Advertisement

Performance of Bore-Cone Taper Junctions on Explanted Total Knee Replacements with Modular Stem Extensions: Mechanical Disassembly and Corrosion Analysis of Two Designs

  • Pooja Panigrahi
  • Kyle Snethen
  • Kevin G. Schwartzman
  • Jorg Lützner
  • Melinda K. Harman
Chapter

Abstract

The purpose of this retrieval study was to evaluate bore-cone taper junctions of total knee replacements (TKR) designed with modular stem extensions. Thirty eight explanted modular components from either of two manufacturer’s designs were included. Key design differences for the included TKR were the orientation of the bore-cone taper junctions (bore located on the component versus bore located on the modular stem) and the use of similar or mixed metal combinations at the taper junction. The forces necessary to disassemble the modular stems at the bore-cone taper junction were measured using controlled mechanical testing. Surface corrosion areas on bore and cone taper surfaces were characterized and measured using photogrammetric and profilometric techniques. Taper design (p = 0.0047), evidence of fretting (p = 0.0001), lower disassembly force (ρ = −0.601, p = 0.001), and anterior/posterior location (p = 0.016) were associated with higher surface corrosion areas; however, it should be noted that the taper design, evidence of fretting, and disassembly force variables were not independent from one another. The results from this study confirmed that large amounts of taper corrosion can be present in failed TKRs with modular stem extensions.

Keywords

Orthopedics Biomaterials In vivo Total knee replacement Modularity Morse taper Bore-cone taper junction Modular stem Titanium alloy Cobalt chromium alloy Corrosion Fretting Mechanical testing Implant retrieval 

References

  1. 1.
    Barrack RL. Modularity of prosthetic implants. J Am Acad Orthop Surg. 1994;2(1):16–25.CrossRefPubMedGoogle Scholar
  2. 2.
    Sporer SM, Paprosky WG. Femoral fixation in the face of considerable bone loss: the use of modular stems. Clin Orthop Relat Res. 2004;429:227–31.CrossRefGoogle Scholar
  3. 3.
    Whittaker JP, Dharmarajan R, Toms AD. The management of bone loss in revision total knee replacement. J Bone Joint Surg Br. 2008;90-B(8):981–7.CrossRefGoogle Scholar
  4. 4.
    Lecerf G, Fessy MH, Phillippot R, Massin P, Giraud F, Flecher X, Girard J, Merti P, Marchetti E, Stindel E. Femoral offset: anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop Traumatol Surg Res. 2009;95(3):210–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Sakai T, Sugano N, Nishii T, Haragushi K, Ochi T, Ohzono K. Optimizing femoral anteversion and offset after total hip arthroplasty, using a modular femoral neck system: an experimental study. J Orthop Sci. 2000;5(5):489–94.CrossRefPubMedGoogle Scholar
  6. 6.
    Knahr K. Total hip arthroplasty: tribological considerations and clinical consequences. In: Puhl W, Bentley G, Klaus-Peter G, editors. EFORT reference in orthopaedics and traumatology. Berlin: Springer Science & Business Media; 2013.Google Scholar
  7. 7.
    Harris WH. A new total hip implant. Clin Orthop Relat Res. 1971;81:105–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Kopec MA, Pemberton A, Milbrandt JC, Allan G. Component version in modular total hip revision. Iowa Orthop J. 2009;29:5–10.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Scott CEH, Biant LC. The role of the design of tibial components and stems in knee replacement. J Bone Joint Surg Br. 2012;94-B(8):1009–15.CrossRefGoogle Scholar
  10. 10.
    Marlowe DE, Parr JE, Mayor MB, editors. Selected Technical Papers 1301: modularity of orthopedic implants. Philadelphia, PA: American Society for Testing and Materials (ASTM); 1997.Google Scholar
  11. 11.
    Collier JP, Surprenant VA, Jensen RE, Mayor MB. Corrosion at the interface of cobalt-alloy heads on titanium-alloy stems. Clin Orthop Relat Res. 1991;(271):305-312.Google Scholar
  12. 12.
    Cook SD, Barrack RL, Clemow AJT. Corrosion and wear at the modular interface of uncemented femoral stems. J Bone Joint Surg Br. 1994;76(1):68–72.CrossRefPubMedGoogle Scholar
  13. 13.
    Cook SD, Barrack RL, Baffes GC, Clemow AJ, Serekian P, Dong N, Kester MA. Wear and corrosion of modular interfaces in total hip replacements. Clin Orthop Relat Res. 1994;(298):80–8.Google Scholar
  14. 14.
    Kummer FJ, Rose RM. Corrosion of titanium/cobalt-chromium alloy couples. J Bone Joint Surg Am. 1983;65(8):1125–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Lucas LC, Buchanan RA, Lemons JE. Investigations on the galvanic corrosion of multialloy total hip prostheses. J Biomed Mater Res. 1981;15(5):731–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Marcus P, Mansfield FB. Analytical methods in corrosion science and engineering. Boca Raton, FL: CRC; 2005.CrossRefGoogle Scholar
  17. 17.
    Willert HG, Broback LG, Buchhorn GH, Jensen PH, Koster G, Lang I Ochsner P, Schenk R. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop Relat Res. 1996;333:51.Google Scholar
  18. 18.
    Gilbert JL, Buckley CA, Jacobs JJ. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res. 1993;27:1533–44.CrossRefPubMedGoogle Scholar
  19. 19.
    Viceconti M, Baleani M, Squarzoni S, Toni A. Fretting wear in a modular neck hip prosthesis. J Biomed Mater Res. 1997;35:207–16.CrossRefPubMedGoogle Scholar
  20. 20.
    Fernandez J, Miller GJ, Mauldin CM. Modular hip prosthesis. US Patent 6319286 B1. 2001.Google Scholar
  21. 21.
    McCarthy JC, Bono JV, O’Donnell PJ. Custom and modular components in primary total hip replacement. Clin Orthop Relat Res. 1997;344:162.CrossRefGoogle Scholar
  22. 22.
    Nganbe M, Khan U, Louati H, Speirs A, Beaule PE. In vitro assessment of strength, fatigue durability, and disassembly of Ti6Al4V and CoCrMo necks in modular total hip replacements. J Biomed Mater Res B Appl Biomater. 2011;97B(1):132–8.CrossRefGoogle Scholar
  23. 23.
    Bishop RA, Sellenschloh K, Morlock MM. Strength of the taper lock at the stem-neck junction in hip replacement. Proceedings of the 58th Annual Meeting of the Orthopaedic Research Society, 2012, p. 1048.Google Scholar
  24. 24.
    Pallini F, Cristofolini L, Traina F, Toni A. Modular hip stems: determination of disassembly force of a neck-stem coupling. Artif Organs. 2007;31(2):166–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Goldberg JR, Gilbert JL. In vitro corrosion testing of modular hip tapers. J Biomed Mater Res B. 2003;64:78–93.CrossRefGoogle Scholar
  26. 26.
    Flemming C, Brown SA. Mechanical testing for fretting corrosion of modular total hip tapers. In: Kambic HE, Yokobori AT, editors. Biomaterials’ mechanical properties, Issue, vol. 1173; 1994. p. 156–66.CrossRefGoogle Scholar
  27. 27.
    Swaminathan V, Gilbert JL. Fretting corrosion of CoCrMo and Ti6Al4V interfaces. Biomaterials. 2012;33(22):5487–503.CrossRefPubMedGoogle Scholar
  28. 28.
    Brown SA, Flemming C, Kawalec JS. Fretting corrosion accelerates crevice corrosion of modular hip tapers. J Appl Biomater. 1995;6:19–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Kop AM, Swarts E. Corrosion of a hip stem with a modular neck taper junction. J Arthroplasty. 2009;24:1019–23.CrossRefPubMedGoogle Scholar
  30. 30.
    Harman MK, Baleani M, Juda K, Viceconti M. Repeatable procedure for evaluating taper damage on femoral stems with modular necks. J Biomet Mater Res B. 2011;99:431–9.CrossRefGoogle Scholar
  31. 31.
    Geringer J, Forest B, Combrade P. Fretting-corrosion of materials used as orthopaedic implants. Wear. 2005;259:943–51.CrossRefGoogle Scholar
  32. 32.
    Meyer H, Mueller T, Goldau G, Chamaon K, Ruetschi M, Lohmann CH. Corrosion at the cone/taper interface leads to failure of large-diameter metal-on-metal total hip arthroplasties. Clin Orthop Relat Res. 2012;470(11):3101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arnholt CM, DW MD, Tohfafarosh M, Gilbert JL, Rimnac CM, Kurtz SM. Implant Research Center Writing Committee, Klein G, Mont MA, Parvizi J, Cates HE, Lee GC, Malkani A, Kraay M. Mechanically assisted taper corrosion in modular TKA. J Arthroplasty. 2014;29(9 Suppl):205–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lanting BA, Teeter MG, Vasarhelyi EM, Ivanov TG, Howard JL, Naudie DD. Correlation of corrosion and biomechanics in the retrieval of a single modular neck total hip arthroplasty design. J Arthroplasty. 2015;30(1):135–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Panigrahi P, Poursaee A, Harman MK. Corrosion behavior of medical-grade Ti-6Al-4V exposed to tensile loads. Proceedings of the 61st Annual Meeting of the Orthopaedic Research Society, 2015.Google Scholar
  36. 36.
    Wassef AJ, Schmalzried TP. Femoral taperosis: an accident waiting to happen? Bone Joint J. 2013;95-B(11 Suppl):3–6.CrossRefPubMedGoogle Scholar
  37. 37.
    McMaster WC, Patel J. Adverse local tissue response lesion of the knee associated with Morse taper corrosion. J Arthroplasty. 2013;28(2):375.e5–8.CrossRefGoogle Scholar
  38. 38.
    Shulman RM, Zywiel MG, Gandhi R, Davey JR, Salonen DC. Trunnionosis: the latest culprit in adverse reactions to metal debris following hip arthroplasty. Skeletal Radiol. 2015;44:433–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Higgs GB, Hanzlik JA, MacDonald DW, Gilbert JL, Rimnac CM, Kurtz SM. Is increased modularity associated with fretting and corrosion damage in metal-on-metal total hip arthroplasty devices? A retrieval study. J Arthroplasty. 2013;28(Suppl 1):2–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kurtz SM, Kocagoz SB, Hanslik JA, Underwood RJ, Gilbert JL, MacDonald DW, Lee G-C, Mont MA, Kraay MJ, Klein GR, Parvazi J, Rimnac CM. Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop Relat Res. 2013;471(10):3270–82.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Berry DJ, Abdel MP, Callaghan JJ. What are the current clinical issues in wear and tribocorrosion? Clin Orthop Relat Res. 2014;472(12):3659–64.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Esposito CI, Wright TM, Goodman SB, Berry DJ. What is the trouble with trunnions? Clin Orthop Relat Res. 2014;472(12):3652–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Munir S, Walter WL, Walsh WR. Variations in the trunnion surface topography between different commercially available hip replacement stems. J Orthop Res. 2015;33:98–105.CrossRefPubMedGoogle Scholar
  44. 44.
    ISO 7206–10:2003(E). Implants for surgery—partial and total hip-joint prostheses—Part 10: Determination of resistance to static load of modular femoral heads.Google Scholar
  45. 45.
    ASTM F2009-00. Standard test method for determining the axial disassembly force of taper connections of modular prostheses.Google Scholar
  46. 46.
    Snethen K, Henson K, Lutzner J, Kirschner S, Harman M. Mechanical disassembly of retrieved long-stem total knee replacement with taper modularity. Annual Meeting & Exposition of the Society for Biomaterials; 2014.Google Scholar
  47. 47.
    Panigrahi P, Schwartzman KG, Harman MK. Polyvinyl siloxane molds for nondestructive surface feature metrology of failed joint prostheses. J Fail Anal Prev. 2015;15:266–71.CrossRefGoogle Scholar
  48. 48.
    Class 2 Recall: NexGen complete knee solutions stemmed Tibial component Precoat. FDA medical device recalls database no. Z-0480-2014. 2013. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=123053.
  49. 49.
    Class 2 Recall: NexGen complete knee solution MIS Total knee procedure stemmed Tibial component, Precoat. FDA medical device recalls database no. Z-1938-2014. 2014. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm?id=127988.
  50. 50.
    Pennock AT, Schmidt AH, Bourgeault CA. Morse-type tapers: factors that may influence taper strength during total hip arthroplasty. J Arthroplasty. 2002;17(6):773–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Rehmer A, Bishop NE, Morlock MM. Influence of assembly procedure and material combination on the strength of the taper connection at the head-neck junction of modular hip endoprostheses. Clin Biomech. 2012;27(1):77–83.CrossRefGoogle Scholar
  52. 52.
    RT-PLUS Modular: constrained rotating total knee prosthesis: surgical technique “Intramedullary Application”. Plus Orthopaedics literature no. 1313-e-Ed; 2007.Google Scholar
  53. 53.
    Zimmer NexGen Rotating Hinge Knee Primary/Revision Surgical Technique. Zimmer literature no. 97-5880-002-00 Rev. 3; 2009.Google Scholar
  54. 54.
    Padgett DE, Stoner K, Nassif N, Nawabi D, Wright T, Elpers M. The effect of taper geometry on large head MOM THA taper-trunnion damage. Bone Joint J. 2013;95-B(Suppl 34):472.Google Scholar
  55. 55.
    Panagiotidou A, Meswania J, Hua J, Muirhead-Allwood S, Hart A, Blunn G. Enhanced wear and corrosion in modular tapers in total hip replacement is associated with the contact area and surface topography. J Orthop Res. 2013;31(12):2032–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res. 2002;401:149–61.CrossRefGoogle Scholar
  57. 57.
    Lieberman JR, Rimnac CM, Garvin KL, Klein RW, Salvati EA. An analysis of the head-neck taper interface in retrieved hip prostheses. Clin Orthop Relat Res. 1994;300:162–7.Google Scholar
  58. 58.
    Csernica RM, Harman MK, Baleani M, Tozzi G, Erani P, Stea S, Toni A. Mechanical disassembly and taper damage assessment of retrieved femoral stems with modular necks. Proceedings of the 59th annual meeting of the Orthopaedic Research Society; 2013.Google Scholar
  59. 59.
    Padgett DE, Stoner K, Nassif N, Nawabi D, Wright T, Elpers M. The effect of taper geometry on large head MOM THA taper-trunnion damage. Bone Joint J. 2013;95-B(Suppl 34):472.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pooja Panigrahi
    • 1
  • Kyle Snethen
    • 1
  • Kevin G. Schwartzman
    • 1
  • Jorg Lützner
    • 2
  • Melinda K. Harman
    • 1
  1. 1.Bioengineering DepartmentClemson UniversityClemsonUSA
  2. 2.Orthopedic and Trauma Surgery DepartmentUniversity Hospital Carl Gustav CarusDresdenGermany

Personalised recommendations