3D Printed Porous Bone Constructs

  • Wenjun Zheng
  • Qilin Wei
  • Xiaojie Xun
  • Ming SuEmail author


Bone supports and protects organs in the body. Bone has three dimensional (3D) structures, where the spongy and porous inner part is surrounded by an outer part of low porosity. Bone diseases and fractures affect a myriad of people and are serious health concerns in population where aging is coupled with increased obesity and poor physical activity. As a metabolically active tissue, bone self-heals, but its ability is limited by ages, diseases, pathological conditions, and cannot repair large defects, which lead to bone fractures.


Bone replacement Three dimensional printing Porous Ceramics Metals Polymer 


  1. 1.
    Nandi SK, Roy S, Mukherjee P, Kundu B, De DK, Basu D. Orthopaedic applications of bone graft & graft substitutes: a review. Indian J Med Res. 2010;132(1):15–30.PubMedGoogle Scholar
  2. 2.
    Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med. 2007;1(4):245–60.CrossRefPubMedGoogle Scholar
  3. 3.
    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518.CrossRefPubMedGoogle Scholar
  4. 4.
    Giannitelli S, Accoto D, Trombetta M, Rainer A. Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater. 2014;10(2):580–94.CrossRefPubMedGoogle Scholar
  5. 5.
    Hollister SJ, Bergman TL. Biomedical applications of integrated additive/subtractive manufacturing. Additive/Subtractive Manufacturing Research and Development in Europe, vol. 1001. 2004. p. 55.Google Scholar
  6. 6.
    Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev. 2016;45(10):2740–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.CrossRefGoogle Scholar
  8. 8.
    Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817–27.CrossRefGoogle Scholar
  10. 10.
    Kim K, Yeatts A, Dean D, Fisher JP. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng Part B. 2010;16(5):523–39.CrossRefGoogle Scholar
  11. 11.
    Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res Part A. 2001;55(2):203–16.CrossRefGoogle Scholar
  12. 12.
    Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int. 2010;36(8):2431–9.CrossRefGoogle Scholar
  13. 13.
    Tan K, Chua C, Leong K, Cheah C, Cheang P, Bakar MA, Cha S. Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials. 2003;24(18):3115–23.CrossRefPubMedGoogle Scholar
  14. 14.
    Saijo H, Igawa K, Kanno Y, Mori Y, Kondo K, Shimizu K, Suzuki S, Chikazu D, Iino M, Anzai M. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology. J Artif Organs. 2009;12(3):200–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Senatov F, Niaza K, Zadorozhnyy MY, Maksimkin A, Kaloshkin S, Estrin Y. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139–48.CrossRefPubMedGoogle Scholar
  17. 17.
    Minas C, Carnelli D, Tervoort E, Studart AR. 3D printing of emulsions and foams into hierarchical porous ceramics. Adv Mater. 2016;28(45):9993–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21(23):2347–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Vallet-Regi M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32(1):1–31.CrossRefGoogle Scholar
  20. 20.
    Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8(4):1401–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res Part B. 2005;74(2):782–8.CrossRefGoogle Scholar
  22. 22.
    Warnke PH, Seitz H, Warnke F, Becker ST, Sivananthan S, Sherry E, Liu Q, Wiltfang J, Douglas T. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. J Biomed Mater Res Part B. 2010;93(1):212–7.Google Scholar
  23. 23.
    Vail N, Swain L, Fox W, Aufdlemorte T, Lee G, Barlow J. Materials for biomedical applications. Mater Des. 1999;20(2):123–32.CrossRefGoogle Scholar
  24. 24.
    Lee G, Barlow J. In: Selective laser sintering of calcium phosphate powders. Proceedings of the solid freeform fabrication symposium, Austin, TX, 1994; pp. 191–7.Google Scholar
  25. 25.
    Lee G, Barlow J. In: Selective laser sintering of bioceramic materials for implants. Proceedings of the solid freeform fabrication symposium, Austin, TX, 1993; pp. 376–80.Google Scholar
  26. 26.
    Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30(12):2563–7.CrossRefGoogle Scholar
  27. 27.
    Schickle K, Zurlinden K, Bergmann C, Lindner M, Kirsten A, Laub M, Telle R, Jennissen H, Fischer H. Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. J Mater Sci Mater Med. 2011;22(4):763–71.CrossRefPubMedGoogle Scholar
  28. 28.
    Shao H, He Y, Fu J, He D, Yang X, Xie J, Yao C, Ye J, Xu S, Gou Z. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J Eur Ceram Soc. 2016;36(6):1495–503.CrossRefGoogle Scholar
  29. 29.
    Xie J, Shao H, He D, Yang X, Yao C, Ye J, He Y, Fu J, Gou Z. Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds. MRS Commun. 2015;5(4):631–9.CrossRefGoogle Scholar
  30. 30.
    Sun M, Liu A, Shao H, Yang X, Ma C, Yan S, Liu Y, He Y, Gou Z. Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Sci Rep. 2016;6:34029.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Taboas J, Maddox R, Krebsbach P, Hollister S. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181–94.CrossRefPubMedGoogle Scholar
  32. 32.
    Schek RM, Taboas JM, Segvich SJ, Hollister SJ, Krebsbach PH. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng. 2004;10(9–10):1376–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Fousová M, Kubásek J, Vojtěch D, Fojt J, Čapek J. 3D printed porous stainless steel for potential use in medicine, IOP Conference Series: Materials Science and Engineering. Bristol: IOP Publishing; 2017. p. 012025.Google Scholar
  34. 34.
    Lewallen EA, Jones DL, Dudakovic A, Thaler R, Paradise CR, Kremers HM, Abdel MP, Kakar S, Dietz AB, Cohen RC. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium. Gene. 2016;581(2):95–106.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    De Peppo G, Palmquist A, Borchardt P, Lennerås M, Hyllner J, Snis A, Lausmaa J, Thomsen P, Karlsson C. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors. Sci World J. 2012;2012:1.CrossRefGoogle Scholar
  36. 36.
    Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, Van Wijnen AJ. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B. 2014;21(2):218–30.CrossRefGoogle Scholar
  37. 37.
    Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3):49–121.CrossRefGoogle Scholar
  38. 38.
    Elias C, Lima JH, Valiev R, Meyers M. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46–9.CrossRefGoogle Scholar
  39. 39.
    Chou D-T, Wells D, Hong D, Lee B, Kuhn H, Kumta PN. Novel processing of iron–manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013;9(10):8593–603.CrossRefPubMedGoogle Scholar
  40. 40.
    Hong D, Chou D-T, Velikokhatnyi OI, Roy A, Lee B, Swink I, Issaev I, Kuhn HA, Kumta PN. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-ca/mg alloys. Acta Biomater. 2016;45:375–86.CrossRefPubMedGoogle Scholar
  41. 41.
    Rezwan K, Chen Q, Blaker J, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A. 2006;78(2):306–15.CrossRefPubMedGoogle Scholar
  43. 43.
    Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013;9(3):5521–30.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Serra T, Ortiz-Hernandez M, Engel E, Planell JA, Navarro M. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds. Mater Sci Eng C. 2014;38:55–62.CrossRefGoogle Scholar
  45. 45.
    Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47.CrossRefGoogle Scholar
  46. 46.
    Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011;7(6):2644–50.CrossRefPubMedGoogle Scholar
  47. 47.
    Yin H-M, Qian J, Zhang J, Lin Z-F, Li J-S, Xu J-Z, Li Z-M. Engineering porous poly (lactic acid) scaffolds with high mechanical performance via a solid state extrusion/porogen leaching approach. Polymers. 2016;8(6):213.CrossRefGoogle Scholar
  48. 48.
    Cowan CM, Aghaloo T, Chou Y-F, Walder B, Zhang X, Soo C, Ting K, Wu B. MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects. Tissue Eng. 2007;13(3):501–12.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wenjun Zheng
    • 1
  • Qilin Wei
    • 2
  • Xiaojie Xun
    • 3
  • Ming Su
    • 1
    • 3
    Email author
  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA
  2. 2.School of Chemistry and Chemical Engineering, Beijing Institute of TechnologyBeijingChina
  3. 3.Wenzhou Institute of Biomaterials and EngineeringChinese Academy of Science, Wenzhou Medical UniversityZhejiangChina

Personalised recommendations