. (2012). Tonicity enhancer binding protein (TonEBP) and hypoxia-inducible factor (HIF) coordinate heat shock protein 70 (Hsp70) expression in hypoxic nucleus pulposus cells: Role of Hsp70 in HIF-1α degradation. Journal of Bone and Mineral Research, 27, 1106–1117.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gong, W. (2013). Invasion potential of H22 hepatocarcinoma cells is increased by HMGB1-induced tumor NF-κBsignaling via initiation of HSP70. Oncology Reports, 30(3), 1249–1256.  https://doi.org/10.3892/or.2013.2595.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gupta, S., Deepti, A., Deegan, S., et al. (2010). HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction. PLoS Biology, 8, e1000410.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hadjimichael, C., Chanoumidou, K., & Papadopoulou, N. (2015). Common stemness regulators of embryonic and cancer stem cells. World Journal Stem Cells, 7(9), 1150–1184.Google Scholar
  32. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Horibe, T., Torisawa, A., Kohno, M., et al. (2014). Synergetic cytotoxic activity toward breast cancer cells enhanced by the combination of Antp-TPR hybrid peptide targeting Hsp90 and Hsp70- targeted peptide. BMC Cancer, 14, 615.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hu, X., Ghisolfi, L., Keates, A. C., et al. (2012). Induction of cancer cell stemness by chemotherapy. Cell Cycle, 11(14), 2691–2698.PubMedCrossRefGoogle Scholar
  35. Hwang, T. S., Han, H. S., Choi, H. K., et al. (2003). Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. Journal of Gastroenterology and Hepatology, 18(6), 690–700.PubMedCrossRefGoogle Scholar
  36. Hyun, J. J., Lee, H. S., Keum, B., et al. (2013). Expression of heat shock protein 70 modulates the chemoresponsiveness of pancreatic cancer. Gut Liver, 7(6), 739–746.PubMedPubMedCentralCrossRefGoogle Scholar
  37. IARC (International Agency for Research on Cancer). (2012). GLOBOCAN 2012. Lyon: IARC. URL: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.Google Scholar
  38. Joly, A. L., Wettstein, G., Mignot, G., et al. (2010). Dual role of heat-shock proteins as regulator of apoptosis andinnate immunity. Journal of Innate Immunity, 2, 238–247.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jung, J. W., Hwang, S. Y., Hwang, J. S., et al. (2007). Ionising radiation induces changes associated with epithelialmesenchymal transdifferentiation and increased cell motility of A549 lung epithelial cells. European Journal of Cancer, 7, 1214–1224.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kajiro, M., Hirota, R., Nakajima, Y., et al. (2009). The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nature Cell Biology, 11(3), 312–319.PubMedCrossRefGoogle Scholar
  41. Kang, Y., Jung, W. Y., Lee, H., et al. (2013). Prognostic significance of heat shock protein 70 expression in early gastric carcinoma. Korean Journal Pathology, 47, 219–226.CrossRefGoogle Scholar
  42. Kimura, E., Enns, R. E., Alcaraz, J. E., et al. (1993). Correlation of the survival of ovarian cancer patients with mRNA expression of the 60kDa heatshock protein Hsp60. Journal of Clinical Oncology, 11, 891–898.PubMedCrossRefGoogle Scholar
  43. Kose, S., Furuta, M., & Imamoto, N. (2012). Hikeshi, a nuclear import carrier for Hsp70s, protects cells from heat shock-induced nuclear damage. Cell, 149, 578–589.PubMedCrossRefGoogle Scholar
  44. Kretzschmar, K., & Watt, F. M. (2012). Lineage tracing. Cell, 148(1–2), 33–45.PubMedCrossRefGoogle Scholar
  45. Lee, C. S., Montebello, J., Rush, M., et al. (1994). Overexpression of heat shock protein (hsp) 70 associated with abnormal p53 expression in cancer of the pancreas. Zentralblatt für Pathologie, 140(3), 259–264.PubMedGoogle Scholar
  46. Lee, H. W., Lee, E. H., Kim, S. H., et al. (2013). Heat shock protein 70 (HSP70) expression is associated with poor prognosis in intestinal type gastric cancer. Virchows Archiv, 463(4), 489–495.PubMedCrossRefGoogle Scholar
  47. Li, H., Li, Y., Liu, D., et al. (2013). Extracellular HSP70/HSP70-PCs promote epithelial-mesenchymal transition of hepatocarcinoma cells. PLoS One, 8(12), e84759.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Liu, W. L., Chen, Y., & Lu, G. F. (2011). Down-regulation of HSP70 sensitizes gastric epithelial cells to apoptosis and growth retardation triggered by H. pylori. BMC Gastroenterology, 11, 145.CrossRefGoogle Scholar
  49. Lüders, J., Demand, J., & Höhfeld, J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. The Journal of Biological Chemistry, 275, 4613–4617.PubMedCrossRefGoogle Scholar
  50. Ma, W., Zhang, Y., Mu, H., et al. (2015). Glucose regulates heat shock factor 1 transcription activity via mTOR pathway in HCC cell lines. Cell Biology International, 39, 1217–1224.PubMedCrossRefGoogle Scholar
  51. Macario, A. J. L., & Conway de Macario, E. (2005). Sick chaperones, cellular stress and disease. The New England Journal of Medicine, 353, 1489–1501.PubMedCrossRefGoogle Scholar
  52. Macario, A. J. L., & Conway de Macario, E. (2009). The chaperoning system: Physiology and pathology. In A. Gerbino, G. Crescimanno, & G. Zummo (Eds.), Experimental medicine reviews, Plumelia (Vol. 2/3, pp. 9–21).Google Scholar
  53. Macario, A. J. L., Cappello, F., Zummo, G., et al. (2010). Chaperonopathies of senescence and the scrambling of interactions between the chaperoning and the immune systems. Annals of the New York Academy of Sciences, 1197, 85–93.PubMedCrossRefGoogle Scholar
  54. MacKenzie, T. N., Majumdar, N., Banerjee, S., et al. (2013). Triptolide induces the expression of miR-142- 3p: A negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Molecular Cancer Therapeutics, 12(7), 1266–1275.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Mashaghi, A., Bezrukavnikov, S., Minde, D. P., et al. (2016). Alternative modes of client binding enable functional plasticity of Hsp70. Nature, 539, 448–451.PubMedCrossRefGoogle Scholar
  56. Massey, A. J., Williamson, D. S., Browne, H., et al. (2010). A novel, small molecule inhibitor of Hsc70/Hsp70potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemotherapy and Pharmacology, 66(3), 535–545.PubMedCrossRefGoogle Scholar
  57. Mendillo, M. L., Santagata, S., Koeva, M., et al. (2012). HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell, 150, 549–562.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Michaelis, M., Doerr, H. W., & Cinat, J. (2009). The story of human cytomegalovirus and cancer: Increasing evidence and open questions. Neoplasia, 11, 1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Misra, S., Hascall, V. C., Markwald, R. R., et al. (2015). Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Frontiers in Immunology, 6, 201.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Monma, H., Harashima, N., Inao, T., et al. (2013). The HSP70 and autophagy inhibitor pifithrin-μ enhances the antitumor effects of TRAIL on human pancreatic cancer. Molecular Cancer Therapeutics, 12(4), 341–351.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Monteiro, J., & Fodde, R. (2010). Cancer stemness and metastasis: Therapeutic consequences and perspectives. European Journal of Cancer, 46(7), 1198–1203.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Muller, P., Ruckova, E., Halada, P., et al. (2013). C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene, 32(25), 3101–3110.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Murata, S., Minami, Y., Minami, M., et al. (2001). CHIP is a chaperone- dependent E3 ligase that ubiquitylates unfolded protein. EMBO Reports, 2(12), 1133–1138.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Nakagawa, H., & Maeda, S. (2012). Molecular mechanisms of liver injury and hepatocarcinogenesis: Focusing on the role of stress-activated MAPK. Pathology Research International, 2012, 172894.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Newman, B., Liu, Y., Lee, H. F., et al. (2012). HSP90 inhibitor 17-AAG selectively eradicates lymphoma in stem cells. Cancer Research, 72(17), 4551–4561.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Oettle, H., Post, S., Neuhaus, P., et al. (2007). Adjuvant chemotherapy with gemcitabine vs observation patients undergoing curative-intent resection of pancreatic cancer: A randomized controlled trial. JAMA, 297, 267–277.PubMedCrossRefGoogle Scholar
  68. Partida-Rodrıguez, O., Torres, J., Flores-Luna, L., et al. (2010). Polymorphisms in TNF and HSP-70 show a significant association with gastric cancer and duodenal ulcer. International Journal of Cancer, 1126(8), 1861–1868.CrossRefGoogle Scholar
  69. Qiu, C., Xie, Q., Zhang, D., et al. (2014). GM-CSF induces cyclin D1 expression and proliferation of endothelial progenitor cells via PI3K and MAPK signaling. Cellular Physiology and Biochemistry, 33, 784–795.PubMedCrossRefGoogle Scholar
  70. Ritossa, F. (1962). A new puffing pattern induced by temperature shock and DNP in Drosophila. Cellular and Molecular Life Sciences, 18, 571–573.CrossRefGoogle Scholar
  71. Ruckova, E., Muller, P., Nenutil, R., et al. (2012). Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperonesystem in cancer. Cellular & Molecular Biology Letters, 17(3), 446–458.CrossRefGoogle Scholar
  72. Schepers, A. G., Hugo, J., Snippert, H. J., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.CrossRefPubMedGoogle Scholar
  73. Schildkopf, P., Frey, B., Ott, O. J., et al. (2011). Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiotherapy and Oncology, 101, 109–115.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Schlesinger, M. J. (1990). Heat shock proteins. The Journal of Biological Chemistry, 265, 12111–12114.PubMedGoogle Scholar
  75. Schmitt, E., Gehrmann, M., Brunet, M., et al. (2007). Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. Journal of Leukocyte Biology, 81, 15–27.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Shevtsov, M., & Multhoff, G. (2016). Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.PubMedPubMedCentralGoogle Scholar
  77. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10–29.Google Scholar
  78. Smith, D. F., Whitesell, L., Nair, S. C., et al. (1995). Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Molecular and Cellular Biology, 15(12), 6804–6812.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Strutt, D. I., Weber, U., & Mlodzik, M. (1997). The role of RhoA in tissue polarity and frizzled signalling. Nature, 387, 292–295.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Tahara, T., Shibata, T., Arisawa, T., et al. (2009). The BB genotype of heat-shock protein (HSP) 70-2 gene is associated with gastric pre-malignant condition in H. pylori-infected older patients. Anticancer Research, 29, 3453–3458.PubMedPubMedCentralGoogle Scholar
  81. Takaishi, S., Okumura, T., Shuiping, T., et al. (2009). Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells, 27(5), 1006–1020.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Tao, L. P., Zou, H., & Huang, Z. M. (2014). Effects of Helicobacter pylori and heat shock protein 70 on the proliferation of human gastric epithelial cells. Gastroenterology Research and Practice, 2014, 79342.Google Scholar
  83. Tissieres, A., Mitchell, H. K., & Tracy, U. M. (1974). Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. Journal of Molecular Biology, 84, 389–398.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Tsai, S. Y., Jesus, A., Segovia, J. A., et al. (2014). DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: Role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathogens, 10, e1003848.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Valtcheva, N., Primorac, A., & Jurisic, G. (2013). The orphan adhesion G protein-coupled receptor GPR97 regulates migration of lymphatic endothelial cells via the small GTPases RhoA and Cdc42. The Journal of Biological Chemistry, 288, 35736–35748.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Vries, R. G. J., Huch, M., & Clevers, H. (2010). Stem cells and cancer of the stomach and intestine. Molecular Oncology, 45, 373–384.CrossRefGoogle Scholar
  87. Walsh, N., O'Donovan, N., Kennedy, S., et al. (2009). Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Science, 7, 3.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Walsh, N., Larkin, A., Swan, N., et al. (2011). RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Letters, 306, 180–189.PubMedCrossRefPubMedCentralGoogle Scholar
  89. Wang, M., Ye, R., Barron, E., et al. (2010). Essential role of the unfolded protein response regulator GRP78/BiP in protection from neuronal apoptosis. Cell Death and Differentiation, 17, 488–498.PubMedCrossRefGoogle Scholar
  90. Wegele, H., Müller, L., & Buchner, J. (2004). Hsp70 and Hsp90—A relay team for protein folding. Reviews of Physiology, Biochemistry and Pharmacology, 151, 1–44.PubMedCrossRefPubMedCentralGoogle Scholar
  91. Wu, M. J., Jan, C., Tsay, Y. G., et al. (2010). Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling. Molecular Cancer, 9, 283.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Wu, F. H., Yuan, Y., Li, D., et al. (2012). Extracellular HSPA1A promotes the growth of hepatocarcinoma by augmenting tumor cell proliferation and apoptosis-resistance. Cancer Letters, 317, 157–164.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wu, T. T., Tai, Y. T., Cherng, Y. G., et al. (2013). GATA-2 transduces LPS-induced il-1β gene expression in macrophages via a toll-like receptor 4/MD88/MAPK-dependent mechanism. PLoS One, 8, e72404.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Xia, Y., Liu, Y., Rocchi, P., et al. (2012). Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Letters, 318(2), 145–153.PubMedCrossRefPubMedCentralGoogle Scholar
  95. Yang, Y. C., Wang, S. W., Hung, H. Y., et al. (2007). Isolation and characterization of human gastric cell lines with stem cell phenotypes. Journal of Gastroenterology and Hepatology, 22(9), 1460–1468.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Yang, X., Wang, J., Zhou, Y., et al. (2012). Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Letters, 321, 137–143.CrossRefPubMedGoogle Scholar
  97. Yanoma, T., Ogata, K., Yokobori, T., et al. (2017). Heat shock-induced HIKESHI protects cell viability via nuclear translocation of heat shock protein 70. Oncology Reports, 38(3), 1500–1506.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Yi, Z., Li, Y., Liu, D., et al. (2017). Extracellular HSP70/HSP70-PCs regulate hepatocarcinoma cell migration and invasion via RhoA. Oncology Letters, 13, 1095–1100.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Young, J. C., Agashe, V. R., Siegers, K., et al. (2004). Pathways of chaperone-mediated protein folding in the cytosol. Nature Reviews. Molecular Cell Biology, 5, 781–791.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Zhang, J., Jiang, Y., Jia, Z., et al. (2006). Association of elevated GRP78 expression with increased lymph node metastasis and poor prognosis in patients with gastric cancer. Clinical & Experimental Metastasis, 23, 401.CrossRefGoogle Scholar
  101. Zhang, T., Hamza, A., Cao, X., et al. (2008). A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Molecular Cancer Therapeutics, 7(1), 162–170.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Zhang, L., Pang, E., Loo, R. R., et al. (2011). Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells. Proteomics, 11(24), 4638–4647.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Zhang, H., Gao, H., Liu, C., et al. (2015a). Expression and clinical significance of HSPA2 in pancreatic ductal-adenocarcinoma. Diagnostic Pathology, 10, 13.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhang, Y., Guo, X., Li, Z., et al. (2015b). A systematic investigation based on microRNA-mediated gene regulatory network reveals that dysregulation of microRNA-19a/Cyclin D1 axis confers an oncogenic potential and a worse prognosis in human hepatocellular carcinoma. RNA Biology, 12, 643–657.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Zhao, Z. G., & Shen, W. L. (2005). Heat shock protein 70 antisense oligonucleotide inhibits cell growth and induces apoptosis in human gastric cancer cell line SGC-7901. World Journal of Gastroenterology, 11(1), 73–78.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zhe, Y., Li, Y., Liu, D., et al. (2016). Extracellular HSP70-peptide complexes promote the proliferation of hepatocellular carcinoma cells via TLR2/4/JNK1/2MAPK pathway. Tumour Biology, 37, 13951–13959.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dipamoy Datta
    • 1
  • Suparna Banerjee
    • 2
  • Anupama Ghosh
    • 3
  • Soumyajit Banerjee Mustafi
    • 4
  • Prosenjit Sen
    • 2
  • Sanghamitra Raha
    • 1
    • 5
  1. 1.Department of BiotechnologyVisva-BharatiSantiniketanIndia
  2. 2.Department of Biological ChemistryIndian Association for the Cultivation of ScienceKolkataIndia
  3. 3.Division of Plant BiologyBose InstituteKolkataIndia
  4. 4.University of Oklahoma Health Sciences CenterOklahoma CityUSA
  5. 5.KolkataIndia

Personalised recommendations