Progress of Bioceramic and Bioglass Bone Scaffolds for Load-Bearing Applications

  • Jingzhou Yang


Despite tremendous advances in the fields of biomaterials science, tissue engineering, and regenerative medicine, it still remains challenging to repair bone defects at load-bearing sites using artificial bone tissue scaffolds. This inefficiency largely originates from the lack of strong scaffolds with appropriate load-bearing capacity during bone regeneration. Bioceramic/bioglass bone scaffolds have developed significantly towards load-bearing applications. This review focuses on the fundamental design concepts and manufacturing methods that are required for the fabrication of load-bearing bioceramic/bioglass scaffolds. Through tailoring microstructure and macrostructure, the mechanical properties of bone scaffolds could be greatly enhanced. This review highlights recent advances in manufacturing, in vitro mechanic characterization, and in vivo assessment of bioceramic and bioglass scaffolds in load-bearing bone defect models. It also gives the perspective on developing strong and tough bone scaffolds by bioinspiration.


Load-bearing bone scaffold Bioceramic Bioglass Bone tissue engineering 3D printing Freeze casting Biomaterial Regenerative medicine Bone repair Bone regeneration Microstructure design Biofabrication Orthopedic material Calcium phosphate Hydroxyapatite 


  1. 1.
    Petite H, Viateau V, Bensaid W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotech. 2000;18(9):959–63.CrossRefGoogle Scholar
  2. 2.
    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.PubMedCrossRefGoogle Scholar
  3. 3.
    Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8(6):457–70.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotech. 1998;16(3):247–52.CrossRefGoogle Scholar
  5. 5.
    Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002;295(5557):1009.PubMedCrossRefGoogle Scholar
  7. 7.
    Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414(6859):118–21.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res. 1999;360:71–86.CrossRefGoogle Scholar
  9. 9.
    Chu T-MG, Warden SJ, Turner CH, Stewart RL. Segmental bone regeneration using a load bearing biodegradable carrier of bone morphogenetic Protein-2. Biomaterials. 2007;28(3):459–67.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26(27):5474–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Shen ZJ, Adolfsson E, Nygren M, Gao L, Kawaoka H, Niihara K. Dense hydroxyapatite–zirconia ceramic composites with high strength for biological applications. Adv Mater. 2001;13(3):214–6.CrossRefGoogle Scholar
  12. 12.
    Ahn ES, Gleason NJ, Nakahira A, Ying JY. Nanostructure processing of hydroxyapatite-based bioceramics. Nano Lett. 2001;1(3):149–53.CrossRefGoogle Scholar
  13. 13.
    Savaridas T, Wallace RJ, Dawson S, Simpson AHRW. Effect of ibandronate on bending strength and toughness of rodent cortical bone. Bone Joint Res. 2015;4(6):99.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Yuan H, Fernandes H, Habibovic P, de Boer J, Barradas AMC, de Ruiter A, Walsh WR, van Blitterswijk CA, de Bruijn JD. Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci. 2010;107(31):13614–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Bi L, Zobell B, Liu X, Rahaman MN, Bonewald LF. Healing of critical-size segmental defects in rat femora using strong porous bioactive glass scaffolds. Mater Sci Eng C. 2014;42:816–24.CrossRefGoogle Scholar
  16. 16.
    Mayr HO, Klehm J, Schwan S, Hube R, Südkamp NP, Niemeyer P, Salzmann G, von Eisenhardt-Rothe R, Heilmann A, Bohner M, Bernstein A. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: biomechanical results. Acta Biomater. 2013;9(1):4845–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernstein A, Niemeyer P, Salzmann G, Südkamp NP, Hube R, Klehm J, Menzel M, von Eisenhart-Rothe R, Bohner M, Görz L, Mayr HO. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: histological results. Acta Biomater. 2013;9(7):7490–505.PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang Y, Chen L, Zeng J, Zhou K, Zhang D. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering. Mater Sci Eng C. 2014;39:143–9.CrossRefGoogle Scholar
  19. 19.
    Sprio S, Tampieri A, Celotti G, Landi E. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J Mech Behav Biomed Mater. 2009;2(2):147–55.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Xu S, Yang X, Chen X, Shao H, He Y, Zhang L, Yang G, Gou Z. Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics. J Non-Cryst Solids. 2014;405:91–9.CrossRefGoogle Scholar
  21. 21.
    Yang J, Hu X, Huang J, Chen K, Huang Z, Liu Y, Fang M, Sun X. Novel porous calcium aluminate/phosphate nanocomposites: in situ synthesis, microstructure and permeability. Nanoscale. 2016;8(6):3599–606.PubMedCrossRefGoogle Scholar
  22. 22.
    Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials. 2006;27(32):5480–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Deville S. Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater. 2008;10(3):155–69.CrossRefGoogle Scholar
  24. 24.
    Huang TS, Rahaman MN, Doiphode ND, Leu MC, Bal BS, Day DE, Liu X. Porous and strong bioactive glass (13-93) scaffolds fabricated by freeze extrusion technique. Mater Sci Eng C. 2011;31(7):1482–9.CrossRefGoogle Scholar
  25. 25.
    Zhu H, Zhai D, Lin C, Zhang Y, Huan Z, Chang J, Wu C. 3D plotting of highly uniform Sr5(PO4)2SiO4 bioceramic scaffolds for bone tissue engineering. J Mater Chem B. 2016;4(37):6200–12.CrossRefGoogle Scholar
  26. 26.
    Wu C, Fan W, Zhou Y, Luo Y, Gelinsky M, Chang J, Xiao Y. 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J Mater Chem. 2012;22(24):12288–95.CrossRefGoogle Scholar
  27. 27.
    Xu M, Zhai D, Xia L, Li H, Chen S, Fang B, Chang J, Wu C. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis. Nanoscale. 2016;8(28):13790–803.PubMedCrossRefGoogle Scholar
  28. 28.
    Jia W, Lau GY, Huang W, Zhang C, Tomsia AP, Fu Q. Bioactive glass for large bone repair. Adv Healthc Mater. 2015;4(18):2842–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Fu Q, Saiz E, Tomsia AP. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater. 2011;7(10):3547–54.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhang Y, Kong D, Yokogawa Y, Feng X, Tao Y, Qiu T. Fabrication of porous hydroxyapatite ceramic scaffolds with high flexural strength through the double slip-casting method using fine powders. J Am Ceram Soc. 2012;95(1):147–52.CrossRefGoogle Scholar
  31. 31.
    Crovace MC, Souza MT, Chinaglia CR, Peitl O, Zanotto ED. Biosilicate® — a multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials. J Non-Cryst Solids. 2016;432(Part A):90–110.CrossRefGoogle Scholar
  32. 32.
    Shuai C, Li P, Liu J, Peng S. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater Charact. 2013;77:23–31.CrossRefGoogle Scholar
  33. 33.
    Feng P, Niu M, Gao C, Peng S, Shuai C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep. 2014;4:5599.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Feng P, Wei P, Li P, Gao C, Shuai C, Peng S. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering. Mater Charact. 2014;97:47–56.CrossRefGoogle Scholar
  35. 35.
    Emadi R, Tavangarian F, Esfahani SIR. Biodegradable and bioactive properties of a novel bone scaffold coated with nanocrystalline bioactive glass for bone tissue engineering. Mater Lett. 2010;64(13):1528–31.CrossRefGoogle Scholar
  36. 36.
    Gmeiner R, Mitteramskogler G, Stampfl J, Boccaccini AR. Stereolithographic ceramic manufacturing of high strength bioactive glass. Int J Appl Ceram Technol. 2015;12(1):38–45.CrossRefGoogle Scholar
  37. 37.
    Fu Q, Rahaman MN, Bal BS, Brown RF. Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. J Biomed Mater Res A. 2010;93A(4):1380–90.CrossRefGoogle Scholar
  38. 38.
    Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater. 2011;21(6):1058–63.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Roohani-Esfahani S-I, Newman P, Zreiqat H. Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep. 2016;6:19468.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C, Jiang X. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials. 2017;135:85–95.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2005;74B(2):782–8.CrossRefGoogle Scholar
  42. 42.
    Miguel C, Marta D, Elke V, Uwe G, Paulo F, Inês P, Barbara G, Henrique A, Eduardo P, Jorge R. Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement. Biofabrication. 2014;6(2):025005.CrossRefGoogle Scholar
  43. 43.
    Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.CrossRefGoogle Scholar
  44. 44.
    Cesarano J, Dellinger JG, Saavedra MP, Gill DD, Jamison RD, Grosser BA, Sinn-Hanlon JM, Goldwasser MS. Customization of load-bearing hydroxyapatite lattice scaffolds. Int J Appl Ceram Technol. 2005;2(3):212–20.CrossRefGoogle Scholar
  45. 45.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP. Toward strong and tough glass and ceramic scaffolds for bone repair. Adv Funct Mater. 2013;23(44):5461–76.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bretcanu O, Misra S, Roy I, Renghini C, Fiori F, Boccaccini AR, Salih V. In vitro biocompatibility of 45S5 bioglass®-derived glass–ceramic scaffolds coated with poly(3-hydroxybutyrate). J Tissue Eng Regen Med. 2009;3(2):139–48.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Miranda P, Pajares A, Saiz E, Tomsia AP, Guiberteau F. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting. J Biomed Mater Res A. 2008;85A(1):218–27.CrossRefGoogle Scholar
  48. 48.
    Franco J, Hunger P, Launey ME, Tomsia AP, Saiz E. Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel. Acta Biomater. 2010;6(1):218–28.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011;7(6):2644–50.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C. Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 2014;10(5):2269–81.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Butscher A, Bohner M, Doebelin N, Hofmann S, Müller R. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta Biomater. 2013;9(11):9149–58.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zocca A, Elsayed H, Bernardo E, Gomes CM, Lopez-Heredia MA, Knabe C, Colombo P, Günster J. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder. Biofabrication. 2015;7(2):025008.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Seitz H, Deisinger U, Leukers B, Detsch R, Ziegler G. Different calcium phosphate granules for 3-D printing of bone tissue engineering scaffolds. Adv Eng Mater. 2009;11(5):B41–6.CrossRefGoogle Scholar
  54. 54.
    Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A. 2011;97A(4):514–35.CrossRefGoogle Scholar
  55. 55.
    Wilson CE, de Bruijn JD, van Blitterswijk CA, Verbout AJ, Dhert WJA. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J Biomed Mater Res A. 2004;68A(1):123–32.CrossRefGoogle Scholar
  56. 56.
    Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24(1):181–94.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Seol Y-J, Park DY, Park JY, Kim SW, Park SJ, Cho D-W. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration. Biotechnol Bioeng. 2013;110(5):1444–55.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Weiguo B, Dichen L, Qin L, Weijie Z, Linzhong Z, Xiang L, Zhongmin J. Design and fabrication of a novel porous implant with pre-set channels based on ceramic stereolithography for vascular implantation. Biofabrication. 2011;3(3):034103.CrossRefGoogle Scholar
  59. 59.
    Fu Q, Saiz E, Rahaman MN, Tomsia AP. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater Sci Eng C. 2011;31(7):1245–56.CrossRefGoogle Scholar
  60. 60.
    Fu Q, Rahaman MN, Bal BS, Huang W, Day DE. Preparation and bioactive characteristics of a porous 13-93 glass, and fabrication into the articulating surface of a proximal tibia. J Biomed Mater Res A. 2007;82A(1):222–9.CrossRefGoogle Scholar
  61. 61.
    Deliormanlı AM, Rahaman MN. Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair. J Eur Ceram Soc. 2012;32(14):3637–46.CrossRefGoogle Scholar
  62. 62.
    Deville S, Saiz E, Nalla RK, Tomsia AP. Freezing as a path to build complex composites. Science. 2006;311(5760):515.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Bouville F, Maire E, Meille S, Van de Moortèle B, Stevenson AJ, Deville S. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nat Mater. 2014;13(5):508–14.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Lin D, Yang K, Tang W, Liu Y, Yuan Y, Liu C. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Colloids Surf B: Biointerfaces. 2015;131:1–11.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Chen QZ, Efthymiou A, Salih V, Boccaccini AR. Bioglass®-derived glass–ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro. J Biomed Mater Res A. 2008;84A(4):1049–60.CrossRefGoogle Scholar
  67. 67.
    Vitale-Brovarone C, Nunzio SD, Bretcanu O, Verné E. Macroporous glass-ceramic materials with bioactive properties. J Mater Sci Mater Med. 2004;15(3):209–17.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Vitale-Brovarone C, Verné E, Robiglio L, Martinasso G, Canuto RA, Muzio G. Biocompatible glass–ceramic materials for bone substitution. J Mater Sci Mater Med. 2008;19(1):471–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fu Q, Rahaman MN, Sonny Bal B, Brown RF, Day DE. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique. Acta Biomater. 2008;4(6):1854–64.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hua Z, Xiao-Jian Y, Jia-Shun L. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds. Biomed Mater. 2009;4(4):045007.CrossRefGoogle Scholar
  71. 71.
    Baino F, Verné E, Vitale-Brovarone C. 3-D high-strength glass–ceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Mater Sci Eng C. 2009;29(6):2055–62.CrossRefGoogle Scholar
  72. 72.
    Wu S-C, Hsu H-C, Hsiao S-H, Ho W-F. Preparation of porous 45S5 bioglass®-derived glass–ceramic scaffolds by using rice husk as a porogen additive. J Mater Sci Mater Med. 2009;20(6):1229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Bellucci D, Cannillo V, Ciardelli G, Gentile P, Sola A. Potassium based bioactive glass for bone tissue engineering. Ceram Int. 2010;36(8):2449–53.CrossRefGoogle Scholar
  74. 74.
    Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials. 2009;30(28):5041–8.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jamshidi Adegani F, Langroudi L, Ardeshirylajimi A, Dinarvand P, Dodel M, Doostmohammadi A, Rahimian A, Zohrabi P, Seyedjafari E, Soleimani M. Coating of electrospun poly(lactic-co-glycolic acid) nanofibers with willemite bioceramic: improvement of bone reconstruction in rat model. Cell Biol Int. 2014;38(11):1271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Xin R, Leng Y, Chen J, Zhang Q. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials. 2005;26(33):6477–86.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Vogel M, Voigt C, Gross UM, Müller-Mai CM. In vivo comparison of bioactive glass particles in rabbits. Biomaterials. 2001;22(4):357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, Ning C. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588–96.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Maurilio Marcacci EK, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007;13(5):947–55.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials. 2006;27(17):3230–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM, Panzeri H, Rosa AL, de Oliveira PT. In vitro osteogenesis on a highly bioactive glass-ceramic (biosilicate®). J Biomed Mater Res A. 2007;82A(3):545–57.CrossRefGoogle Scholar
  82. 82.
    Nandi SK, Kundu B, Datta S, De DK, Basu D. The repair of segmental bone defects with porous bioglass: an experimental study in goat. Res Vet Sci. 2009;86(1):162–73.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ferdinand P, Beer ERJ, Dewolf J, Mazurek D. Mechanics of materials. New York: McGraw Hill; 2009.Google Scholar
  84. 84.
    Askeland DR, Phule PP. The science and engineering of materials. 5th ed. Boston, MA: Cengage learning; 2006.Google Scholar
  85. 85.
    Almirall A, Larrecq G, Delgado JA, Martınez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an α-TCP paste. Biomaterials. 2004;25(17):3671–80.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ding S-J, Wang C-W, Chen DC-H, Chang H-C. In vitro degradation behavior of porous calcium phosphates under diametral compression loading. Ceram Int. 2005;31(5):691–6.CrossRefGoogle Scholar
  87. 87.
    Charrière E, Lemaitre J, Zysset P. Hydroxyapatite cement scaffolds with controlled macroporosity: fabrication protocol and mechanical properties. Biomaterials. 2003;24(5):809–17.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Barinov SM, Sakai M. The work-of-fracture of brittle materials: principle, determination, and applications. J Mater Res. 2011;9(6):1412–25.CrossRefGoogle Scholar
  89. 89.
    Peroglio M, Gremillard L, Gauthier C, Chazeau L, Verrier S, Alini M, Chevalier J. Mechanical properties and cytocompatibility of poly(ε-caprolactone)-infiltrated biphasic calcium phosphate scaffolds with bimodal pore distribution. Acta Biomater. 2010;6(11):4369–79.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Pernot F, Etienne P, Boschet F, Datas L. Weibull parameters and the tensile strength of porous phosphate glass-ceramics. J Am Ceram Soc. 1999;82(3):641–8.CrossRefGoogle Scholar
  91. 91.
    Kim WH, Laird C. Crack nucleation and stage I propagation in high strain fatigue—II. Mechanism. Acta Metall. 1978;26(5):789–99.CrossRefGoogle Scholar
  92. 92.
    Ralph I, Stephens AF, Robert R, Stephens HO. Fuchs, metal fatigue in engineering. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.; 2001.Google Scholar
  93. 93.
    Bathias. There is no infinite fatigue life in metallic materials. Fatigue & Fracture of Engineering Materials & Structures. 1999;22(7):559–65.CrossRefGoogle Scholar
  94. 94.
    Shigley JE, Mitchell LD. Mechanical engineering design. 7th ed. New York: McGraw Hill Higher Education; 2003.Google Scholar
  95. 95.
    Riggs BL, Melton LJ. The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone. 1995;17(5):S505–11.CrossRefGoogle Scholar
  96. 96.
    Choi K, Goldstein SA. A comparison of the fatigue behavior of human trabecular and cortical bone tissue. J Biomech. 1992;25(12):1371–81.PubMedCrossRefGoogle Scholar
  97. 97.
    Ritchie RO, Dauskardt RH. Cyclic fatigue of ceramics. J Ceram Soc Jpn. 1991;99(1154):1047–62.CrossRefGoogle Scholar
  98. 98.
    Sun Z, Kennedy KS, Tee BC, Damron JB, Allen MJ. Establishing a critical-size mandibular defect model in growing pigs: characterization of spontaneous healing. J Oral Maxillofac Surg. 2014;72(9):1852–68.PubMedCrossRefGoogle Scholar
  99. 99.
    Shah SR, Young S, Goldman JL, Jansen JA, Wong ME, Mikos AG. A composite critical-size rabbit mandibular defect for evaluation of craniofacial tissue regeneration. Nat Protocols. 2016;11(10):1989–2009.PubMedCrossRefGoogle Scholar
  100. 100.
    Lovati AB, Lopa S, Recordati C, Talò G, Turrisi C, Bottagisio M, Losa M, Scanziani E, Moretti M. In vivo bone formation within engineered hydroxyapatite scaffolds in a sheep model. Calcif Tissue Int. 2016;99(2):209–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Launey ME, Buehler MJ, Ritchie RO. On the mechanistic origins of toughness in bone. Annu Rev Mater Res. 2010;40(1):25–53.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jingzhou Yang
    • 1
    • 2
    • 3
  1. 1.Affiliated Hospital of Hebei University, Health Science CentreHebei UniversityBaodingP. R. China
  2. 2.Research Centre of Biomedical Materials 3D PrintingNational Engineering Laboratory for Polymer Complex Structure Additive ManufacturingBaodingP. R. China
  3. 3.Hebei Dazhou Smart Manufacturing Technology Co., Ltd.BaodingP. R. China

Personalised recommendations