Biopolymer Based Interfacial Tissue Engineering for Arthritis

  • Krishanu Ghosal
  • Rohit Khanna
  • Kishor SarkarEmail author


In addition to trauma or severe injury, osteoarthritis (OA) and rheumatoid arthritis (RA) cause joint damage where both the articular cartilage and the underlying subchondral bone become damaged and have become a serious issue globally. Despite the progress in the tissue engineering field, osteochondral tissue regeneration is still challenging to researchers due to the presence of progressive gradient material composition and complex physiological properties. Presently, interfacial tissue engineering (ITE), a modern technique to regenerate biphasic or multiphasic complex tissue interfaces such as bone-cartilage, muscle-tendon, and tendon/ligament-bone has become more attractive in the tissue engineering field. Biopolymer based scaffolds have gained tremendous attraction over other materials in the tissue engineering field owing to its ease of synthesis and modification, biodegradability, biocompatibility and less immunogenicity. Therefore, it is necessity to know about various biopolymers and different strategies to fabricate osteochondral constructs for ITE. In this chapter, we elaborately discuss the anatomy of the osteochondral interface followed by different biopolymers and osteochondral construct fabrication techniques used for osteochondral tissue regeneration by ITE.


Arthritis Interfacial tissue Osteochondral tissue Tissue interface Biopolymer 3D scaffold Tissue regeneration Gradient scaffold Growth factor delivery Orthopedic application 



This work was funded by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India, (EEQ/2016/000712 and ECR/2016/002018/ES). KG and KS also acknowledge Sayantan Tripathy to support during writing this chapter.


  1. 1.
    Csaki C, Schneider PShakibaei M. Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat Anatomischer Anzeiger. 2008;190:395–412.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hangody L, Kish G, Karpati Z, et al. Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects a preliminary report. Knee Surg Sports Traumatol Arthrosc. 1997;5:262–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Carranza-Bencano A, Garcıa-Paino L, Padron JA, et al. Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthritis Cartilage. 2000;8:351–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Sledge SL. Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med. 2001;20:365–78.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Livesley P, Doherty M, Needoff M, et al. Arthroscopic lavage of osteoarthritic knees. Bone Joint J. 1991;73:922–6.Google Scholar
  6. 6.
    Paul J, Sagstetter A, Kriner M, et al. Donor-site morbidity after osteochondral autologous transplantation for lesions of the talus. J Bone Joint Surg Am. 2009;91:1683–8.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Hangody L, Dobos J, Baló E, et al. Clinical experiences with autologous osteochondral mosaicplasty in an athletic population a 17-year prospective multicenter study. Am J Sports Med. 2010;38:1125–33.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Amini AR, Laurencin CTNukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40:363–408.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Parveen S, Krishnakumar KSahoo S. New era in health care: tissue engineering. J Stem Cells Regener Med. 2006;1:8–24.Google Scholar
  10. 10.
    Ikada Y. Challenges in tissue engineering. J R Soc Interface. 2006;3:589–601.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Langer RVacanti J. Tissue engineering. Science. 1993;260:920–6.CrossRefGoogle Scholar
  12. 12.
    Lu HH, Subramony SD, Boushell MK, et al. Tissue engineering strategies for the regeneration of orthopedic interfaces. Ann Biomed Eng. 2010;38:2142–54.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Yang PJTemenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev. 2009;15:127–41.CrossRefGoogle Scholar
  14. 14.
    Stoop R. Smart biomaterials for tissue engineering of cartilage. Injury. 2008;39:77–87.CrossRefGoogle Scholar
  15. 15.
    Spalazzi JP, Doty SB, Moffat KL, et al. Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng. 2006;12:3497–508.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Dormer NH, Singh M, Wang L, et al. Osteochondral interface tissue engineering using macroscopic gradients of bioactive signals. Ann Biomed Eng. 2010;38:2167–82.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Streuli C. Extracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol. 1999;11:634–40.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Gailit JClark RA. Wound repair in the context of extracellular matrix. Curr Opin Cell Biol. 1994;6:717–25.CrossRefGoogle Scholar
  19. 19.
    Kleinman HK, Philp DHoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 2003;14:526–32.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Griffith L. Polymeric biomaterials. Acta Mater. 2000;48:263–77.CrossRefGoogle Scholar
  21. 21.
    Chandra RRustgi R. Biodegradable polymers. Prog Polym Sci. 1998;23:1273–335.CrossRefGoogle Scholar
  22. 22.
    Angelova NHunkeler D. Rationalizing the design of polymeric biomaterials. Trends Biotechnol. 1999;17:409–21.CrossRefGoogle Scholar
  23. 23.
    Nukavarapu SPDorcemus DL. Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv. 2013;31:706–21.CrossRefGoogle Scholar
  24. 24.
    Eyre DRWJ-J. Collagen structure and cartilage matrix integrity. J Rheumatol Suppl. 1995;43:82–5.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Aigner T, Reichenberger E, Bertling W, et al. Type X collagen expression in osteoarthritic and rheumatoid articular cartilage. Virchows Arch B. 1993;63:205.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hunziker E, Quinn THäuselmann H-J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage. 2002;10:564–72.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Farnum C, Lee R, O’Hara K, et al. Volume increase in growth plate chondrocytes during hypertrophy: the contribution of organic osmolytes. Bone. 2002;30:574–81.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Di Luca A, Van Blitterswijk CMoroni L. The osteochondral interface as a gradient tissue: from development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Res C Embryo Today. 2015;105:34–52.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zhang Y, Wang F, Tan H, et al. Analysis of the mineral composition of the human calcified cartilage zone. Int J Med Sci. 2012;9:353–60.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Keeney MPandit A. The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev. 2009;15:55–73.CrossRefGoogle Scholar
  31. 31.
    Arvidson K, Abdallah B, Applegate L, et al. Bone regeneration and stem cells. J Cell Mol Med. 2011;15:718–46.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Qu D, Mosher CZ, Boushell MK, et al. Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng. 2015;43:697–717.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Erisken C, Kalyon DMWang H. Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded polycaprolactone and beta-tricalcium phosphate composites. J Biomech Eng. 2010;132:091013.PubMedCrossRefGoogle Scholar
  34. 34.
    Scarritt ME, Pashos NCBunnell BA. A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol. 2015;3:43.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Garreta E, Oria R, Tarantino C, et al. Tissue engineering by decellularization and 3D bioprinting. Mater Today. 2017;20:166–78.CrossRefGoogle Scholar
  36. 36.
    Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf Biotribol. 2015;1:161–76.CrossRefGoogle Scholar
  37. 37.
    Ko IK, Lee SJ, Atala A, et al. In situ tissue regeneration through host stem cell recruitment. Exp Mol Med. 2013;45:e57.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Grayson WL, Chao P-HG, Marolt D, et al. Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol. 2008;26:181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Klein TJ, Malda J, Sah RL, et al. Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev. 2009;15:143–57.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lu HJiang J. Interface tissue Engineeringand the formulation of multiple-tissue systems. Tissue Eng I. 2006;102:91–111.CrossRefGoogle Scholar
  42. 42.
    Allan K, Pilliar R, Wang J, et al. Formation of biphasic constructs containing cartilage with a calcified zone interface. Tissue Eng. 2007;13:167–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang X, Grogan SP, Rieser F, et al. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 2004;25:3681–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Guo X, Wang C, Duan C, et al. Repair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheep. Tissue Eng. 2004;10:1830–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Nooeaid P, Salih V, Beier JP, et al. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med. 2012;16:2247–70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen G, Sato T, Tanaka J, et al. Preparation of a biphasic scaffold for osteochondral tissue engineering. Mater Sci Eng C. 2006;26:118–23.CrossRefGoogle Scholar
  47. 47.
    Gotterbarm T, Richter W, Jung M, et al. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen–tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006;27:3387–95.PubMedCrossRefGoogle Scholar
  48. 48.
    Mano JReis R. Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med. 2007;1:261–73.CrossRefGoogle Scholar
  49. 49.
    Hsu Y, Turner IMiles A. Fabrication of porous bioceramics with porosity gradients similar to the bimodal structure of cortical and cancellous bone. J Mater Sci Mater Med. 2007;18:2251–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Liu C, Han ZCzernuszka J. Gradient collagen/nanohydroxyapatite composite scaffold: development and characterization. Acta Biomater. 2009;5:661–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Liu L, Xiong Z, Yan Y, et al. Multinozzle low-temperature deposition system for construction of gradient tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater. 2009;88:254–63.PubMedCrossRefGoogle Scholar
  52. 52.
    Spalazzi JP, Dagher E, Doty SB, et al. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration. J Biomed Mater Res A. 2008;86:1–12.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang INE, Shan J, Choi R, et al. Role of osteoblast–fibroblast interactions in the formation of the ligament-to-bone interface. J Orthop Res. 2007;25:1609–20.PubMedCrossRefGoogle Scholar
  54. 54.
    Wahl DA, Sachlos E, Liu C, et al. Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2007;18:201–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Kon E, Delcogliano M, Filardo G, et al. A novel nano-composite multi-layered biomaterial for treatment of osteochondral lesions: technique note and an early stability pilot clinical trial. Injury. 2010;41:693–701.PubMedCrossRefGoogle Scholar
  56. 56.
    Tampieri A, Sandri M, Landi E, et al. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials. 2008;29:3539–46.PubMedCrossRefGoogle Scholar
  57. 57.
    Teng SH, Lee EJ, Wang P, et al. Functionally gradient chitosan/hydroxyapatite composite scaffolds for controlled drug release. J Biomed Mater Res B Appl Biomater. 2009;90:275–82.PubMedGoogle Scholar
  58. 58.
    Vitale-Brovarone C, Baino FVerné E. Feasibility and tailoring of bioactive glass-ceramic scaffolds with gradient of porosity for bone grafting. J Biomater Appl. 2010;24:693–712.PubMedCrossRefGoogle Scholar
  59. 59.
    Ho STB, Hutmacher DW, Ekaputra AK, et al. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng A. 2009;16:1123–41.CrossRefGoogle Scholar
  60. 60.
    Mimura T, Imai S, Kubo M, et al. A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair. Osteoarthritis Cartilage. 2008;16:1083–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Holland TA, Bodde EW, Baggett LS, et al. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo (poly (ethylene glycol) fumarate) hydrogel scaffolds. J Biomed Mater Res A. 2005;75:156–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Needham CJ, Shah SR, Dahlin RL, et al. Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater. 2014;10:4103–12.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ferrand A, Eap S, Richert L, et al. Osteogenetic properties of electrospun Nanofibrous PCL scaffolds equipped with chitosan-based Nanoreservoirs of growth factors. Macromol Biosci. 2014;14:45–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen J, Chen H, Li P, et al. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials. 2011;32:4793–805.PubMedCrossRefGoogle Scholar
  65. 65.
    Ding C, Qiao Z, Jiang W, et al. Regeneration of a goat femoral head using a tissue-specific, biphasic scaffold fabricated with CAD/CAM technology. Biomaterials. 2013;34:6706–16.PubMedCrossRefGoogle Scholar
  66. 66.
    Di Luca A, Longoni A, Criscenti G, et al. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Biofabrication. 2016;8:015014.PubMedCrossRefGoogle Scholar
  67. 67.
    Gupta V, Mohan N, Berkland CJ, et al. Microsphere-based scaffolds carrying opposing gradients of chondroitin sulfate and Tricalcium phosphate. Front Bioeng Biotechnol. 2015;3:96.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hou Y, Schoener CA, Regan KR, et al. Photo-cross-linked PDMSstar-PEG hydrogels: synthesis, characterization, and potential application for tissue engineering scaffolds. Biomacromolecules. 2010;11:648–56.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Dormer NH, Singh M, Zhao L, et al. Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J Biomed Mater Res A. 2012;100:162–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang X, Wenk E, Zhang X, et al. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release. 2009;134:81–90.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Petrenko YA, Ivanov R, Petrenko AY, et al. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci Mater Med. 2011;22:1529–40.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Croisier FJérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J. 2013;49:780–92.CrossRefGoogle Scholar
  73. 73.
    da Silva MA, Crawford A, Mundy J, et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater. 2010;6:1149–57.CrossRefGoogle Scholar
  74. 74.
    Malafaya P, Pedro A, Peterbauer A, et al. Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci Mater Med. 2005;16:1077–85.CrossRefGoogle Scholar
  75. 75.
    Malafaya PBReis RL. Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater. 2009;5:644–60.CrossRefGoogle Scholar
  76. 76.
    Abarrategi A, Lópiz-Morales Y, Ramos V, et al. Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A. 2010;95:1132–41.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Oliveira JM, Rodrigues MT, Silva SS, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials. 2006;27:6123–37.PubMedCrossRefGoogle Scholar
  78. 78.
    Chajra H, Rousseau C, Cortial D, et al. Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng. 2008;18:33–45.Google Scholar
  79. 79.
    Galois L, Freyria A, Grossin L, et al. Cartilage repair: surgical techniques and tissue engineering using polysaccharide-and collagen-based biomaterials. Biorheology. 2004;41:433–43.PubMedGoogle Scholar
  80. 80.
    Shim J-H, Kim AJ, Park JY, et al. Effect of solid freeform fabrication-based polycaprolactone/poly (lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes. J Mater Sci Mater Med. 2013;24:1053–65.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Levingstone TJ, Ramesh A, Brady RT, et al. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials. 2016;87:69–81.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Getgood A, Henson F, Skelton C, et al. Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model. J Exp Orthop. 2014;1:13.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Yi C, Liu D, Fong C-C, et al. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano. 2010;4:6439–48.PubMedCrossRefGoogle Scholar
  84. 84.
    Cortizo AM, Ruderman G, Mazzini FN, et al. Novel vanadium-loaded ordered collagen scaffold promotes osteochondral differentiation of bone marrow progenitor cells. Int J Biomater. 2016;2016:1.CrossRefGoogle Scholar
  85. 85.
    Melke J, Midha S, Ghosh S, et al. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016;31:1–16.PubMedCrossRefGoogle Scholar
  86. 86.
    Saha S, Kundu B, Kirkham J, et al. Osteochondral tissue engineering in vivo: a comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS One. 2013;8:e80004.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Levingstone TJ, Thompson E, Matsiko A, et al. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater. 2016;32:149–60.PubMedCrossRefGoogle Scholar
  88. 88.
    Bertoni L, Zavatti M, Resca E, et al. Bilayered scaffolds colonized with dental pulp stem cells for osteochondral tissue engineering application. Ital J Anat Embryol. 2015;120:101.Google Scholar
  89. 89.
    Coluccino L, Stagnaro P, Vassalli M, et al. Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization. J Appl Biomater Funct Mater. 2016;14:e42–52.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Khanarian NT, Jiang J, Wan LQ, et al. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering. Tissue Eng A. 2011;18:533–45.CrossRefGoogle Scholar
  91. 91.
    O’Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev. 2008;14:447–64.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Dhandayuthapani B, Yoshida Y, Maekawa T, et al. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:1.CrossRefGoogle Scholar
  93. 93.
    Liu X, Holzwarth JMMa PX. Functionalized synthetic biodegradable polymer scaffolds for tissue engineering. Macromol Biosci. 2012;12:911–9.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Shafiee A, Soleimani M, Chamheidari GA, et al. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. J Biomed Mater Res A. 2011;99:467–78.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Cao T, Ho K-HTeoh S-H. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 2003;9:103–12.CrossRefGoogle Scholar
  96. 96.
    Yunos DM, Ahmad Z, Salih V, et al. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated bioglass®-derived foams. J Biomater Appl. 2013;27:537–51.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Stodolak-Zych E, Menaszek E, Szatkowski P, et al. Carbon nanofibers (CNF) as scaffolds for osteochondral tissue regenerative medicine. Front Bioeng Biotechnol. 2016.Google Scholar
  98. 98.
    Erisken C, Kalyon DM, Wang H, et al. Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations. Tissue Eng A. 2011;17:1239–52.CrossRefGoogle Scholar
  99. 99.
    Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan-and polyester-based scaffolds. Osteoarthritis Cartilage. 2005;13:297–309.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Schaefer D, Martin I, Shastri P, et al. In vitro generation of osteochondral composites. Biomaterials. 2000;21:2599–606.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Gao J, Dennis JE, Solchaga LA, et al. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 2001;7:363–71.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Alhadlaq AMao JJ. Tissue-engineered osteochondral constructs in the shape of an articular condyle. JBJS. 2005;87:936–44.CrossRefGoogle Scholar
  103. 103.
    Lu HH, El-Amin SF, Scott KD, et al. Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res A. 2003;64:465–74.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Harley BA, Lynn AK, Wissner-Gross Z, et al. Design of a multiphase osteochondral scaffold III: fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A. 2010;92:1078–93.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Benjamin M, Evans ECopp L. The histology of tendon attachments to bone in man. J Anat. 1986;149:89.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Ma Z, Kotaki M, Inai R, et al. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cooper JA, Lu HH, Ko FK, et al. Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials. 2005;26:1523–32.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Cooper JA, Sahota JS, Gorum WJ, et al. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci. 2007;104:3049–54.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Inoue N, Ikeda K, Aro HT, et al. Biologic tendon fixation to metallic implant augmented with autogenous cancellous bone graft and bone marrow in a canine model. J Orthop Res. 2002;20:957–66.PubMedCrossRefGoogle Scholar
  110. 110.
    Itoi E, Berglund LJ, Grabowski JJ, et al. Tensile properties of the supraspinatus tendon. J Orthop Res. 1995;13:578–84.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Paxton JZ, Donnelly K, Keatch RP, et al. Engineering the bone–ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng A. 2008;15:1201–9.CrossRefGoogle Scholar
  112. 112.
    Spalazzi JP, Vyner MC, Jacobs MT, et al. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers. Clin Orthop Relat Res. 2008;466:1938–48.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Coons DABarber FA. Tendon graft substitutes—rotator cuff patches. Sports Med Arthrosc Rev. 2006;14:185–90.CrossRefGoogle Scholar
  114. 114.
    Derwin KA, Baker AR, Spragg RK, et al. Commercial extracellular matrix scaffolds for rotator cuff tendon repair: biomechanical, biochemical, and cellular properties. JBJS. 2006;88:2665–72.CrossRefGoogle Scholar
  115. 115.
    Moffat KL, Kwei AS-P, Spalazzi JP, et al. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng A. 2008;15:115–26.CrossRefGoogle Scholar
  116. 116.
    Moffat KL, Levine WN, Lu HH. In vitro evaluation of rotator cuff tendon fibroblasts on aligned composite scaffold of polymer nanofibers and hydroxyapatite nanoparticles. Transactions of the 54th Orthopaedic Research Society. 2008.Google Scholar
  117. 117.
    Erisken C, Kalyon DMWang H. Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials. 2008;29:4065–73.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Singh M, Sandhu B, Scurto A, et al. Microsphere-based scaffolds for cartilage tissue engineering: using subcritical CO2 as a sintering agent. Acta Biomater. 2010;6:137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Li X, Xie J, Lipner J, et al. Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 2009;9:2763–8.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Liu H, Yang L, Zhang E, et al. Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction. Acta Biomater. 2017;56:129–40.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Phillips JE, Burns KL, Le Doux JM, et al. Engineering graded tissue interfaces. Proc Natl Acad Sci. 2008;105:12170–5.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Singh M, Morris CP, Ellis RJ, et al. Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng Part C Methods. 2008;14:299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ramalingam M, Young MF, Thomas V, et al. Nanofiber scaffold gradients for interfacial tissue engineering. J Biomater Appl. 2013;27:695–705.PubMedCrossRefGoogle Scholar
  124. 124.
    Curl WW, Krome J, Gordon ES, et al. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13:456–60.PubMedCrossRefGoogle Scholar
  125. 125.
    McNickle AG, Provencher MTCole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc Rev. 2008;16:196–201.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and TechnologyUniversity of CalcuttaKolkataIndia
  2. 2.Department of Mechanical EngineeringUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations