The Effectiveness of Antitumor Vaccine Enriched with a Heat Shock Protein 70

  • Gennadiy Didenko
  • Olena Kruts
  • Larysa Skivka
  • Yuriy Prylutskyy
Part of the Heat Shock Proteins book series (HESP, volume 14)


Intracellular heat shock proteins (HSP) are overexpressed in majority of malignantly transformed cells providing stress-tolerance of tumor cells and playing important role in pathophysiology of tumor growth. The discovery of this fact has led to the development of anticancer drugs targeting molecular chaperone neutralization to sensitize tumor cells to such stressors as chemo- and radiotherapy. However, the results of applying these preparations proved to be insufficiently efficient in inhibiting tumor growth and preventing tumor progression. The finding about membrane and extracellular HSP localization has initiated a new trend in the development of methods of active immunotherapy of cancer. This has become possible due to the molecular chaperone’s ability to transform even the most tolerogenic tumor-associated antigens into immunogenic in the reaction of cross-presentation, as well as the HSP ability to function as endogenous alarmins – the agonists of pattern recognition receptor structures of the immune system – which stimulate functional maturation of antigen presenting cells. Thus, this chapter summarizes the reported as well as our own data concerning the application of HSP in cancer immune therapy.


Antigen cross-presentation Heat shock protein Hsp70 HSP-based cancer vaccines Membrane and extracellular HSP 



Antigen presenting cells


Cytotoxic T-lymphocytes


Food and Drug Administration, USA


Heat shock proteins


Lectin-like oxidized low-density lipoprotein receptor-1


The major histocompatibility complex


Small interfering RNA


Scavenger receptor expressed by endothelial cells-1


Toll-like receptors


Regulatory T-cells



This work was supported by R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine and Taras Shevchenko National University of Kyiv.


  1. Abbas, A. K., & Lichtmann, A. H. (2009). In S. Pillai (Ed.), Cellular and molecular immunology (6th ed.). Philadelphia: Saunreds Elsevier.Google Scholar
  2. Adkins, I., Fucikova, J., Garg, A. D., Agostinis, P., & Špíšek, R. (2015). Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. OncoImmunology, 3, 968434.CrossRefGoogle Scholar
  3. Afanasieva, K. S., Prylutska, S. V., Lozovik, A. V., Bogutska, K. I., Sivolob, A. V., Prylutskyy, Y. I., et al. (2015). С60 fullerene prevents genotoxic effect of doxorubicin on human lymphocytes in vitro. Ukrainian Biochemical Journal, 87, 91.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ampie, L., Choy, W., Lamano, J. B., Fakurnejad, S., Bloch, O., & Parsa, A. T. (2015). Heat shock protein vaccines against glioblastoma: From bench to bedside. Journal of Neuro-Oncology, 123, 441.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ashley, M. P., & Kotlarski, I. (1987). In vivo H-2K and H-2D antigen expression in two allogeneic mouse tumours of low immunogenicity. Immunology and Cell Biology, 65, 323.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beatty, G. L., Li, Y., & Long, K. B. (2017). Cancer immunotherapy: Activating innate and adaptive immunity through CD40 agonists. Expert Review of Anticancer Therapy, 17, 175.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bellipanni, G., Cappello, F., Scalia, F., Conway de Macario, E., Macario, A. J., & Giordano, A. (2016). Zebrafish as a model for the study of chaperonopathies. Journal of Cellular Physiology, 231, 2107.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bevan, M. J. (2006). Cross-priming. Nature Immunology, 7, 363.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Binder, R. J. (2014). Functions of heat shock proteins in pathways of the innate and adaptive immune system. Journal of Immunology, 193, 5765.CrossRefGoogle Scholar
  10. Bloch, O., & Parsa, A. T. (2014). Heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: A phase II, single arm trial. Neuro-Oncology, 16, 758.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bloch, O., Crane, C. A., Fuks, Y., Kaur, R., Aghi, M. K., Berger, M. S., et al. (2014). Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: A phase II, single-arm trial. Neuro-Oncology, 16, 274.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bolhassani, A., & Rafati, S. (2008). Heat-shock proteins as powerful weapons in vaccine development. Expert Review of Vaccines, 7, 1185.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boliukh, I. A., Didenko, G. V., Shpak, E. G., Kuzmenko, O. P., Lisovenko, G. S., & Potebnya, G. P. (2013). Experimental study of the use of heat shocks in vaccine therapy of malignant neoplasms. Clinical Oncology, 2, 143.Google Scholar
  14. Boliukh, I. A., Didenko, G. V., Shpak, E. G., Kuzmenko, O. P., Lisovenko, G. S., & Potebnya, G. P. (2014). The role of HSP-peptide complexes in the construction of antitumor vaccines. Reports of the National Academy of Sciences of Ukraine, 2, 146.CrossRefGoogle Scholar
  15. Borges, T. J., Wieten, L., van Herwijnen, M. J., Broere, F., van der Zee, R., Bonorino, C., & van Eden, W. (2012). The anti-inflammatory mechanisms of Hsp70. Frontiers in Immunology, 3, 95.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bray, F., Ren, J. S., Masuyer, E., & Ferlay, J. (2013). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. International Journal of Cancer, 132, 1133.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bulavin, L., Adamenko, I., Prylutskyy, Y., Durov, S., Graja, A., Bogucki, A., & Scharff, P. (2000). Structure of fullerene C60 in aqueous solution. Physical Chemistry Chemical Physics, 2, 1627.CrossRefGoogle Scholar
  18. Burlaka, A., Lukin, S., Prylutska, S., Remeniak, O., Prylutskyy, Y., Shuba, M., et al. (2010). Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: In vitro studies. Experimental Oncology, 32, 48.PubMedPubMedCentralGoogle Scholar
  19. Calderwood, S. K., & Gong, J. (2016). Heat shock proteins promote cancer: It’s a protection racket. Trends in Biochemical Sciences, 41, 311.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cavallo, F., Aurisicchio, L., Mancini, R., & Ciliberto, G. (2014). Xenogene vaccination in the therapy of cancer. Expert Opinion on Biological Therapy, 14, 1427.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chajon, E., Castelli, J., Marsiglia, H., & De Crevoisier, R. (2017). The synergistic effect of radiotherapy and immunotherapy: A promising but not simple partnership. Critical Reviews in Oncology/Hematology, 111, 124.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chalmin, F., Ladoire, S., Mignot, G., Vincent, J., Bruchard, M., Remy-Martin, J. P., et al. (2010). Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The Journal of Clinical Investigation, 120, 457.PubMedPubMedCentralGoogle Scholar
  23. Chamoto, K., Takeshima, T., Wakita, D., Ohkuri, T., Ashino, S., Omatsu, T., et al. (2009). Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio- and immuno-resistant lung carcinoma cells. Cancer Science, 100, 934.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chen, P., & Bonaldo, P. (2013). Role of macrophage polarization in tumor angiogenesis and vessel normalization: Implications for new anticancer therapies. International Review of Cell and Molecular Biology, 301, 1.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Ciocca, D. R., Cayado-Gutierrez, N., Maccioni, M., & Cuello-Carrion, F. D. (2012). Heat shock proteins (HSPs) based anti-cancer vaccines. Current Molecular Medicine, 12, 1183.PubMedCrossRefPubMedCentralGoogle Scholar
  26. De Gruijl, T. D., van den Eertwegh, A. J., Pinedo, H. M., & Scheper, R. J. (2008). Whole-cell cancer vaccination: From autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunology, Immunotherapy, 57, 1569.PubMedPubMedCentralCrossRefGoogle Scholar
  27. De Maio, A. (2014). Extracellular Hsp70: Export and function. Current Protein & Peptide Science, 15, 225.CrossRefGoogle Scholar
  28. De Maio, A., & Vazquez, D. (2013). Extracellular heat shock proteins: A new location, a new function. Shock, 40, 239.PubMedPubMedCentralCrossRefGoogle Scholar
  29. D’Errico, G., Machado, H. L., & Sainz, B., Jr. (2017). A current perspective on cancer immune therapy: Step-by-step approach to constructing the magic bullet. Clinical and Translational Medicine, 6, 3.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Didenko, G. V., Dvorshchenko, O. S., Lisovenko, G. S., Kovalenko, N. G., Potebnya, G. P., Kikot, V. V., et al. (2003). The modifiсation of cancer vaccine prepared on the base of metabolic products of B. subtilis 7025 with the use of sorbents and automacrophages. Experimental Oncology, 25, 116.Google Scholar
  31. Didenko, G. V., Yevtushenko, O. I., Kuzmenko, A. P., Lisovenko, G. S., & Potebnia, G. P. (2010). Patent for utility model No. 52252 (Ukraine). Substance with cytotoxic action. Publ. 25.08.2010, Bull. N16.Google Scholar
  32. Didenko, G., Prylutska, S., Kichmarenko, Y., Potebnya, G., Prylutskyy, Y., Slobodyanik, N., et al. (2013). Evaluation of the antitumor immune response to C60 fullerene. Materialwissenschaft und Werkstofftechnik, 44, 124.CrossRefGoogle Scholar
  33. Dong, B., Sun, L., Wu, X., Zhang, P., Wang, L., Wei, H., et al. (2010). Vaccination with TCL plus MHSP65 induces anti-lung cancer immunity in mice. Cancer Immunology, Immunotherapy, 59, 899.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dong, L., Zhang, X., Ren, J., Wu, S., Yu, T., Hou, L., et al. (2013). Human prostate stem cell antigen and HSP70 fusion protein vaccine inhibits prostate stem cell antigen-expressing tumor growth in mice. Cancer Biotherapy & Radiopharmaceuticals, 28, 391.CrossRefGoogle Scholar
  35. Dowling, J. K., & Mansell, A. (2016). Toll-like receptors: The Swiss army knife of immunity and vaccine development. Clinical & Translational Immunology, 5, 85.CrossRefGoogle Scholar
  36. Dvorshchenko, O., Didenko, G., Pavluchenko, N., Kuzmenko, O., Golub, O., Radchenko, E., & Potebnya, G. (2008). Modulation of antitumor activity of autovaccine prepared on the basis of exogenous glycoproteids of B. subtilis by nanocomposites of aerosol. Annales UMCS. Pharmacia, 21, 321.Google Scholar
  37. Einstein, M. H., Kadish, A. S., Burk, R. D., Kim, M. Y., Wadler, S., Streicher, H., et al. (2007). Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecologic Oncology, 106, 453.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Evstigneev, M. P., Buchelnikov, A. S., Voronin, D. P., Rubin, Y. V., Belous, L. F., Prylutskyy, Y. I., & Ritter, U. (2013). Complexation of C60 fullerene with aromatic drugs. Current Medicinal Chemistry, 14, 568.Google Scholar
  39. Fedosova, N. I., Voeykova, I. M., Karaman, О. М., Symchych, T. V., Didenko, G. V., Lisovenko, G. S., et al. (2015). Cytotoxic activity of immune cells following administration of xenogeneic cancer vaccine in mice with melanoma B-16. Experimental Oncology, 37, 130.PubMedPubMedCentralGoogle Scholar
  40. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., et al. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base (Vol. 11). Lyon: International Agency for Research on Cancer.Google Scholar
  41. Finn, O. J., & Beatty, P. L. (2016). Cancer immunoprevention. Current Opinion in Immunology, 39, 52.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L., & Kroemer, G. (2017). Immunogenic cell death in cancer and infectious disease. Nature Reviews. Immunology, 17, 97.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Goldberg, J. L., & Sondel, P. M. (2015). Enhancing cancer immunotherapy via activation of innate immunity. Seminars in Oncology, 42, 562.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guo, C., Manjili, M. H., Subjeck, J. R., Sarkar, D., Fisher, P. B., & Wang, X. Y. (2013). Therapeutic cancer vaccines: Past, present, and future. Advances in Cancer Research, 119, 421.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hellmann, M. D., Friedman, C. F., & Wolchok, J. D. (2016). Combinatorial cancer immunotherapies. Advances in Immunology, 130, 251.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hendriks, L. E. L., & Dingemans, A. C. (2017). Heat shock protein antagonists in early stage clinical trials for NSCLC. Expert Opinion on Investigational Drugs, 26, 541.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., et al. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, 43, 33.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hirayama, M., & Nishimura, Y. (2016). The present status and future prospects of peptide-based cancer vaccines. International Immunology, 28, 319.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hu, Y., Li, Z., Mi, D. H., Cao, N., Zu, S. W., Wen, Z. Z., et al. (2017). Chemoradiation combined with regional hyperthermia for advanced oesophageal cancer: A systematic review and meta-analysis. Journal of Clinical Pharmacy and Therapeutics, 42, 155.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Janeway, C. A., Travers, P., Walport, M., & Shlomchik, M. (2002). Immunology: The immune system in health and disease (5th ed.). New York: Garlandpress.Google Scholar
  51. Kamta, J., Chaar, M., Ande, A., Altomare, D. A., & Ait-Oudhia, S. (2017). Advancing cancer therapy with present and emerging immuno-oncology approaches. Frontiers in Oncology, 7, 64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kanegasaki, S., & Tsuchiya, T. (2014). Alarmins released during local antitumor treatments play an essential role in enhancing tumor growth inhibition at treated and non-treated sites via a derivative of CCL3. OncoImmunology, 3, 958956.CrossRefGoogle Scholar
  53. Khong, H., & Overwijk, W. W. (2016). Adjuvants for peptide-based cancer vaccines. Journal for ImmunoTherapy of Cancer, 4, 56.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Koliński, T., Marek-Trzonkowska, N., Trzonkowski, P., & Siebert, J. (2016). Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Central European Journal of Immunology, 41, 317.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kraśko, J. A., Žilionytė, K., Darinskas, A., Strioga, M., Rjabceva, S., Zalutsky, I., et al. (2017). Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model. Oncology Reports, 37, 171.PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kumar, C., Kohli, S., Bapsy, P. P., Vaid, A. K., Jain, M., Attili, V. S., & Sharan, B. (2017). Immune modulation by dendritic-cell-based cancer vaccines. Journal of Biosciences, 42, 161.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Ladoire, S., Hannani, D., Vetizou, M., Locher, C., Aymeric, L., Apetoh, L., et al. (2014). Cell-death-associated molecular patterns as determinants of cancer immunogenicity. Antioxidants & Redox Signaling, 20, 1098.CrossRefGoogle Scholar
  58. Larocca, C., & Schlom, J. (2017). Viral vector-based therapeutic cancer vaccines. Cancer Journal, 17, 359.CrossRefGoogle Scholar
  59. Li, J., Xing, Y., Zhou, Z., Yao, W., Cao, R., Li, T., Xu, M., & Wu, J. (2016a). Microbial HSP70 peptide epitope 407-426 as adjuvant in tumor-derived autophagosome vaccine therapy of mouse lung cancer. Tumour Biology, 37, 15097.CrossRefPubMedGoogle Scholar
  60. Li, Y., Lin, Z., Zhao, M., Xu, T., Wang, C., Xia, H., Wang, H., & Zhu, B. (2016b). Multifunctional selenium nanoparticles as carriers of HSP70 siRNA to induce apoptosis of HepG2 cells. International Journal of Nanomedicine, 11, 3065.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li, K., Qu, S., Chen, X., Wu, Q., & Shi, M. (2017). Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. International Journal of Molecular Sciences, 18, 404.PubMedCentralCrossRefGoogle Scholar
  62. Lindquist, S., & Craig, E. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lohmueller, J., & Finn, O. J. (2017). Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacology & Therapeutics. Scholar
  64. Ludgate, C. M. (2012). Optimizing cancer treatments to induce an acute immune response: Radiation abscopal effects, PAMPs, and DAMPs. Clinical Cancer Research, 18, 4522.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Luo, Y., Wen, Y. J., Ding, Z. Y., Fu, C. H., Wu, Y., Liu, J. Y., et al. (2006). Immunotherapy of tumors with protein vaccine based on chicken homologous Tie-2. Clinical Cancer Research, 12, 1813.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Luo, M., Wang, H., Wang, Z., Cai, H., Lu, Z., Li, Y., et al. (2017). A STING-activating nanovaccine for cancer immunotherapy. Nature Nanotechnology.
  67. Lynch, D., & Murphy, A. (2016). The emerging role of immunotherapy in colorectal cancer. Annals of Translational Medicine, 4, 305.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lynchak, O. V., Prylutskyy, Y. I., Rybalchenko, V. K., Kyzyma, O. A., Soloviov, D., Kostjukov, V. V., et al. (2017). Comparative analysis of the antineoplastic activity of C60 fullerene with 5-fluorouracil and pyrrole derivative in vivo. Nanoscale Research Letters, 12, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. McConnell, J. R., & McAlpine, S. R. (2013). Heat shock proteins 27, 40, and 70 as combinational and dual therapeutic cancer targets. Bioorganic & Medicinal Chemistry Letters, 23, 1923.CrossRefGoogle Scholar
  70. McNulty, S., Colaco, C. A., Blandford, L. E., Bailey, C. R., Baschieri, S., & Todryk, S. (2013). Heat-shock proteins as dendritic cell-targeting vaccines-getting warmer. Immunology, 139, 407.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mendonça, R., Silveira, A. A., & Conran, N. (2016). Red cell DAMPs and inflammation. Inflammation Research, 65, 665.PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mikulandra, M., Pavelic, J., & Glavan, T. M. (2017). Recent findings on the application of toll-like receptors agonists in cancer therapy. Current Medicinal Chemistry.
  73. Mizrahy, S., Hazan-Halevy, I., Landesman-Milo, D., Ng, B. D., & Peer, D. (2017). Advanced strategies in immune modulation of cancer using lipid-based nanoparticles. Frontiers in Immunology, 8, 69.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Mohammed, S., Bakshi, N., Chaudri, N., Akhter, J., & Akhtar, M. (2016). Cancer vaccines: Past, resent, and future. Advances in Anatomic Pathology, 23, 180.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Murshid, A., Gong, J., Stevenson, M. A., & Calderwood, S. K. (2011). Heat shock proteins and cancer vaccines: Developments in the past decade and chaperoning in the decade to come. Expert Review of Vaccines, 10, 1553.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nguyen, C. T., Hong, S. H., Sin, J. I., Vu, H. V., Jeong, K., Cho, K. O., et al. (2013). Flagellin enhances tumor-specific CD8+T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model. Vaccine, 31, 3879.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ni, L., & Dong, C. (2017). New checkpoints in cancer immunotherapy. Immunological Reviews, 276, 52.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Overwijk, W. W., & Restifo, N. P. (2001). B16 as a mouse model for human melanoma. Current Protocols in Immunology.
  79. Panchuk, R. R., Prylutska, S. V., Chumak, V. V., Skorokhyd, N. R., Lehka, L. V., Evstigneev, M. P., et al. (2015). Application of С60 fullerene-doxorubicin complex for tumor cell treatment in vitro and in vivo. Journal of Biomedical Nanotechnology, 11, 1139.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Papaioannou, T. G., Karamanou, M., Protogerou, A. D., & Tousoulis, D. (2016). Heat therapy: An ancient concept re-examined in the era of advanced biomedical technologies. The Journal of Physiology, 594, 7141.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Paul, W. E. (2013). Fundamental immunology. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  82. Potebnya, G. P., Bolykh, I. A., Didenko, G. V., Kuzmenko, O. P., Shpak, E. G., Lisovenko, G. S., & Chekhun, V. F. (2013). Patent for utility model no. 83120 (Ukraine). Method of constructing an antitumor vaccine. Publ. 27.08.2013, Bull. N16.Google Scholar
  83. Prilutski, Y., Durov, S., Bulavin, L., Pogorelov, V., Astashkin, Y., Yashchuk, V., et al. (1998). Study of structure of colloidal particles of fullerenes in water solution. Molecular Crystals and Liquid Crystals, 324, 65.CrossRefGoogle Scholar
  84. Prilutski, Y. I., Durov, S. S., Yashchuk, V. N., Ogul’chansky, T. Y., Pogorelov, V. E., Astashkin, Y. A., et al. (1999). Theoretical predictions and experimental studies of self-organization C60 nanoparticles in water solution and on the support. The European Physical Journal D, 9, 341.CrossRefGoogle Scholar
  85. Prylutska, S. V., Burlaka, A. P., Klymenko, P. P., Grynyuk, I. I., Prylutskyy, Y. I., Schuetze, C., & Ritter, U. (2011a). Using water-soluble C60 fullerenes in anticancer therapy. Cancer Nanotechnology, 2, 105.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Prylutska, S. V., Burlaka, A. P., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2011b). Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Experimental Oncology, 33, 162.PubMedPubMedCentralGoogle Scholar
  87. Prylutska, S. V., Burlaka, A. P., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2011c). Comparative study of antitumor effect of pristine C60 fullerenes and doxorubicin. Biotechnologia Acta, 4, 82.Google Scholar
  88. Prylutska, S. V., Didenko, G. V., Potebnya, G. P., Bogutska, K. I., Prylutskyy, Y. I., Ritter, U., & Scharff, P. (2014a). Toxic effect of С60 fullerene-doxorubicin complex towards normal and tumor cells in vitro. Biopolymers and Cell, 30, 372.CrossRefGoogle Scholar
  89. Prylutska, S., Grynyuk, I., Matyshevska, O., Prylutskyy, Y., Evstigneev, M., Scharff, P., & Ritter, U. (2014b). C60 fullerene as synergistic agent in tumor-inhibitory doxorubicin treatment. Drugs in R&D, 14, 333.CrossRefGoogle Scholar
  90. Prylutska, S. V., Korolovych, V. F., Prylutskyy, Y. I., Evstigneev, M. P., Ritter, U., & Scharff, P. (2015a). Tumor-inhibitory effect of C60 fullerene complex with doxorubicin. Nanomedicine and Nanobiology, 2, 49.CrossRefGoogle Scholar
  91. Prylutska, S., Skivka, L., Didenko, G., Prylutskyy, Y., Evstigneev, M., Potebnya, G., et al. (2015b). Complex of C60 fullerene with doxorubicin as a promising agent in antitumor therapy. Nanoscale Research Letters, 10, 499.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Prylutska, S. V., Politenkova, S. V., Afanasieva, K. S., Korolovych, V. F., Bogutska, K. I., Sivolob, A. V., et al. (2017a). Nanocomplex of С60 fullerene with cisplatin: Design, characterization and toxicity. Beilstein Journal of Nanotechnology, 8, 1494.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Prylutska, S., Panchuk, R., Gołuński, G., Skivka, L., Prylutskyy, Y., Hurmach, V., et al. (2017b). С60 fullerene enhances cisplatin anticancer activity and overcomes tumor cells drug resistance. Nano Research, 10, 652.CrossRefGoogle Scholar
  94. Prylutskyy, Y. I., Durov, S. S., Bulavin, L. A., Adamenko, I. I., Moroz, K. O., Geru, I. I., et al. (2001). Structure and thermophysical properties of fullerene C60 aqueous solutions. International Journal of Thermophysics, 22, 943.CrossRefGoogle Scholar
  95. Prylutskyy, Y. I., Yashchuk, V. M., Kushnir, K. M., Golub, A. A., Kudrenko, V. A., Prylutska, S. V., et al. (2003). Biophysical studies of fullerene-based composite for bio-nanotechnology. Materials Science and Engineering: C, 23, 109.CrossRefGoogle Scholar
  96. Prylutskyy, Y. I., Buchelnikov, A. S., Voronin, D. P., Kostjukov, V. V., Ritter, U., Parkinson, J. A., & Evstigneev, M. P. (2013). C60 fullerene aggregation in aqueous solution. Physical Chemistry Chemical Physics, 15, 9351.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Prylutskyy, Y. I., Evstigneev, M. P., Pashkova, I. S., Wyrzykowski, D., Woziwodzka, A., Gołuński, G., et al. (2014a). Characterization of C60 fullerene complexation with antibiotic doxorubicin. Physical Chemistry Chemical Physics, 16, 23164.PubMedCrossRefPubMedCentralGoogle Scholar
  98. Prylutskyy, Y. I., Petrenko, V. I., Ivankov, O. I., Kyzyma, O. A., Bulavin, L. A., Litsis, O. O., et al. (2014b). On the origin of C60 fullerene solubility in aqueous solution. Langmuir, 30, 3967.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Prylutskyy, Y. I., Cherepanov, V. V., Evstigneev, M. P., Kyzyma, O. A., Petrenko, V. I., Styopkin, V. I., et al. (2015a). Structural self-organization of C60 and cisplatin in physiological solution. Physical Chemistry Chemical Physics, 17, 26084.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Prylutskyy, Y. I., Evstigneev, M. P., Cherepanov, V. V., Kyzyma, O. A., Bulavin, L. A., Davidenko, N. A., & Scharff, P. (2015b). Structural organization of С60 fullerene, doxorubicin and their complex in physiological solution as promising antitumor agents. Journal of Nanoparticle Research, 17, 45.CrossRefGoogle Scholar
  101. Prylutskyy, Y. I., Cherepanov, V. V., Kostjukov, V. V., Evstigneev, M. P., Kyzyma, O. A., Bulavin, L. A., et al. (2016). Study of the complexation between Landomycin a and C60 fullerene in aqueous solution. RSC Advances, 6, 81231.CrossRefGoogle Scholar
  102. Qiu, H., Min, Y., Rodgers, Z., Zhang, L., & Wang, A. Z. (2017). Nanomedicine approaches to improve cancer immunotherapy. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. Scholar
  103. Randazzo, M., Terness, P., Opelz, G., & Kleist, C. (2012). Active-specific immunotherapy of human cancers with the heat shock protein Gp96-revisited. International Journal of Cancer, 130, 2219.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Rao, W., Deng, Z. S., & Liu, J. (2010). A review of hyperthermia combined with radiotherapy/chemotherapy on malignant tumors. Critical Reviews in Biomedical Engineering, 38, 101.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Rappa, F., Farina, F., Zummo, G., David, S., Campanella, C., Carini, F., et al. (2012). HSP-molecular chaperones in cancer biogenesis and tumor therapy: An overview. Anticancer Research, 32, 5139.PubMedPubMedCentralGoogle Scholar
  106. Ritter, U., Prylutskyy, Y. I., Evstigneev, M. P., Davidenko, N. A., Cherepanov, V. V., Senenko, A. I., et al. (2015). Structural features of highly stable reproducible C60 fullerene aqueous colloid solution probed by various techniques. Fullerenes, Nanotubes, and Carbon Nanostructures, 23, 530.CrossRefGoogle Scholar
  107. Rivera, V. T., Benoit-Lizon, I., & Apetoh, L. (2017). Rationale for stimulator of interferon genes-targeted cancer immunotherapy. European Journal of Cancer, 75, 86.CrossRefGoogle Scholar
  108. Rocque, G. B., & Cleary, J. F. (2013). Palliative care reduces morbidity and mortality in cancer. Nature Reviews. Clinical Oncology, 10, 80.PubMedCrossRefPubMedCentralGoogle Scholar
  109. Saleh, T., & Shojaosadati, S. A. (2016). Multifunctional nanoparticles for cancer immunotherapy. Human Vaccines & Immunotherapeutics, 12, 1863.CrossRefGoogle Scholar
  110. Santos, T. G., Martins, V. R., & Hajj, G. N. M. (2017). Unconventional secretion of heat shock proteins in cancer. International Journal of Molecular Sciences, 18, 946.PubMedCentralCrossRefGoogle Scholar
  111. Sayour, E. J., & Mitchell, D. A. (2017). Manipulation of innate and adaptive immunity through cancer vaccines. Journal of Immunology Research.
  112. Scharff, P., Carta-Abelmann, L., Siegmund, C., Matyshevska, O. P., Prylutska, S. V., Koval, T. V., et al. (2004a). Effect of X-ray and UV irradiation of the C60 fullerene aqueous solution on biological samples. Carbon, 42, 1199.CrossRefGoogle Scholar
  113. Scharff, P., Risch, K., Carta-Abelmann, L., Dmytruk, I. M., Bilyi, M. M., Golub, O. A., et al. (2004b). Structure of C60 fullerene in water: Spectroscopic data. Carbon, 42, 1203.CrossRefGoogle Scholar
  114. Shevtsov, M., & Multhoff, G. (2017). Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.Google Scholar
  115. Shevtsov, M. A., Yakovleva, L. Y., Nikolaev, B. P., Marchenko, Y. Y., Dobrodumov, A. V., Onokhin, K. V., et al. (2014). Tumor targeting using magnetic nanoparticle Hsp70 conjugate in a model of C6 glioma. Neuro-Oncology, 16, 38.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Shevtsov, M. A., Nikolaev, B. P., Yakovleva, L. Y., Parr, M. A., Marchenko, Y. Y., Eliseev, I., et al. (2015). 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. Journal of Controlled Release, 220, 329.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Skamrova, G. B., Laponogov, I. V., Buchelnikov, A. S., Shckorbatov, Y. G., Prylutska, S. V., Ritter, U., et al. (2014). Interceptor effect of C60 fullerene on the in vitro action of aromatic drug molecules. European Biophysics Journal, 43, 265.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Skivka, L. M. (2013). Immunogenic cancer cell death: How it can be exploited. Experimental Oncology, 35, 131.Google Scholar
  119. Skivka, L. M., Horbyk, H. V., Fedorchuk, O. H., & Pozur, V. V. (2009). Tumor-associated macrophages in the prospect of development of targeted cancer therapy. Tsitologiia i Genetika, 43, 71.PubMedPubMedCentralGoogle Scholar
  120. Sohail, A., Ahmad, Z., Bég, O. A., Arshad, S., & Sherin, L. (2017). A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer, 104, 452.PubMedCrossRefPubMedCentralGoogle Scholar
  121. Sottile, M. L., Losinno, A. D., Fanelli, M. A., Cuello-Carrión, F. D., Montt-Guevara, M. M., Vargas-Roig, L. M., & Nadin, S. B. (2015). Hyperthermia effects on Hsp27 and Hsp72 associations with mismatch repair (MMR) proteins and cisplatin toxicity in MMR-deficient/proficient colon cancer cell lines. International Journal of Hyperthermia, 31, 464.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Srivastava, P. K., & Das, M. R. (1984). The serologically unique cell-surface antigen of zajdela ascitic hepatoma is also its tumor-associated transplantation antigen. International Journal of Cancer, 33, 417.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Srivastava, P. K., Deleo, A. B., & Old, L. J. (1986). Tumor rejection antigens of chemically-induced sarcomas of inbred mice. Proceedings of the National Academy of Sciences of the United States of America, 83, 3407.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Stope, M. B., Koensgen, D., Burchardt, M., Concin, N., Zygmunt, M., & Mustea, A. (2016). Jump in the fire-heat shock proteins and their impact on ovarian cancer therapy. Critical Reviews in Oncology/Hematology, 97, 152.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Strioga, M. M., Darinskas, A., Pasukoniene, V., Mlynska, A., Ostapenko, V., & Schijns, V. (2014). Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: To use or not to use? Vaccine, 32, 4015.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tamura, Y., Yoneda, A., Takei, N., & Sawada, K. (2016). Spatiotemporal regulation of Hsp90-ligand complex leads to immune activation. Frontiers in Immunology, 24, 201.Google Scholar
  127. Thomas, S., & Prendergast, G. C. (2016). Cancer vaccines: A brief overview. Methods in Molecular Biology, 1403, 755.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Tosti, G., Cocorocchio, E., Pennacchioli, E., Ferrucci, P. F., Testori, A., & Martinoli, C. (2014). Heat-shock proteins-based immunotherapy for advanced melanoma in the era of target therapies and immunomodulating agents. Expert Opinion on Biological Therapy, 14, 955.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Tsiatas, M., Mountzios, G., & Curigliano, G. (2016). Future perspectives in cancer immunotherapy. Annals of Translational Medicine, 4, 273.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Vahid, S., Thaper, D., & Zoubeidi, A. (2017). Chaperoning the cancer: The proteostatic functions of the heat shock proteins in cancer. Recent Patents on Anti-Cancer Drug Discovery, 12, 35.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Voeykova, I. M., Fedosova, N. I., Karaman, O. M., Yudina, O. Y., Didenko, G. V., Lisovenko, G. S., et al. (2014). Use of xenogeneic vaccine modified with embryonal nervous tissue antigens in the treatment of B16-melanoma-bearing mice. Experimental Oncology, 36, 24.PubMedPubMedCentralGoogle Scholar
  132. Wang, X., Chen, M., Zhou, J., & Zhang, X. (2014). HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. International Journal of Oncology, 45, 18.CrossRefPubMedGoogle Scholar
  133. Weller, M., Roth, P., Preusser, M., Wick, W., Reardon, D. A., Platten, M., & Sampson, J. H. (2017). Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nature Reviews. Neurology, 13, 363.PubMedCrossRefPubMedCentralGoogle Scholar
  134. Werthmöller, N., Frey, B., Rückert, M., Lotter, M., Fietkau, R., & Gaipl, U. S. (2016). Combination of ionising radiation with hyperthermia increases the immunogenic potential of B16-F10 melanoma cells in vitro and in vivo. International Journal of Hyperthermia, 32, 23.PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wojtowicz, M. E., Dunn, B. K., & Umar, A. (2016). Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Seminars in Oncology, 43, 161.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., & Cao, S. (2017). Heat shock proteins and cancer. Trends in Pharmacological Sciences, 38, 226.CrossRefPubMedGoogle Scholar
  137. Xu, M., Zhou, L., Zhang, Y., Xie, Z., Zhang, J., Guo, L., et al. (2015). A fixed human umbilical vein endothelial cell vaccine with 2 tandem repeats of microbial HSP70 peptide epitope 407-426 as adjuvant for therapy of hepatoma in mice. Journal of Immunotherapy, 38, 276.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Yang, M., Yan, Y., Fang, M., Wan, M., Wu, X., Zhang, X., et al. (2012). MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+tumor immunity in mice. International Immunopharmacology, 13, 408.PubMedCrossRefPubMedCentralGoogle Scholar
  139. Yedjou, C. G., Tchounwou, P. B., Payton, M., Miele, L., Fonseca, D. D., Lowe, L., & Alo, R. A. (2017). Assessing the racial and ethnic disparities in breast cancer mortality in the United States. International Journal of Environmental Research and Public Health, 14, 486.PubMedCentralCrossRefGoogle Scholar
  140. Yi, T., Wei, Y. Q., Tian, L., Zhao, X., Li, J., Deng, H. X., et al. (2007). Humoral and cellular immunity induced by tumor cell vaccine based on the chicken xenogeneic homologous matrix metalloproteinase-2. Cancer Gene Therapy, 14, 158.PubMedCrossRefPubMedCentralGoogle Scholar
  141. Zachova, K., Krupka, M., & Raska, M. (2016). Antigen cross-presentation and heat shock protein-based vaccines. Archivum Immunologiae et Therapiae Experimentalis, 64, 1.PubMedCrossRefPubMedCentralGoogle Scholar
  142. Zhang, Y., Luo, W., Wang, Y., Chen, J., Liu, Y., & Zhang, Y. (2015). Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells. Oncology Reports, 33, 2695.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhu, G., Liu, Y., Yang, X., Kim, Y. H., Zhang, H., Jia, R., et al. (2016). DNA-inorganic hybrid nanovaccine for cancer immunotherapy. Nanoscale, 8, 6684.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zuo, D., Subjeck, J., & Wang, X. Y. (2016). Unfolding the role of large heat shock proteins: New insights and therapeutic implications. Frontiers in Immunology, 7, 75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gennadiy Didenko
    • 1
  • Olena Kruts
    • 1
  • Larysa Skivka
    • 2
  • Yuriy Prylutskyy
    • 2
  1. 1.R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of UkraineKyivUkraine
  2. 2.Taras Shevchenko National University of Kyiv, ESC “Institute of Biology and Medicine”KyivUkraine

Personalised recommendations