Clinical Implication of Heat Shock Protein 70 in Kidney Disease

Kidney Diseases and HSP70
  • Alev Yilmaz
  • Zeynep Nagehan Yuruk Yildirim
Part of the Heat Shock Proteins book series (HESP, volume 14)


Heat shock protein (HSP) 70 has been investigated from various aspects in experimental studies, since it is the most abundant form of HSP in cells. HSP 70 is involved in response to various acute and chronic insults of kidney and also other parts of the urinary tract. Although it is not a specific biomarker for any of the kidney diseases, HSP 70 level of body fluids may be beneficial as a biomarker in some specific circumstances, for example for the differential diagnosis of “a children with fever”. The number of possible diseases in this situation is limited and an infection is most likely to be the reason of fever. Additionally, clarifying the exact role of HSP 70 in different kidney diseases enables to discover new therapeutic options in order to prevent renal fibrosis and chronic renal failure in the future. This chapter reviews experimental and clinical studies to find out the opportunities to utilize HSP 70 in daily clinical practice.


Acute kidney diseases Biomarker Chronic kidney diseases Heat shock protein 70 HSP70 Kidney disease 



advanced glycosylated-end products


acute kidney injury


area under the curve


chronic kidney disease


cerebrospinal fluid


epithelial-mesenchymal transition


end stage renal disease




heat shock protein


interferon gamma


interleukin 18


idiopathic nephrotic syndrome


janus kinase/signal transducers and activators of transcription


kidney injury molecule type 1


Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase


neutrophil gelatinase-associated lipocalin


nuclear factor kappa B


nitric oxide synthase


phospho-signal transducer and activator of transcription 3


reactive oxygen species


Ste20-like kinase


Signal transducer and activator of transcription 3


transforming growth factor beta


type 1 diabetes mellitus


urine level of heat shock proetin 70


urine heat shock protein/creatinine ratio


urinary tract infection


wilms tumor 1





  1. Barisić, K., Petrik, J., Rumora, L., Cepelak, I., & Grubisić, T. Z. (2002). Expression of Hsp70 in kidney cells exposed to ochratoxin A. Archives of Toxicology, 76(4), 218–226.CrossRefPubMedGoogle Scholar
  2. Barrera-Chimal, J., Pérez-Villalva, R., Cortés-González, C., et al. (2011). Hsp72 is an early and sensitive biomarker to detect acute kidney injury. EMBO Molecular Medicine, 3(1), 5–20.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barutta, F., Pinach, S., Giunti, S., et al. (2008). Heat shock protein expression in diabetic nephropathy. American Journal of Physiology. Renal Physiology, 295(6), 1817–1824.CrossRefGoogle Scholar
  4. Beck, F. X., Neuhofer, W., & Müller, E. (2000). Molecular chaperones in the kidney: Distribution, putative roles and regulation. American Journal of Physiology. Renal Physiology, 279(2), 203–215.CrossRefGoogle Scholar
  5. Buraczynska, M., Swatowski, A., Buraczynska, K., Dragan, M., & Ksiazek, A. (2009). Heat-shock protein gene polymorphisms and the risk of nephropathy in patients with Type 2 diabetes. Clinical Science, 116(1), 81–86.CrossRefPubMedGoogle Scholar
  6. Caramori, M. L., & Mauer, M. (2009). Pathogenesis and pathophysiology of diabetic nephropathy. In A. Greenberg (Ed.), Primer on kidney diseases (pp. 214–223). Philadelphia: Saunders.CrossRefGoogle Scholar
  7. Chen, S. C., Guh, J. Y., Chen, H. C., Yang, Y. L., Huang, J. S., & Chuang, L. Y. (2007). Advanced glycation end-product-induced mitogenesis is dependent on Janus kinase 2-induced heat shock protein 70 in normal rat kidney interstitial fibroblast cells. Translational Research, 149(5), 274–281.CrossRefPubMedGoogle Scholar
  8. Crowe, A. V., McArdle, A., McArdle, F., et al. (2007). Markers of oxidative stress in the skeletal muscle of patients on hemodialysis. Nephrology, Dialysis, Transplantation, 22, 1177–1183.CrossRefPubMedGoogle Scholar
  9. Cybulsky, A. V., Guillemette, J., & Papillon, J. (2016). Ste20-like kinase, SLK, activates the heat shock factor 1 – Hsp70 pathway. Biochimica et Biophysica Acta, 1863(9), 2147–2155.CrossRefPubMedGoogle Scholar
  10. Davies, E. L., Bacelar, M. M., Marshall, M. J., Johnson, E., Wardle, T. D., Andrew, S. M., & Williams, J. H. (2006). Heat shock proteins form part of danger signal cascade in response to lipopolysaccharide and GroEL. Clinical and Experimental Immunology, 145(1), 183–189.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dinda, A. K., Mathur, M., Guleria, S., Saxena, S., Tiwari, S. C., & Dash, C. (1998). Heat shock protein (HSP) expression and proliferation of tubular cells in end stage renal disease with and without haemodialysis. Nephrology, Dialysis, Transplantation, 13(1), 99–105.CrossRefPubMedGoogle Scholar
  12. Evdokimovskaya, Y., Skarga, Y., Vrublevskaya, V., & Morenkov, O. (2010). Secretion of the heat shock proteins HSP70 and HSC70 by baby hamster kidney (BHK-21) cells. Cell Biology International, 34(10), 985–990.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Friedewald, J. J., & Rabb, H. (2004). Inflammatory cells in ischemic acute renal failure. Kidney International, 66(2), 486–491.CrossRefPubMedGoogle Scholar
  14. Gotoh, T., Terada, K., Oyadomari, S., & Mori, M. (2004). hsp70-DnaJ chaperone pair prevents nitric oxide- and CHOP-induced apoptosis by inhibitingtranslocation of Bax to mitochondria. Cell Death and Differentiation, 11(4), 390–402.CrossRefPubMedGoogle Scholar
  15. Guh, J. Y., Huang, J. S., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Advanced glycation end product-induced proliferation in NRK-49F cells is dependent on the JAK2/STAT5 pathway and cyclin D1. American Journal of Kidney Diseases, 38(5), 1096–1104.CrossRefPubMedGoogle Scholar
  16. Gurbuxani, S., Schmitt, E., Cande, C., et al. (2003). Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene, 22(43), 6669–6678.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jo, S. K., Ko, G. J., Boo, C. S., Cho, W. Y., & Kim, H. K. (2006). Heat preconditioning attenuates renal injury in ischemic ARF in rats: Role of heat-shock protein70 on NF-kappaB-mediated inflammation and on tubular cell injury. Journal of the American Society of Nephrology, 17(11), 3082–3092.CrossRefPubMedGoogle Scholar
  18. Kennedy, D., Jäger, R., Mosser, D. D., & Samali, A. (2014). Regulation of apoptosis by heat shock proteins. International Union of Biochemistry and Molecular Biology Life, 66(5), 327–338.CrossRefPubMedGoogle Scholar
  19. Kierulf-Lassen, C., Kristensen, M. L., Birn, H., Jespersen, B., & Nørregaard, R. (2015). No effect of remote ischemic conditioning strategies on recovery from renal ischemia-reperfusion injury and protective molecular mediators. PLoS One, 10(12), e0146109.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim, M. G., Jung Cho, E., Won Lee, J., et al. (2014). The heat-shock protein-70-induced renoprotective effect is partially mediated by CD4+ CD25+ Foxp3 + regulatory T cells in ischemia/reperfusion-induced acute kidney injury. Kidney International, 85(1), 62–71.CrossRefPubMedGoogle Scholar
  21. Kim, Y. S., Jung, M. H., Choi, M. Y., et al. (2009). Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Critical Care Medicine, 37(6), 2033–2044.CrossRefPubMedGoogle Scholar
  22. Lebherz-Eichinger, D., Ankersmit, H. J., Hacker, S., et al. (2012). HSP27 and HSP70 serum and urine levels in patients suffering from chronic kidney disease. Clinica Chimica Acta, 413(1–2), 282–286.CrossRefGoogle Scholar
  23. Lebherz-Eichinger, D., Krenn, C. G., & Roth, G. A. (2013). Keratin 18 and heat-shock protein in chronic kidney disease. Advances in Clinical Chemistry, 62, 123–149.CrossRefPubMedGoogle Scholar
  24. Lin, K. C., Krieg, R. J., Jr., Saborio, P., & Chan, J. C. (1998). Increased heat shock protein-70 in unilateral ureteral obstruction in rats. Molecular Genetics and Metabolism, 65(4), 303–310.CrossRefPubMedGoogle Scholar
  25. Luo, F. C., Zhao, L., Deng, J., et al. (2013). Geranylgeranylacetone protects against morphine-induced hepatic and renal damage in mice. Molecular Medicine Reports, 7(2), 694–700.CrossRefPubMedGoogle Scholar
  26. Madamanchi, N. R., Li, S., Patterson, C., & Runge, M. S. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(3), 321–326.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Maddock, A. L., & Westenfelder, C. (1996). Urea induces the heat shock response in human neuroblastoma cells. Journal of the American Society of Nephrology, 7, 275–282.PubMedGoogle Scholar
  28. Mambula, S. S., Stevenson, M. A., Ogawa, K., & Calderwood, S. K. (2007). Mechanisms for Hsp70 secretion: Crossing membranes without a leader. Methods, 43(3), 168–175.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Manucha, W., Carrizo, L., Ruete, C., Molina, H., & Vallés, P. (2005). Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy. Cellular and Molecular Biology (Noisy-le-Grand, France), 51(6), 547–555.Google Scholar
  30. Manucha, W., Kurbán, F., Mazzei, L., et al. (2011). eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. European Journal of Pharmacology, 650(2–3), 487–495.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Manucha, W. (2014). HSP70 family in the renal inflammatory response. Inflammation & Allergy Drug Targets, 13(4), 235–240.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mao, H., Li, Z., Zhou, Y., et al. (2008). HSP72 attenuates renal tubular cell apoptosis and intertistitial fibrosis in obstructive nephropathy. Journal of the American Society of Nephrology, 295, 202–214.Google Scholar
  33. Marcovecchio, M. L., & Chiarelli, F. (2009). Diabetic nephropathy. In D. E. Avner, E. V. Harmon, P. Niaudet, & N. Yoshikawa (Eds.), Pediatric nephrology (pp. 1199–1217). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  34. Margel, D., Pevsner-Fischer, M., Baniel, J., Yossepowitch, O., & Cohen, I. R. (2011). Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. European Urology, 59(1), 113–119.CrossRefPubMedGoogle Scholar
  35. Marzec, L., Zdrojewski, Z., Liberek, T., et al. (2009). Expression of Hsp72 protein in chronic kidney disease patients. Scandinavian Journal of Urology and Nephrology, 43, 400–408.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Mayer, M. P. (2013). Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences, 38(10), 507–514.CrossRefPubMedGoogle Scholar
  37. Mazzei, L., & Manucha, W. (2017). Growing evidence suggests WT1 effects in the kidney development are modulated by Hsp70/NO interaction. Journal of Nephrology, 30, 11–18.CrossRefPubMedGoogle Scholar
  38. Menke, A. L., & Schedl, A. (2003). WT1 and glomerular function. Seminars in Cell & Developmental Biology, 14(4), 233–240.CrossRefGoogle Scholar
  39. Molinas, S. M., Rosso, M., & Wayllace, N. Z. (2010). Heat shock protein 70 induction and its urinary excretion in a model of acetaminophen nephrotoxicity. Pediatric Nephrology, 25(7), 1245–1253.CrossRefPubMedGoogle Scholar
  40. Molitoris, B. A. (1991). New insights into the cell biology of ischemic acute renal failure. Journal of the American Society of Nephrology, 1(12), 1263–1270.PubMedGoogle Scholar
  41. Molitoris, B. A., Dahl, R., & Hosford, M. (1996). Cellular ATP depletion induces disruption of the spectrin cytoskeletal network. The American Journal of Physiology, 271, 790–798.Google Scholar
  42. Morales-Buenrostro, L. E., Salas-Nolasco, O. I., Barrera-Chimal, J., et al. (2014). Hsp72 is a novel biomarker to predict acute kidney injury in critically ill patients. PLoS One, 9(10), e109407.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mueller, T., Bidmon, B., Pichler, P., et al. (2003). Urinary heat shock protein-72 excretion in clinical and experimental renal ischemia. Pediatric Nephrology, 18(2), 97–99.PubMedPubMedCentralGoogle Scholar
  44. Musiał, K., Szprynger, K., Szczepańska, M., & Zwolińska, D. (2009). Heat shock proteins in children and young adults on chronic hemodialysis. Pediatric Nephrology, 24(10), 2029–2034.CrossRefPubMedGoogle Scholar
  45. Musial, K., Szprynger, K., Szczepanska, M., & Zwolinska, D. (2010). The heat shock protein profile in children with chronic kidney disease. Peritoneal Dialysis International, 30, 227–232.CrossRefPubMedGoogle Scholar
  46. Musial, K., & Zwolinska, D. (2011). Heat shock proteins in chronic kidney disease. Pediatric Nephrology, 26(7), 1031–1037.CrossRefPubMedGoogle Scholar
  47. Neuhofer, W., Lugmayr, K., Fraek, M. L., & Beck, F. X. (2001). Regulated overexpression of heat shock protein 72 protects Madin-Darby canine kidney cells from the detrimental effects of high urea concentration. Journal of the American Society of Nephrology, 12, 2565–2571.PubMedGoogle Scholar
  48. Neuhofer, W., Holzapfel, K., Fraek, M. L., Ouyang, N., Lutz, J., & Beck, F. X. (2004). Chronic COX-2 inhibition reduces medullary HSP70 expression and induces papillary apoptosis in dehydrated rats. Kidney International, 65(2), 431–441.CrossRefPubMedGoogle Scholar
  49. O’Neill, S., Harrison, E. M., Ross, J. A., Wigmore, S. J., & Hughes, J. (2014). Heat-shock proteins and acute ischaemic kidney injury. Nephron. Experimental Nephrology, 126(4), 167–174.CrossRefPubMedGoogle Scholar
  50. Ortega-Trejo, J. A., Pérez-Villalva, R., Barrera-Chimal, J., et al. (2015). Heat shock protein 72 (Hsp72) specific induction and temporal stability in urine samples as a reliable biomarker of acute kidney injury (AKI). Biomarkers, 20(6–7), 453–459.CrossRefPubMedGoogle Scholar
  51. Qi, W., Chen, X., Gilbert, R. E., et al. (2007). High glucose-induced thioredoxin-interacting protein in renal proximal tubule cells is independent of transforming growth factor-beta1. The American Journal of Pathology, 171(3), 744–754.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ramirez-Sandoval, J. C., Barrera-Chimal, J., Simancas, P. E., Correa-Rotter, R., Bobadilla, N. A., & Morales-Buenrostro, L. E. (2014). Tubular urinary biomarkers do not identify aetiology of acute kidney injury in kidney transplant recipients. Nephrology (Carlton), 19(6), 352–358.CrossRefGoogle Scholar
  53. Ravagnan, L., Gurbuxani, S., Susin, S. A., et al. (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nature Cell Biology, 3(9), 839–843.CrossRefPubMedGoogle Scholar
  54. Reuter, S., Bangen, P., Edemir, B., et al. (2009). The HSP72 stress response of monocytes from patients on haemodialysis is impaired. Nephrology, Dialysis, Transplantation, 24, 2838–2846.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Riordan, M., Sreedharan, R., Wang, S., et al. (2005). HSP70 binding modulates detachment of Na-K-ATPase following energy deprivation in renal epithelial cells. American Journal of Physiology. Renal Physiology, 288, 1236–1242.CrossRefGoogle Scholar
  56. Roberts, K. B., & Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management. (2011). Urinary tract infection: Clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics, 128(3), 595–610.CrossRefPubMedGoogle Scholar
  57. Schmitt, E., Gehrmann, M., Brunet, M., Multhoff, G., & Garrido, C. (2007). Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. Journal of Leukocyte Biology, 81(1), 15–27.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Shioshita, K., Miyazaki, M., Ozono, Y., et al. (2000). Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuousambulatory peritoneal dialysis. Kidney International, 57(2), 619–631.CrossRefPubMedGoogle Scholar
  59. Sreedharan, R., & Van Why, S. K. (2016). Heat shock proteins in the kidney. Pediatric Nephrology, 31(10), 1561–1570.CrossRefPubMedGoogle Scholar
  60. Stankiewicz, A. R., Lachapelle, G., Foo, C. P., Radicioni, S. M., & Mosser, D. D. (2005). Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation. The Journal of Biological Chemistry, 280(46), 38729–38739.CrossRefPubMedGoogle Scholar
  61. Tang, D., Kang, R., Cao, L., et al. (2008). A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Critical Care Medicine, 36(1), 291–295.CrossRefPubMedGoogle Scholar
  62. Vaara, S. T., Lakkisto, P., Immonen, K., Tikkanen, I., Ala-Kokko, T., Pettilä, V., & FINNAKI Study Group. (2016). Urinary biomarkers indicative of apoptosis and acute kidney injury in the critically Ill. PLoS One, 11(2), e0149956.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vallés, P., Jorro, F., Carrizo, L., Manucha, W., Oliva, J., Cuello-Carrión, F. D., & Ciocca, D. R. (2003). Heat shock proteins HSP27 and HSP70 in unilateral obstructed kidneys. Pediatric Nephrology, 18(6), 527–535.PubMedGoogle Scholar
  64. Van Why, S. K., Mann, A. S., Thulin, G., Zhu, X. H., Kashgarian, M., & Siegel, N. J. (1994). Activation of heat-shock transcription factor by graded reductions in renal ATP, in vivo, in the rat. The Journal of Clinical Investigation, 94(4), 1518–1523.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Van Why, S. K., Kim, S., Geibel, J., Seebach, F. A., Kashgarian, M., & Siegel, N. J. (1999). Thresholds for cellular disruption and activation of the stress response in renal epithelia. The American Journal of Physiology, 277(2), 227–234.Google Scholar
  66. Varano Della Vergiliana, J. F., Lansley, S. M., Porcel, J. M., et al. (2013). Bacterial infection elicits heat shock protein 72 release from pleural mesothelial cells. PLoS One, 8(5), e63873.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wang, Z., Liu, L., Mei, Q., Liu, L., Ran, Y., & Zhang, R. (2006). Increased expression of heat shock protein 72 protects renal proximal tubular cells from gentamicin-induced injury. Journal of Korean Medical Science, 21(5), 904–910.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wang, Z., Jin, H., Li, C., Hou, Y., Mei, Q., & Fan, D. (2009). Heat shock protein 72 protects kidney proximal tubule cells from injury induced by triptolide by means of activation of the MEK/ERK pathway. International Journal of Toxicology, 28(3), 177–189.CrossRefPubMedGoogle Scholar
  69. Williams, G. J., Macaskill, P., Chan, S. F., Turner, R. M., Hodson, E., & Craig, J. C. (2010). Absolute and relative accuracy of rapid urine tests for urinary tract infection in children: A meta-analysis. The Lancet Infectious Diseases, 10(4), 240–250.CrossRefPubMedGoogle Scholar
  70. Yadav, A. K., Kumar, V., & Jha, V. (2013). Heat shock proteins 60 and 70 specific proinflammatory and cytotoxic response of CD4+CD28null cells in chronic kidney disease. Mediators of Inflammation, 2013, 384807.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yilmaz, A., Gedikbasi, A., Yuruk Yildirim, Z., et al. (2016a). Higher urine heat shock protein 70/creatinine ratio in type 1 diabetes mellitus. Renal Failure, 38(3), 404–410.CrossRefPubMedGoogle Scholar
  72. Yilmaz, A., Yildirim, Z. Y., Emre, S., et al. (2016b). Urine heat shock protein 70 levels as a marker of urinary tract infection in children. Pediatric Nephrology, 31(9), 1469–1476.CrossRefPubMedGoogle Scholar
  73. Zhou, Y., Mao, H., Li, S., et al. (2010). HSP72 inhibits Smad3 activation and nuclear translocation in renal epithelial-to-mesenchymal transition. Journal of the American Society of Nephrology, 21(4), 598–609.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhou, Y., Cao, S., Li, H., et al. (2016). Heat shock protein 72 antagonizes STAT3 signaling to inhibit fibroblast accumulation in renal fibrogenesis. The American Journal of Pathology, 186(4), 816–882.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alev Yilmaz
    • 1
  • Zeynep Nagehan Yuruk Yildirim
    • 1
  1. 1.Istanbul Faculty of Medicine, Pediatric Nephrology DepartmentIstanbul UniversityIstanbulTurkey

Personalised recommendations