Additive Manufacturing of Orthopedic Implants

  • Maryam Tilton
  • Gregory S. Lewis
  • Guha P. ManogharanEmail author


Additive Manufacturing (AM) is the process of selectively joining materials to fabricate objects in a layer-by-layer approach using digital part information, i.e. 3D CAD models. This definition highlights the fundamental difference between AM process and traditional manufacturing methods such as subtractive processes (e.g. machining), forming processes (e.g. forging) and bulk solidification processes (e.g. casting). AM is often also called 3D printing, additive processes, freeform fabrication and layered manufacturing. When compared to traditional processes, AM offers unique advantages to economically produce low volume batches (one to a few) of highly complex products. Since AM does not require design and/or material dependent tooling (e.g. jigs and fixtures), AM is an ideal candidate for the next generation design and manufacturing of orthopedic implants. Although “customization” of product specifications implants has been around long before the introduction of AM technology to the medical field, the lack of tooling requirement for each design in AM makes it economically viable for patient-specific orthopedic implant production. Finally, design freedom that can be easily achieved through AM technology enables introduction of porous structures for bone ingrowth and biological implant fixation. The motivation for this chapter is to understand the current state of orthopedic applications of AM which have been shown to economically produce highly customized and highly complex design features in low volumes.


Additive manufacturing Orthopedics Patient-specific design Biomaterial Biocompatibility Microarchitecture Large bone defects Arthroplasty Electron beam melting Laser-powder bed fusion 3D printing Custom implants Biomechanics Finite element analysis Reverse engineering Reconstruction 



We acknowledge Dr. April D. Armstrong, Professor and Assistant Director from the Penn State Hershey Bone and Joint Institute. We also thank Evan Roush for his contribution in preparing the anatomical models and processing the DICOM data. We also acknowledge Conner Zale for his contribution in discussing large bone defects.


  1. 1.
    Bennett DWF. Partial custom knee replacement in Sarasota, Florida. 2014. [Online].
  2. 2.
    Manogharan G. Hybrid manufacturing: analysis of integrating additive and subtractive methods. Raleigh, NC: North Carolina State University; 2014.Google Scholar
  3. 3.
    Gibson I, Rosen D, Stucker B. Additive manufacturing technologies. New York: Springer; 2010.CrossRefGoogle Scholar
  4. 4.
    Almaghariz ES, Conner BP, Lenner L, Gullapalli R, Manogharan GP, Lamoncha B, Fang M. Quantifying the role of part design complexity in using 3d sand printing for molds and cores. Int J Met. 2016;10:240.Google Scholar
  5. 5.
    Winkel A, Meszaros R, Reinsch S, Müller R, Travitzky N, Fey T, Greil P, Wondraczek L. Sintering of 3D-printed glass/HAp composites. J Am Ceram Soc. 2012;95:3387.CrossRefGoogle Scholar
  6. 6.
    Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30:2563.CrossRefGoogle Scholar
  7. 7.
    Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017;45:23.CrossRefPubMedGoogle Scholar
  8. 8.
    Taminger, KMB, Hafley RA. Electron beam freeform fabrication: a rapid metal deposition process. Proceedings of the 3rd annual automotive composites conference. 2003;9:10.Google Scholar
  9. 9.
    Brandl E, Baufeld B, Leyens C, Gault R. Additive manufactured Ti-6A1-4V using welding wire: comparison of laser and arc beam deposition and evaluation with respect to aerospace material specifications. Phys Procedia. 2010;5:595–606.CrossRefGoogle Scholar
  10. 10.
    Acharya R, Bansal R, Gambone JJ, Kaplan MA, Fuchs GE, Rudawski NG, Das S. Additive manufacturing and characterization of René 80 Superalloy processed through scanning laser epitaxy for turbine engine hot-section component repair. Adv Eng Mater. 2015;17:942.CrossRefGoogle Scholar
  11. 11.
    Carroll BE, Otis RA, Borgonia JP, Suh JO, Dillon RP, Shapiro AA, Hofmann DC, Liu ZK, Beese AM. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling. Acta Mater. 2016;108:46.CrossRefGoogle Scholar
  12. 12.
    Bobbio LD, Otis RA, Borgonia JP, Dillon RP, Shapiro AA, Liu ZK, Beese AM. Additive manufacturing of a functionally graded material from Ti-6Al-4V to invar: experimental characterization and thermodynamic calculations. Acta Mater. 2017;127:133.CrossRefGoogle Scholar
  13. 13.
    Karunakaran KP, Suryakumar S, Pushpa V, Akula S. Low cost integration of additive and subtractive processes for hybrid layered manufacturing. Robot Comput Integr Manuf. 2010;26:490.CrossRefGoogle Scholar
  14. 14.
    Flynn JM, Shokrani A, Newman ST, Dhokia V. Hybrid additive and subtractive machine tools - research and industrial developments. Int J Mach Tools Manuf. 2016;101:79.CrossRefGoogle Scholar
  15. 15.
    Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010;3(3):249–59.CrossRefPubMedGoogle Scholar
  16. 16.
    Sochalski-Kolbus LM, Payzant EA, Cornwell PA, Watkins TR, Babu SS, Dehoff RR, Lorenz M, Ovchinnikova O, Duty C. Comparison of residual stresses in Inconel 718 simple parts made by Electron beam melting and direct laser metal sintering. Metall Mater Trans A Phys Metall Mater Sci. 2015;46:1419–32.CrossRefGoogle Scholar
  17. 17.
    Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: a review. Precis. Eng. 2016;46:34–47.CrossRefGoogle Scholar
  18. 18.
    Song B, Dong S, Liu Q, Liao H, Coddet C. Vacuum heat treatment of iron parts produced by selective laser melting: microstructure, residual stress and tensile behavior. Mater Des. 2014;54:727.CrossRefGoogle Scholar
  19. 19.
    Wu AS, Brown DW, Kumar M, Gallegos GF, King WE. An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel. Metall Mater Trans A: Phys Metall Mater Sci. 2014;45:6260.CrossRefGoogle Scholar
  20. 20.
    Vaezi M, Yang S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyping. 2015;10:123.CrossRefGoogle Scholar
  21. 21.
    Baich L, Manogharan G, Marie H. Study of infill print design on production cost-time of 3D printed ABS parts. Int J Rapid Manufact. 2015;5:308–19.CrossRefGoogle Scholar
  22. 22.
    Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34:312.CrossRefGoogle Scholar
  23. 23.
    Scheithauer U, Schwarzer E, Richter HJ, Moritz T. Thermoplastic 3D printing—an additive manufacturing method for producing dense ceramics. Int J Appl Ceram Technol. 2015;12:26.CrossRefGoogle Scholar
  24. 24.
    Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35:285.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897.CrossRefPubMedGoogle Scholar
  26. 26.
    Murr LE, Gaytan SM, Martinez E, Medina F, Wicker RB. Next generation orthopaedic implants by additive manufacturing using electron beam melting. Int J Biomater. 2012;2012:1.CrossRefGoogle Scholar
  27. 27.
    Campoli G, Borleffs MS, Amin YS, Wauthle R, Weinans H, Zadpoor AA. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des. 2013;49:975–65.CrossRefGoogle Scholar
  28. 28.
    Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83:127–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. New York: Academic Press; 2004.Google Scholar
  30. 30.
    Park J, Lakes RD. Biomaterials: an introduction. New York: Springer Science & Business Media; 2007.Google Scholar
  31. 31.
    Özel T, Bártolo PJ, Ceretti E, Gay JC, Rodriguez CA, Da Silva JVL, editors. Biomedical devices: design, prototyping, and manufacturing. New York: Wiley; 2016.Google Scholar
  32. 32.
    Simon JP, Fabry G. An overview of implant materials. Acta Orthop Belg. 1991;57(1):1–5.PubMedGoogle Scholar
  33. 33.
    Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54:397–425.CrossRefGoogle Scholar
  34. 34.
    Zhong Y, Liu L, Wikman S, Cui D, Shen Z. Intragranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting. J Nucl Mater. 2016;470:170.CrossRefGoogle Scholar
  35. 35.
    Zhong Y, Rännar L-E, Liu L, Koptyug A, Wikman S, Olsen J, Cui D, Shen Z. Additive manufacturing of 316L stainless steel by electron beam melting for nuclear fusion applications. J Nucl Mater. 2017;486:234.CrossRefGoogle Scholar
  36. 36.
    Mower TM, Long MJ. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A. 2016;651(0921–5093):198–213.CrossRefGoogle Scholar
  37. 37.
    Gaytan SM, Murr LE, Martinez E, Martinez JL, MacHado BI, Ramirez DA, Medina F, Collins S, Wicker RB. Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall Mater Trans A Phys Metall Mater Sci. 2010;41:3216–27.CrossRefGoogle Scholar
  38. 38.
    Kim HR, Jang SH, Kim YK, Son JS, Min BK, Kim KH, Kwon TY. Microstructures and mechanical properties of Co-Cr dental alloys fabricated by three CAD/CAM-based processing techniques. Materials. 2016;9:596.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Murr LE, Quinones SA, Gaytan SM, Lopez MI, Rodela A, Martinez EY, Hernandez DH, Martinez E, Medina F, Wicker RB. Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J Mech Behav Biomed Mater. 2009;2:20–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Niinomi M, Narushima T, Nakai M, editors. Advances in metallic biomaterials processing and applications. Berlin: Springer; 2015.Google Scholar
  41. 41.
    Okazaki Y, Rao S, Ito Y, Tateishi T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials. 1998;19:1197–215.CrossRefPubMedGoogle Scholar
  42. 42.
    Sing SL, Yeong WY, Wiria FE. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. J Alloys Compd. 2016;660:461.CrossRefGoogle Scholar
  43. 43.
    Wauthle R, Van Der Stok J, Yavari SA, Van Humbeeck J, Kruth JP, Zadpoor AA, Weinans H, Mulier M, Schrooten J. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217.CrossRefPubMedGoogle Scholar
  44. 44.
    Vasilescu C, Drob S, Neacsu E, Rosca JM. Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids. Corros Sci. 2012;65:431–40.CrossRefGoogle Scholar
  45. 45.
    Matsuno H, Yokoyama A, Watari F, Uo M, Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253.CrossRefPubMedGoogle Scholar
  46. 46.
    Wauthle R, Kruth J-P, Montero ML, Thijs L, Van Humbeeck J. New opportunities for using tantalum for implants with additive manufacturing. Eur Cells Mater. 2013;26:15.CrossRefGoogle Scholar
  47. 47.
    Kurtz SM. PEEK biomaterials handbook. Oxford: William Andrew; 2011.Google Scholar
  48. 48.
    Campbell AA. Bioceramics for implant coatings. Mater Today. 2003;6:26–30.CrossRefGoogle Scholar
  49. 49.
    Bartolo P, Kruth JP, Silva J, Levy G, Malshe A, Rajurkar K, Mitsuishi M, Ciurana J, Leu M. Biomedical production of implants by additive electro-chemical and physical processes. CIRP Ann Manuf Technol. 2012;61:635.CrossRefGoogle Scholar
  50. 50.
    Mahmoud D, Elbestawi M. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: a review. J Manufact Mater Process. 2017;1:13.Google Scholar
  51. 51.
    Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C. 2016;59:690–701.CrossRefGoogle Scholar
  52. 52.
    Čapek J, Machová M, Fousová M, Kubásek J, Vojtěch D, Fojt J, Jablonská E, Lipov J, Ruml T. Highly porous, low elastic modulus 316L stainless steel scaffold prepared by selective laser melting. Mater Sci Eng C. 2016;69:631.CrossRefGoogle Scholar
  53. 53.
    Lima DD, Mantri SA, Mikler CV, Contieri R, Yannetta CJ, Campo KN, Lopes ES, Styles MJ, Borkar T, Caram R, Banerjee R. Laser additive processing of a functionally graded internal fracture fixation plate. Mater Des. 2017;130:8.CrossRefGoogle Scholar
  54. 54.
    Van Bael S, Chai YC, Truscello S, Moesen M, Kerckhofs G, Van Oosterwyck H, Kruth JP, Schrooten J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012;8(7):2824–34.CrossRefPubMedGoogle Scholar
  55. 55.
    Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14(1):23–36.CrossRefPubMedGoogle Scholar
  56. 56.
    Challis VJ, Roberts AP, Grotowski JF, Zhang LC, Sercombe TB. Prototypes for bone implant scaffolds designed via topology optimization and manufactured by solid freeform fabrication. Adv Eng Mater. 2010;12:1106.CrossRefGoogle Scholar
  57. 57.
    Sutradhar A, Park J, Carrau D, Nguyen TH, Miller MJ, Paulino GH. Designing patient-specific 3D printed craniofacial implants using a novel topology optimization method. Med Biol Eng Comput. 2016;54:1123.CrossRefPubMedGoogle Scholar
  58. 58.
    Al-Tamimi AA, PRA F, Peach C, Cooper G, Diver C, Bartolo PJ. Metallic bone fixation implants: a novel design approach for reducing the stress shielding phenomenon. Virtual Phys Prototyping. 2017;12(2):141–51.CrossRefGoogle Scholar
  59. 59.
    Marro A, Bandukwala T, Mak W. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol. 2016;45:2–9.CrossRefPubMedGoogle Scholar
  60. 60.
    Iglesias A, Galvez A, Avila A. Immunological approach for full NURBS reconstruction of outline curves from noisy data points in medical imaging. IEEE/ACM Trans Comput Biol Bioinform. 2017.Google Scholar
  61. 61.
    Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, van Wijnen AJ. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev. 2015;21:218.CrossRefPubMedGoogle Scholar
  62. 62.
    Chahine G, Koike M, Okabe T, Smith P, Kovacevic R. The design and production of Ti-6Al-4V ELI customized dental implants. JOM. 2008;60:50.CrossRefGoogle Scholar
  63. 63.
    Ellingsen JE, Lyngstadaas SP. Bio-implant interface: improving biomaterials and tissue reactions. Boca Raton, FL: CRC; 2003.CrossRefGoogle Scholar
  64. 64.
    Noble PC, Alexander JW, Lindahl LJ, Yew DT, Granberry WM, Tullos HS. The anatomic basis of femoral component design. Clin Orthop Relat Res. 1988;235(11):148–65.Google Scholar
  65. 65.
    Duda GN, Brand D, Freitag S, Lierse W, Schneider E. Variability of femoral muscle attachments. J Biomech. 1996;29(9):1185–90.CrossRefPubMedGoogle Scholar
  66. 66.
    Churchill RS, Brems JJ, Kotschi H. Glenoid size, inclination, and version: an anatomic study. J Shoulder Elbow Surg. 2001;10(4):327–32.CrossRefPubMedGoogle Scholar
  67. 67.
    Matsumura N, Ogawa K, Ikegami H, Collin P, Walch G, Toyama Y. Computed tomography measurement of glenoid vault version as an alternative measuring method for glenoid version. J Orthop Surg Res. 2014;9:17.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Boudarham J, Hameau S, Zory R, Hardy A, Bensmail D, Roche N. Coactivation of lower limb muscles during gait in patients with multiple sclerosis. PLoS One. 2016;11:e0158267.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kim SH, Wise BL, Zhang Y, Szabo RM. Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am. 2011;93(24):249–2254.CrossRefGoogle Scholar
  70. 70.
    Habermeyer P, Magosch P, Luz V, Lichtenberg S. Three-dimensional glenoid deformity in patients with osteoarthritis: a radiographic analysis. J Bone Joint Surg Am. 2006;88(6):1301–7.PubMedGoogle Scholar
  71. 71.
    Nowak DD, Bahu MJ, Gardner TR, Dyrszka MD, Levine WN, Bigliani LU, Ahmad CS. Simulation of surgical glenoid resurfacing using three-dimensional computed tomography of the arthritic glenohumeral joint: the amount of glenoid retroversion that can be corrected. J Shoulder Elbow Surg. 2009;18(5):680–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Dines DM, Gulotta L, Craig EV, Dines JS. Novel solution for massive glenoid defects in shoulder arthroplasty: a patient-specific glenoid vault reconstruction system. Am J Orthop (Belle Mead NJ). 2017;46(2):104.Google Scholar
  73. 73.
    Flurin PH, Janout M, Roche CP, Wright TW, Zuckerman J. Revision of the loose glenoid component in anatomic total shoulder arthroplasty. Bull NYU Hosp Jt Dis. 2013;71:68–76.Google Scholar
  74. 74.
    Hsu JE, Gee AO, Lucas RM, Somerson JS, Warme WJ, Matsen FA. Management of intraoperative posterior decentering in shoulder arthroplasty using anteriorly eccentric humeral head components. J Shoulder Elb Surg. 2016;25:1980.CrossRefGoogle Scholar
  75. 75.
    Lewis GS, Conaway WK, Wee H, Kim HM. Effects of anterior offsetting of humeral head component in posteriorly unstable total shoulder arthroplasty: finite element modeling of cadaver specimens. J Biomech. 2017;53:78.CrossRefPubMedGoogle Scholar
  76. 76.
    Anderson DD, Mosqueda T, Thomas T, Hermanson EL, Brown TD, Marsh JL. Quantifying tibial plafond fracture severity: absorbed energy and fragment displacement agree with clinical rank ordering. J Orthop Res. 2008;26:1046.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ. Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma. 2004;18(7):410–5.CrossRefPubMedGoogle Scholar
  78. 78.
    Haynes RC, Pöll RG, Miles AW, Weston RB. Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury. 1997;28:337.CrossRefPubMedGoogle Scholar
  79. 79.
    Gardner MJ, Weil Y, Barker JU, Kelly BT, Helfet DL, Lorich DG. The importance of medial support in locked plating of proximal Humerus fractures. J Orthop Trauma. 2007;21:185–91.CrossRefPubMedGoogle Scholar
  80. 80.
    Lewis GS, Caroom CT, Wee H, Jurgensmeier D, Rothermel SD, Bramer MA, Reid JS. Tangential bicortical locked fixation improves stability in Vancouver B1 periprosthetic femur fractures: a biomechanical study. J Orthop Trauma. 2015;29(10):364–70.CrossRefGoogle Scholar
  81. 81.
    Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47(8):1624–30.CrossRefPubMedGoogle Scholar
  82. 82.
    Tank JC, Schneider PS, Davis E, Galpin M, Prasarn ML, Choo AM, Munz JW, Achor TS, Kellam JF, Gary JL. Early mechanical failures of the synthes variable angle locking distal femur plate. J Orthop Trauma. 2016;30(1):e7–e11.CrossRefPubMedGoogle Scholar
  83. 83.
    Cronskär M, Rännar L-E, Bäckström M, Nilsson KG, Samuelsson B. Patient-specific clavicle reconstruction using digital design and additive manufacturing. J Mech Des. 2015;137:111418.CrossRefGoogle Scholar
  84. 84.
    George M, Kevin Aroom BR, Harvey Hawes BG, Brijesh Gill BS, Love J. 3D printed surgical instruments: the design and fabrication process. World J Surg. 2017;41:314–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Takemoto M, Fujibayashi S, Ota E, Otsuki B, Kimura H, Sakamoto T, Kawai T, Futami T, Sasaki K, Matsushita T, Nakamura T, Neo M, Matsuda S. Additive-manufactured patient-specific titanium templates for thoracic pedicle screw placement: novel design with reduced contact area. Eur Spine J. 2016;25:1698.CrossRefPubMedGoogle Scholar
  86. 86.
    Andersen RC, Nanos GP, Pinzur MS, Potter BK. Amputations in trauma. Skeletal trauma. 5th edition. Elsevier Saunders. 2015;2513–34.Google Scholar
  87. 87.
    Wong KC, Kumta SM, Geel NV, Demol J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015;20:14.CrossRefPubMedGoogle Scholar
  88. 88.
    Sanders G, Marks S, Dicaprio M. The treatment of femoral bone tumor using 3-D printing techniques: a mechanical analysis. Transactions of the 2014 Orthopedics Research Society Meeting. 2014;1109.Google Scholar
  89. 89.
    Fan H, Fu J, Li X, Pei Y, Li X, Pei G, Guo Z. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature. World J Surg Oncol. 2015;13:308.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Bibb R, Eggbeer D, Evans P, Bocca A, Sugar A. Rapid manufacture of custom-fitting surgical guides. Rapid Prototyping J. 2009;15(4):346–54.CrossRefGoogle Scholar
  91. 91.
    Jardini AL, Larosa MA, Filho RM, Zavaglia CADC, Bernardes LF, Lambert CS, Calderoni DR, Kharmandayan P. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J Cranio-Maxillofac Surg. 2014;42:1877.CrossRefGoogle Scholar
  92. 92.
    Xu N, Wei F, Liu X, Jiang L, Cai H, Li Z, Yu M, Wu F, Liu Z. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma. Spine. 2016;41:E50–4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Tilton
    • 1
  • Gregory S. Lewis
    • 2
  • Guha P. Manogharan
    • 1
    Email author
  1. 1.Department of Mechanical and Nuclear Engineering, College of EngineeringPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Orthopedics and Rehabilitation, College of MedicinePennsylvania State UniversityHersheyUSA

Personalised recommendations