Advertisement

Biomaterials for Bone Tissue Engineering: Recent Advances and Challenges

  • Kanchan Maji
Chapter

Abstract

Millions of people are suffering today due to bone disease caused by bone injury and trauma. Bone tissue engineering is the interdisciplinary research field of biomaterial and tissue engineering to address these problems for the improvement of better quality of life. Due to several complexity in conventional approach like limited supply of autograft and donor side morbidity in case of allograft, researcher opted for tissue engineering scaffold to counter these problems. Tissue engineering scaffold is design to grow and proliferate bone cell in a three dimensional platform which mimics the extra cellular matrix of bone. Scaffold seeded with mesenchymal stem cells (MSCs) is considered to be a very useful technique in the field of biomedical engineering. The main objective of this chapter is to provide an overall work done so far in this field, with a special focus on the evolution of biomaterials and their characteristics that are specific for biopolymer scaffold based strategies of bone and cartilage tissue engineering.

Keywords

Biomaterial Tissue engineering Stem cell Scaffold Composite Mechanical strength Embryonic Adult stem cell Particulate-leaching Phase separation 

References

  1. 1.
    Rehm BHA. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8(8):578–92.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Haugh MG, et al. Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds. Tissue Eng A. 2011;17(9–10):1201–8.CrossRefGoogle Scholar
  3. 3.
    Zhang W, et al. Nucleation sites of calcium phosphate crystals during collagen mineralization. J Am Ceram Soc. 2003;86(6):1052–4.CrossRefGoogle Scholar
  4. 4.
    Meinel L, et al. Silk based biomaterials to heal critical sized femur defects. Bone. 2006;39(4):922–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Zimmermann KA, et al. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C. 2011;31(1):43–9.CrossRefGoogle Scholar
  6. 6.
    Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med. 2001;52(1):443–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Sundelacruz S, Kaplan DL. Stem cell-and scaffold-based tissue engineering approaches to osteochondral regenerative medicine. In: Seminars in cell & developmental biology. Berlin: Elsevier; 2009.Google Scholar
  8. 8.
    Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007;28(29):4240–50.PubMedCrossRefGoogle Scholar
  9. 9.
    Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002;295(5557):1009–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Cancedda R, et al. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22(1):81–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Discher DE, Janmey P, Wang Y-l. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005;310(5751):1139–43.PubMedCrossRefGoogle Scholar
  12. 12.
    Bruder SP, Fox BS. Tissue engineering of bone: cell based strategies. Clin Orthop Relat Res. 1999;367:S68–83.CrossRefGoogle Scholar
  13. 13.
    Schantz J-T, et al. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Tissue Eng. 2003;9(4, Suppl. 1):127–39.CrossRefGoogle Scholar
  14. 14.
    De Boer R, et al. Rat sciatic nerve repair with a poly-lactic-co-glycolic acid scaffold and nerve growth factor releasing microspheres. Microsurgery. 2011;31(4):293–302.PubMedCrossRefGoogle Scholar
  15. 15.
    Whitaker M, et al. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol. 2001;53(11):1427–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Dankers PY, et al. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat Mater. 2005;4(7):568–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Weng J, Wang M, Chen J. Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds. Biomaterials. 2002;23(13):2623–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003;18(4):696–704.PubMedCrossRefGoogle Scholar
  19. 19.
    Nguyen LH, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012;18(5):363–82.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Engh GA, Herzwurm PJ, Parks NL. Treatment of major defects of bone with bulk allografts and stemmed components during total knee arthroplasty. J Bone Joint Surg Am. 1997;79(7):1030–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Buckwalter J, Mankin H. Instructional course lectures, the american academy of orthopaedic surgeons-articular cartilage. Part I: tissue design and chondrocyte-matrix interactions*†. J Bone Joint Surg Am. 1997;79(4):600–11.CrossRefGoogle Scholar
  23. 23.
    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl. 3):S131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Carter DR, Spengler DM. Mechanical properties and composition of cortical bone. Clin Orthop Relat Res. 1978;135:192–217.Google Scholar
  25. 25.
    Taicher GZ, et al. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem. 2003;377(6):990–1002.PubMedCrossRefGoogle Scholar
  26. 26.
    Buckwalter J, et al. Bone biology. J Bone Joint Surg Am. 1995;77(8):1256–75.CrossRefGoogle Scholar
  27. 27.
    Nicolson R, Johal J. Ultrastructure of bone. TechMe Anatomy info.Google Scholar
  28. 28.
    Baksh D, Song L, Tuan R. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med. 2004;8(3):301–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Kern S, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–301.PubMedCrossRefGoogle Scholar
  30. 30.
    Dani C, et al. Differentiation of embryonic stem cells into adipocytes in vitro. J Cell Sci. 1997;110(11):1279–85.PubMedGoogle Scholar
  31. 31.
    Alison MR, et al. Cell differentiation: hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.PubMedCrossRefGoogle Scholar
  32. 32.
    Pittenger MF, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Kidney disease syndrome, Stem cell therapy, http://www.kidney-symptom.com/stem-cell-therapy.html.
  34. 34.
    Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518–24.PubMedCrossRefGoogle Scholar
  35. 35.
    Hing KA. Bioceramic bone graft substitutes: influence of porosity and chemistry. Int J Appl Ceram Technol. 2005;2(3):184–99.CrossRefGoogle Scholar
  36. 36.
    Harley BA, Gibson LJ. In vivo and in vitro applications of collagen-GAG scaffolds. Chem Eng J. 2008;137(1):102–21.CrossRefGoogle Scholar
  37. 37.
    Yeong W-Y, et al. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 2004;22(12):643–52.PubMedCrossRefGoogle Scholar
  38. 38.
    Liao CJ, et al. Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res. 2002;59(4):676–81.PubMedCrossRefGoogle Scholar
  39. 39.
    Harris LD, Kim B-S, Mooney DJ. Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res. 1998;42(3):396–402.PubMedCrossRefGoogle Scholar
  40. 40.
    Mooney S. Bioinformatics approaches and resources for single nucleotide polymorphism functional analysis. Brief Bioinform. 2005;6(1):44–56.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm. 2000;203(1):1–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Lloyd DR, Kinzer KE, Tseng H. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. J Membr Sci. 1990;52(3):239–61.CrossRefGoogle Scholar
  43. 43.
    Hua FJ, Park TG, Lee DS. A facile preparation of highly interconnected macroporous poly (D, L-lactic acid-co-glycolic acid)(PLGA) scaffolds by liquid–liquid phase separation of a PLGA–dioxane–water ternary system. Polymer. 2003;44(6):1911–20.CrossRefGoogle Scholar
  44. 44.
    Haghi AK, Akbari M. Trends in electrospinning of natural nanofibers. Phys Status Solidi A. 2007;204(6):1830–4.CrossRefGoogle Scholar
  45. 45.
    Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.Google Scholar
  46. 46.
    Zeugolis DI, et al. Electro-spinning of pure collagen nano-fibres–just an expensive way to make gelatin? Biomaterials. 2008;29(15):2293–305.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee S-J, et al. Development of a scaffold fabrication system using an axiomatic approach. J Micromech Microeng. 2006;17(1):147.CrossRefGoogle Scholar
  48. 48.
    Billiet T, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33(26):6020–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Leong K, Cheah C, Chua C. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials. 2003;24(13):2363–78.PubMedCrossRefGoogle Scholar
  50. 50.
    Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20(19):1783–90.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sin D, et al. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater Sci Eng C. 2010;30(1):78–85.CrossRefGoogle Scholar
  52. 52.
    Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22(7):354–62.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27(28):4894–903.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dupont KM, et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 2012;347(3):575–88.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Venugopal J, et al. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater. 2008;84(1):34–48.PubMedCrossRefGoogle Scholar
  56. 56.
    Bundela H, Bajpai A. Designing of hydroxyapatite-gelatin based porous matrix as bone substitute: correlation with biocompatibility aspects. Express Polym Lett. 2008;2:201–13.CrossRefGoogle Scholar
  57. 57.
    Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–6.Google Scholar
  58. 58.
    Loh QL, Choong C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013;19(6):485–502.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am. 2001;83(1 suppl 2):S105–15.PubMedGoogle Scholar
  60. 60.
    Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Borden M, et al. Tissue engineered microsphere-based matrices for bone repair: design and evaluation. Biomaterials. 2002;23(2):551–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Yucel D, Kose GT, Hasirci V. Polyester based nerve guidance conduit design. Biomaterials. 2010;31(7):1596–603.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1985;18(5):317–28.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Bledzki A, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24(2):221–74.CrossRefGoogle Scholar
  65. 65.
    Sanchez C, et al. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15(35–36):3559–92.CrossRefGoogle Scholar
  66. 66.
    Green AA, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens. 1988;26(1):65–74.CrossRefGoogle Scholar
  67. 67.
    Yoneyama M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5(7):730–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Zhang J, Yedlapalli P, Lee JW. Thermodynamic analysis of hydrate-based pre-combustion capture of CO2. Chem Eng Sci. 2009;64(22):4732–6.CrossRefGoogle Scholar
  69. 69.
    Wang Y, et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science. 2005;308(5723):854–7.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Chesnutt BM, et al. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A. 2009;88((2):491–502.CrossRefGoogle Scholar
  71. 71.
    Chen D-M, Zhao H. Strong lensing probability for testing TeVeS theory. Astrophys J Lett. 2006;650(1):L9.CrossRefGoogle Scholar
  72. 72.
    Athanasiou KA, Niederauer GG, Agrawal CM. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials. 1996;17(2):93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;21(23):2335–46.PubMedCrossRefGoogle Scholar
  74. 74.
    Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30–40.CrossRefGoogle Scholar
  75. 75.
    Miao X, et al. Porous calcium phosphate ceramics modified with PLGA–bioactive glass. Mater Sci Eng C. 2007;27(2):274–9.CrossRefGoogle Scholar
  76. 76.
    Balandin AA, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8(3):902–7.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603–21.CrossRefGoogle Scholar
  78. 78.
    Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Messerli D, et al. Multipiece allograft implant; 2009. Google Patents.Google Scholar
  80. 80.
    Chen Q, Boccaccini A. Poly (D, L-lactic acid) coated 45S5 Bioglass®-based scaffolds: Processing and characterization. J Biomed Mater Res A. 2006;77(3):445–57.PubMedCrossRefGoogle Scholar
  81. 81.
    Misra SK, et al. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules. 2006;7(8):2249–58.PubMedCrossRefGoogle Scholar
  82. 82.
    Sánchez-Salcedo S, Nieto A, Vallet-Regí M. Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J. 2008;137(1):62–71.CrossRefGoogle Scholar
  83. 83.
    Puértolas J, et al. Compression behaviour of biphasic calcium phosphate and biphasic calcium phosphate–agarose scaffolds for bone regeneration. Acta Biomater. 2011;7(2):841–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.PubMedCrossRefGoogle Scholar
  85. 85.
    Min B-M, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7):1289–97.PubMedCrossRefGoogle Scholar
  86. 86.
    Miroiu F, et al. Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater Sci Eng B. 2010;169(1):151–8.CrossRefGoogle Scholar
  87. 87.
    Bhumiratana S, et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials. 2011;32(11):2812–20.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Spotnitz WD. Fibrin sealant: past, present, and future: a brief review. World J Surg. 2010;34(4):632–4.PubMedCrossRefGoogle Scholar
  89. 89.
    Le Guéhennec L, Layrolle P, Daculsi G. A review of bioceramics and fibrin sealant. Eur Cell Mater. 2004;8(13):1–11.PubMedGoogle Scholar
  90. 90.
    Walker-Bone K, et al. Regular review: medical management of osteoarthritis. Br Med J. 2000;321(7266):936.CrossRefGoogle Scholar
  91. 91.
    Liu H, et al. A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed. 2004;15(1):25–40.PubMedCrossRefGoogle Scholar
  92. 92.
    Yodsuwan N, et al. Effect of carbon and nitrogen sources on bacterial cellulose production for bionanocomposite materials. In: 1st Fah Luang University international conference, Thailand; 2012.Google Scholar
  93. 93.
    Lee J-Y, et al. Transforming growth factor (TGF)-β1 releasing tricalcium phosphate/chitosan microgranules as bone substitutes. Pharm Res. 2004;21(10):1790–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Samira J, et al. Cytocompatibility, gene-expression profiling, apoptotic, mechanical and 29Si, 31P solid-state nuclear magnetic resonance studies following treatment with a bioglass-chitosan composite. Biotechnol Lett. 2014;36(12):2571–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Huang D, et al. Optical coherence tomography. Science (New York, NY). 1991;254(5035):1178.CrossRefGoogle Scholar
  96. 96.
    Mohammadi Y, et al. Nanofibrous poly (epsilon-caprolactone)/poly (vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif Organs. 2007;30(3):204.PubMedCrossRefGoogle Scholar
  97. 97.
    Liu X, et al. Characterization of structure and diffusion behaviour of Ca-alginate beads prepared with external or internal calcium sources. J Microencapsul. 2002;19(6):775–82.PubMedCrossRefGoogle Scholar
  98. 98.
    Kim I-Y, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1–21.PubMedCrossRefGoogle Scholar
  99. 99.
    Saravanan S, et al. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol. 2011;49(2):188–93.PubMedCrossRefGoogle Scholar
  100. 100.
    Chronopoulou L, et al. Chitosan-coated PLGA nanoparticles: a sustained drug release strategy for cell cultures. Colloids Surf B: Biointerfaces. 2013;103:310–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Mohammadi Y, et al. Osteogenic differentiation of mesenchymal stem cells on novel three-dimensional poly (L-Lactic Acid)/Chitosan/Gelatin/Beta-Tricalcium phosphate hybrid scaffolds. Iran Polym J. 2007;16(1):57.Google Scholar
  102. 102.
    Wang Z, Qin T-W. Review: vitreous cryopreservation of tissue-engineered compositions for tissue repair. J Med Biol Eng. 2013;33(2):125–32.CrossRefGoogle Scholar
  103. 103.
    Yeo JH, et al. The effects of Pva/chitosan/fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol Pharm Bull. 2000;23(10):1220–3.PubMedCrossRefGoogle Scholar
  104. 104.
    Wang M. Bioactive calcium phosphates and nanocomposite scaffolds for bone tissue engineering. Ceram Trans. 2010;218:175–83.Google Scholar
  105. 105.
    Chang MC, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials. 2002;23(24):4811–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Li X, et al. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials. 2006;27(9):1917–23.PubMedCrossRefGoogle Scholar
  107. 107.
    Spilker M, et al. The effects of collagen-based implants on early healing of the adult rat spinal cord. Tissue Eng. 1997;3(3):309–17.CrossRefGoogle Scholar
  108. 108.
    Weadock KS, et al. Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J Biomed Mater Res. 1995;29(11):1373–9.PubMedCrossRefGoogle Scholar
  109. 109.
    Lahav J, Schwartz MA, Hynes RO. Analysis of platelet adhesion with a radioactive chemical crosslinking reagent: interaction of thrombospondin with fibronectin and collagen. Cell. 1982;31(1):253–62.PubMedCrossRefGoogle Scholar
  110. 110.
    Reiser K, McCormick R, Rucker R. Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB J. 1992;6(7):2439–49.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Chang CH, et al. Cartilage tissue engineering on the surface of a novel gelatin–calcium-phosphate biphasic scaffold in a double-chamber bioreactor. J Biomed Mater Res B Appl Biomater. 2004;71(2):313–21.PubMedCrossRefGoogle Scholar
  112. 112.
    Schonauer C, et al. The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J. 2004;13(1):S89–96.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Li M, et al. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26(30):5999–6008.PubMedCrossRefGoogle Scholar
  114. 114.
    Sawyer A, et al. The stimulation of healing within a rat calvarial defect by mPCL–TCP/collagen scaffolds loaded with rhBMP-2. Biomaterials. 2009;30(13):2479–88.PubMedCrossRefGoogle Scholar
  115. 115.
    Habraken W, Wolke J, Jansen J. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59(4):234–48.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Ko C-C, et al. Mechanical properties and cytocompatibility of biomimetic hydroxyapatite-gelatin nanocomposites. J Mater Res. 2006;21(12):3090–8.CrossRefGoogle Scholar
  117. 117.
    Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet. 1999;354:S32–4.CrossRefGoogle Scholar
  118. 118.
    Mohamed KR, Beherei HH, El-Rashidy ZM. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J Adv Res. 2014;5(2):201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Li J, et al. Surface characterization and biocompatibility of micro-and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng C. 2009;29(4):1207–15.CrossRefGoogle Scholar
  120. 120.
    Choi YS, et al. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials. 1999;20(5):409–17.PubMedCrossRefGoogle Scholar
  121. 121.
    Li J, et al. Effect of nano-and micro-hydroxyapatite/chitosan-gelatin network film on human gastric cancer cells. Mater Lett. 2008;62(17):3220–3.CrossRefGoogle Scholar
  122. 122.
    Sharma S, et al. Bone healing performance of electrophoretically deposited apatite–wollastonite/chitosan coating on titanium implants in rabbit tibiae. J Tissue Eng Regen Med. 2009;3(7):501–11.PubMedCrossRefGoogle Scholar
  123. 123.
    Liotta L, et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980;284(5751):67–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Pals D, Hermans J. Sodium salts of pectin and of carboxy methyl cellulose in aqueous sodium chloride. I. Viscosities. Recueil des Travaux Chimiques des Pays-Bas. 1952;71(5):433–57.CrossRefGoogle Scholar
  125. 125.
    Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials. 1999;20(9):859–77.PubMedCrossRefGoogle Scholar
  126. 126.
    Kumar MNR. A review of chitin and chitosan applications. React Funct Polym. 2000;46(1):1–27.CrossRefGoogle Scholar
  127. 127.
    Willats WG, et al. Pectin: cell biology and prospects for functional analysis. In: Plant cell walls. Berlin: Springer; 2001. p. 9–27.CrossRefGoogle Scholar
  128. 128.
    Uragami T, et al. Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions. J Membr Sci. 1994;88(2):243–51.CrossRefGoogle Scholar
  129. 129.
    Rezwan K, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.PubMedCrossRefGoogle Scholar
  130. 130.
    Ghasemi-Mobarakeh L, et al. Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29(34):4532–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Boccaccini AR, Maquet V. Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol. 2003;63(16):2417–29.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kanchan Maji
    • 1
  1. 1.Department of Ceramic EngineeringNITRourkelaIndia

Personalised recommendations