Advertisement

Platelet Rich Plasma: Biology and Clinical Usage in Orthopedics

  • Dukens LaBaze
  • Hongshuai Li
Chapter

Abstract

Biological research in the areas of skeletal, cartilaginous, tendinous, and muscular tissues has led to the advancement of various products designed to augment healing. Platelet-rich plasma (PRP) has been in clinical use and researched since the 1970s because of its regenerative properties. In this chapter, we will first define PRP and its components and discuss various methods of preparation and isolation. The second section will focus on the clinical applications of PRP on tissue specific pathologies including tendinopathy, ligamentous injuries, osteoarthritis, and muscle injuries in the field of orthopedic surgery and sports medicine. Lastly, the latest progress in PRP research will be briefly listed and some promising future directions will be discussed.

Keywords

Platelet Platelet rich plasma Orthopedics surgery Sports medicine Tendon Tendinopathy Ligament Cartilage Osteoarthritis Muscle Growth factor Cell proliferation Cell differentiation Fibrosis 

References

  1. 1.
    Alsousou J, et al. The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009;91(8):987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Anitua E, et al. New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol. 2006;24(5):227–34.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Khan M, Bedi A. Cochrane in CORR ((R)): platelet-rich therapies for musculoskeletal soft tissue injuries (Review). Clin Orthop Relat Res. 2015;473(7):2207–13.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sanchez M, et al. Platelet-rich therapies in the treatment of orthopaedic sport injuries. Sports Med. 2009;39(5):345–54.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Alvarez-Camino JC, Vazquez-Delgado E, Gay-Escoda C. Use of autologous conditioned serum (Orthokine) for the treatment of the degenerative osteoarthritis of the temporomandibular joint. Review of the literature. Med Oral Patol Oral Cir Bucal. 2013;18(3):e433–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Baltzer AW, et al. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr Cartil. 2009;17(2):152–60.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wehling P, et al. Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy. BioDrugs. 2007;21(5):323–32.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Whitman DH, Berry RL, Green DM. Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg. 1997;55(11):1294–9.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Li H, Li B. PRP as a new approach to prevent infection: preparation and in vitro antimicrobial properties of PRP. J Vis Exp. 2013;74Google Scholar
  10. 10.
    Dhurat R, Sukesh M. Principles and methods of preparation of platelet-rich plasma: a review and author's perspective. J Cutan Aesthet Surg. 2014;7(4):189–97.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Degen RM, et al. Commercial separation systems designed for preparation of platelet-rich plasma yield differences in cellular composition. HSS J. 2017;13(1):75–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27(3):158–67.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mishra A, et al. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol. 2012;13(7):1185–95.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: the PAW classification system. Arthroscopy. 2012;28(7):998–1009.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yun SH, et al. Platelet activation: the mechanisms and potential biomarkers. Biomed Res Int. 2016;2016:9060143.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Angiolillo DJ, Ueno M, Goto S. Basic principles of platelet biology and clinical implications. Circ J. 2010;74(4):597–607.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Qureshi AH, et al. Proteomic and phospho-proteomic profile of human platelets in basal, resting state: insights into integrin signaling. PLoS One. 2009;4(10):e7627.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Senzel L, Gnatenko DV, Bahou WF. The platelet proteome. Curr Opin Hematol. 2009;16(5):329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Maynard DM, et al. Proteomic analysis of platelet alpha-granules using mass spectrometry. J Thromb Haemost. 2007;5(9):1945–55.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Boswell SG, et al. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy. 2012;28(3):429–39.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Freymiller EG. Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62(8):1046. author reply 1047-8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Meyers KM, Holmsen H, Seachord CL. Comparative study of platelet dense granule constituents. Am J Phys. 1982;243(3):R454–61.Google Scholar
  24. 24.
    Ducy P. 5-HT and bone biology. Curr Opin Pharmacol. 2011;11(1):34–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Jonnalagadda D, Izu LT, Whiteheart SW. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood. 2012;120(26):5209–16.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Suelves M, et al. uPA deficiency exacerbates muscular dystrophy in MDX mice. J Cell Biol. 2007;178(6):1039–51.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Rundle CH, et al. Fracture healing in mice deficient in plasminogen activator inhibitor-1. Calcif Tissue Int. 2008;83(4):276–84.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ma L, et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A. 2005;102(1):216–20.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost. 2007;5(10):2009–16.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Italiano JE Jr, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cavallo C, et al. Platelet-rich plasma: the choice of activation method affects the release of bioactive molecules. Biomed Res Int. 2016;2016:6591717.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Fufa D, et al. Activation of platelet-rich plasma using soluble type I collagen. J Oral Maxillofac Surg. 2008;66(4):684–90.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Moojen DJ, et al. Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J Orthop Res. 2008;26(3):404–10.PubMedCrossRefGoogle Scholar
  35. 35.
    Li H, et al. Unique antimicrobial effects of platelet-rich plasma and its efficacy as a prophylaxis to prevent implant-associated spinal infection. Adv Healthc Mater. 2013;2(9):1277–84.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Portela GS, et al. L-PRP diminishes bone matrix formation around autogenous bone grafts associated with changes in osteocalcin and PPAR-gamma immunoexpression. Int J Oral Maxillofac Surg. 2014;43(2):261–8.PubMedCrossRefGoogle Scholar
  37. 37.
    McCarrel TM, Minas T, Fortier LA. Optimization of leukocyte concentration in platelet-rich plasma for the treatment of tendinopathy. J Bone Joint Surg Am. 2012;94(19):e1431–8.CrossRefGoogle Scholar
  38. 38.
    Braun HJ, et al. The effect of platelet-rich plasma formulations and blood products on human synoviocytes: implications for intra-articular injury and therapy. Am J Sports Med. 2014;42(5):1204–10.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Burnier L, et al. Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost. 2009;101(3):439–51.PubMedGoogle Scholar
  40. 40.
    Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107(9):1047–57.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Simak J, Gelderman MP. Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev. 2006;20(1):1–26.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Goubran HA, et al. Platelet microparticle: a sensitive physiological "fine tuning" balancing factor in health and disease. Transfus Apher Sci. 2015;52(1):12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Burnouf T, et al. An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful? Transfus Apher Sci. 2015;53(2):137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Antwi-Baffour S, et al. Understanding the biosynthesis of platelets-derived extracellular vesicles. Immun Inflamm Dis. 2015;3(3):133–40.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lu M, et al. Recent advances on extracellular vesicles in therapeutic delivery: challenges, solutions, and opportunities. Eur J Pharm Biopharm. 2017;119:381–95.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Arraud N, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014;12(5):614–27.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis. 2006;36(2):182–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Keuren JF, et al. Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation. Br J Haematol. 2006;134(3):307–13.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Heijnen HF, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–9.PubMedPubMedCentralGoogle Scholar
  50. 50.
    James R, et al. Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg Am. 2008;33(1):102–12.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Wang X, et al. Proliferation and differentiation of human tenocytes in response to platelet rich plasma: an in vitro and in vivo study. J Orthop Res. 2012;30(6):982–90.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Zhang J, Wang JH. Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes. Am J Sports Med. 2010;38(12):2477–86.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Giusti I, et al. Platelet concentration in platelet-rich plasma affects tenocyte behavior in vitro. Biomed Res Int. 2014;2014:630870.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhou Y, et al. The differential effects of leukocyte-containing and pure platelet-rich plasma (PRP) on tendon stem/progenitor cells - implications of PRP application for the clinical treatment of tendon injuries. Stem Cell Res Ther. 2015;6:173.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jo CH, et al. Platelet-rich plasma stimulates cell proliferation and enhances matrix gene expression and synthesis in tenocytes from human rotator cuff tendons with degenerative tears. Am J Sports Med. 2012;40(5):1035–45.PubMedCrossRefGoogle Scholar
  56. 56.
    de Almeida AM, et al. Patellar tendon healing with platelet-rich plasma: a prospective randomized controlled trial. Am J Sports Med. 2012;40(6):1282–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Seijas R, et al. Pain in donor site after BTB-ACL reconstruction with PRGF: a randomized trial. Arch Orthop Trauma Surg. 2016;136(6):829–35.PubMedCrossRefGoogle Scholar
  58. 58.
    Zayni R, et al. Platelet-rich plasma as a treatment for chronic patellar tendinopathy: comparison of a single versus two consecutive injections. Muscles Ligaments Tendons J. 2015;5(2):92–8.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kaux JF, et al. Using platelet-rich plasma to treat jumper's knees: exploring the effect of a second closely-timed infiltration. J Sci Med Sport. 2016;19(3):200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Dragoo JL, et al. Platelet-rich plasma as a treatment for patellar tendinopathy: a double-blind, randomized controlled trial. Am J Sports Med. 2014;42(3):610–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Vetrano M, et al. Platelet-rich plasma versus focused shock waves in the treatment of jumper's knee in athletes. Am J Sports Med. 2013;41(4):795–803.PubMedCrossRefGoogle Scholar
  62. 62.
    de Vos RJ, et al. Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA. 2010;303(2):144–9.PubMedCrossRefGoogle Scholar
  63. 63.
    de Jonge S, et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am J Sports Med. 2011;39(8):1623–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Krogh TP, et al. Ultrasound-guided injection therapy of achilles tendinopathy with platelet-rich plasma or saline: a randomized, blinded, placebo-controlled trial. Am J Sports Med. 2016;44(8):1990–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kearney RS, Parsons N, Costa ML. Achilles tendinopathy management: a pilot randomised controlled trial comparing platelet-richplasma injection witperh an eccentric loading programme. Bone Joint Res. 2013;2(10):227–32.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Boesen AP, et al. Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion achilles tendinopathy: a randomized double-blinded prospective study. Am J Sports Med. 2017;45(9):2034–43. https://doi.org/10.1177/0363546517702862.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Schepull T, et al. Autologous platelets have no effect on the healing of human achilles tendon ruptures: a randomized single-blind study. Am J Sports Med. 2011;39(1):38–47.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Peerbooms JC, et al. Positive effect of an autologous platelet concentrate in lateral epicondylitis in a double-blind randomized controlled trial: platelet-rich plasma versus corticosteroid injection with a 1-year follow-up. Am J Sports Med. 2010;38(2):255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gosens T, et al. Ongoing positive effect of platelet-rich plasma versus corticosteroid injection in lateral epicondylitis: a double-blind randomized controlled trial with 2-year follow-up. Am J Sports Med. 2011;39(6):1200–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Yadav R, Kothari SY, Borah D. Comparison of local injection of platelet rich plasma and corticosteroids in the treatment of lateral epicondylitis of humerus. J Clin Diagn Res. 2015;9(7):RC05–7.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Lebiedzinski R, et al. A randomized study of autologous conditioned plasma and steroid injections in the treatment of lateral epicondylitis. Int Orthop. 2015;39(11):2199–203.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Khaliq A, et al. Effectiveness of platelets rich plasma versus corticosteroids in lateral epicondylitis. J Pak Med Assoc. 2015;65(11 Suppl 3):S100–4.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Krogh TP, et al. Treatment of lateral epicondylitis with platelet-rich plasma, glucocorticoid, or saline: a randomized, double-blind, placebo-controlled trial. Am J Sports Med. 2013;41(3):625–35.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Montalvan B, et al. Inefficacy of ultrasound-guided local injections of autologous conditioned plasma for recent epicondylitis: results of a double-blind placebo-controlled randomized clinical trial with one-year follow-up. Rheumatology (Oxford). 2016;55(2):279–85.CrossRefGoogle Scholar
  75. 75.
    Palacio EP, et al. Effects of platelet-rich plasma on lateral epicondylitis of the elbow: prospective randomized controlled trial. Rev Bras Ortop. 2016;51(1):90–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mishra AK, et al. Efficacy of platelet-rich plasma for chronic tennis elbow: a double-blind, prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports Med. 2014;42(2):463–71.PubMedCrossRefGoogle Scholar
  77. 77.
    Behera P, et al. Leukocyte-poor platelet-rich plasma versus bupivacaine for recalcitrant lateral epicondylar tendinopathy. J Orthop Surg (Hong Kong). 2015;23(1):6–10.CrossRefGoogle Scholar
  78. 78.
    Creaney L, et al. Growth factor-based therapies provide additional benefit beyond physical therapy in resistant elbow tendinopathy: a prospective, single-blind, randomised trial of autologous blood injections versus platelet-rich plasma injections. Br J Sports Med. 2011;45(12):966–71.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Raeissadat SA, et al. Is Platelet-rich plasma superior to whole blood in the management of chronic tennis elbow: one year randomized clinical trial. BMC Sports Sci Med Rehabil. 2014;6:12.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Raeissadat SA, et al. Effect of platelet-rich plasma (PRP) versus autologous whole blood on pain and function improvement in tennis elbow: a randomized clinical trial. Pain Res Treat. 2014;2014:191525.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Thanasas C, et al. Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med. 2011;39(10):2130–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gautam VK, et al. Platelet-rich plasma versus corticosteroid injection for recalcitrant lateral epicondylitis: clinical and ultrasonographic evaluation. J Orthop Surg (Hong Kong). 2015;23(1):1–5.CrossRefGoogle Scholar
  83. 83.
    Kesikburun S, et al. Platelet-rich plasma injections in the treatment of chronic rotator cuff tendinopathy: a randomized controlled trial with 1-year follow-up. Am J Sports Med. 2013;41(11):2609–16.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ilhanli I, Guder N, Gul M. Platelet-rich plasma treatment with physical therapy in chronic partial supraspinatus tears. Iran Red Crescent Med J. 2015;17(9):e23732.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rha DW, et al. Comparison of the therapeutic effects of ultrasound-guided platelet-rich plasma injection and dry needling in rotator cuff disease: a randomized controlled trial. Clin Rehabil. 2013;27(2):113–22.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Antuna S, et al. Platelet-rich fibrin in arthroscopic repair of massive rotator cuff tears: a prospective randomized pilot clinical trial. Acta Orthop Belg. 2013;79(1):25–30.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Carr AJ, et al. Platelet-rich plasma injection with arthroscopic acromioplasty for chronic rotator cuff tendinopathy: a randomized controlled trial. Am J Sports Med. 2015;43(12):2891–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Castricini R, et al. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: a randomized controlled trial. Am J Sports Med. 2011;39(2):258–65.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Flury M, et al. Does pure platelet-rich plasma affect postoperative clinical outcomes after arthroscopic rotator cuff repair? A randomized controlled trial. Am J Sports Med. 2016;44(8):2136–46.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Rodeo SA, et al. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study. Am J Sports Med. 2012;40(6):1234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ruiz-Moneo P, et al. Plasma rich in growth factors in arthroscopic rotator cuff repair: a randomized, double-blind, controlled clinical trial. Arthroscopy. 2013;29(1):2–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Verhaegen F, Brys P, Debeer P. Rotator cuff healing after needling of a calcific deposit using platelet-rich plasma augmentation: a randomized, prospective clinical trial. J Shoulder Elb Surg. 2016;25(2):169–73.CrossRefGoogle Scholar
  93. 93.
    Wang A, et al. Do postoperative platelet-rich plasma injections accelerate early tendon healing and functional recovery after arthroscopic supraspinatus repair? A randomized controlled trial. Am J Sports Med. 2015;43(6):1430–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Weber SC, et al. Platelet-rich fibrin matrix in the management of arthroscopic repair of the rotator cuff: a prospective, randomized, double-blinded study. Am J Sports Med. 2013;41(2):263–70.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Zumstein MA, et al. SECEC Research Grant 2008 II: Use of platelet- and leucocyte-rich fibrin (L-PRF) does not affect late rotator cuff tendon healing: a prospective randomized controlled study. J Shoulder Elb Surg. 2016;25(1):2–11.CrossRefGoogle Scholar
  96. 96.
    Jo CH, et al. Platelet-rich plasma for arthroscopic repair of large to massive rotator cuff tears: a randomized, single-blind, parallel-group trial. Am J Sports Med. 2013;41(10):2240–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Malavolta EA, et al. Platelet-rich plasma in rotator cuff repair: a prospective randomized study. Am J Sports Med. 2014;42(10):2446–54.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Zhang Z, Wang Y, Sun J. The effect of platelet-rich plasma on arthroscopic double-row rotator cuff repair: a clinical study with 12-month follow-up. Acta Orthop Traumatol Turc. 2016;50(2):191–7.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Pandey V, et al. Does application of moderately concentrated platelet-rich plasma improve clinical and structural outcome after arthroscopic repair of medium-sized to large rotator cuff tear? A randomized controlled trial. J Shoulder Elb Surg. 2016;25(8):1312–22.CrossRefGoogle Scholar
  100. 100.
    Randelli P, et al. Platelet rich plasma in arthroscopic rotator cuff repair: a prospective RCT study, 2-year follow-up. J Shoulder Elb Surg. 2011;20(4):518–28.CrossRefGoogle Scholar
  101. 101.
    Hak A, et al. A double-blinded placebo randomized controlled trial evaluating short-term efficacy of platelet-rich plasma in reducing postoperative pain after arthroscopic rotator cuff repair: a pilot study. Sports Health. 2015;7(1):58–66.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Werthel JD, et al. Arthroscopic double row cuff repair with suture-bridging and autologous conditioned plasma injection: functional and structural results. Int J Shoulder Surg. 2014;8(4):101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zumstein MA, et al. Increased vascularization during early healing after biologic augmentation in repair of chronic rotator cuff tears using autologous leukocyte- and platelet-rich fibrin (L-PRF): a prospective randomized controlled pilot trial. J Shoulder Elb Surg. 2014;23(1):3–12.CrossRefGoogle Scholar
  104. 104.
    Gumina S, et al. Use of platelet-leukocyte membrane in arthroscopic repair of large rotator cuff tears: a prospective randomized study. J Bone Joint Surg Am. 2012;94(15):1345–52.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Figueroa D, et al. Platelet-rich plasma use in anterior cruciate ligament surgery: systematic review of the literature. Arthroscopy. 2015;31(5):981–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Mirzatolooei F, Alamdari MT, Khalkhali HR. The impact of platelet-rich plasma on the prevention of tunnel widening in anterior cruciate ligament reconstruction using quadrupled autologous hamstring tendon: a randomised clinical trial. Bone Joint J. 2013;95-B(1):65–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Vogrin M, et al. Effects of a platelet gel on early graft revascularization after anterior cruciate ligament reconstruction: a prospective, randomized, double-blind, clinical trial. Eur Surg Res. 2010;45(2):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Nin JR, et al. Has platelet-rich plasma any role in anterior cruciate ligament allograft healing? Arthroscopy. 2009;25(11):1206–13.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Vogrin M, et al. The effect of platelet-derived growth factors on knee stability after anterior cruciate ligament reconstruction: a prospective randomized clinical study. Wien Klin Wochenschr. 2010;122(Suppl 2):91–5.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Akeda K, et al. Platelet-rich plasma stimulates porcine articular chondrocyte proliferation and matrix biosynthesis. Osteoarthr Cartil. 2006;14(12):1272–80.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Chien CS, et al. Incorporation of exudates of human platelet-rich fibrin gel in biodegradable fibrin scaffolds for tissue engineering of cartilage. J Biomed Mater Res B Appl Biomater. 2012;100(4):948–55.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Spreafico A, et al. Biochemical investigation of the effects of human platelet releasates on human articular chondrocytes. J Cell Biochem. 2009;108(5):1153–65.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Gaissmaier C, et al. Effect of human platelet supernatant on proliferation and matrix synthesis of human articular chondrocytes in monolayer and three-dimensional alginate cultures. Biomaterials. 2005;26(14):1953–60.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kaps C, et al. Human platelet supernatant promotes proliferation but not differentiation of articular chondrocytes. Med Biol Eng Comput. 2002;40(4):485–90.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    van Buul GM, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med. 2011;39(11):2362–70.PubMedCrossRefGoogle Scholar
  116. 116.
    Bendinelli P, et al. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol. 2010;225(3):757–66.PubMedCrossRefGoogle Scholar
  117. 117.
    Sundman EA, Cole BJ, Fortier LA. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am J Sports Med. 2011;39(10):2135–40.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Patel S, et al. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am J Sports Med. 2013;41(2):356–64.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Paterson KL, et al. Intra-articular injection of photo-activated platelet-rich plasma in patients with knee osteoarthritis: a double-blind, randomized controlled pilot study. BMC Musculoskelet Disord. 2016;17:67.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Cerza F, et al. Comparison between hyaluronic acid and platelet-rich plasma, intra-articular infiltration in the treatment of gonarthrosis. Am J Sports Med. 2012;40(12):2822–7.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Sanchez M, et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthroscopy. 2012;28(8):1070–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Vaquerizo V, et al. Comparison of intra-articular injections of plasma rich in growth factors (PRGF-Endoret) versus Durolane hyaluronic acid in the treatment of patients with symptomatic osteoarthritis: a randomized controlled trial. Arthroscopy. 2013;29(10):1635–43.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Filardo G, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Filardo G, et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: a randomized controlled trial. Am J Sports Med. 2015;43(7):1575–82.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Duymus TM, et al. Choice of intra-articular injection in treatment of knee osteoarthritis: platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):485–92.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Gormeli G, et al. Multiple PRP injections are more effective than single injections and hyaluronic acid in knees with early osteoarthritis: a randomized, double-blind, placebo-controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(3):958–65.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Engebretsen L, et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med. 2010;44(15):1072–81.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Aoto K, et al. Circadian variation of growth factor levels in platelet-rich plasma. Clin J Sport Med. 2014;24(6):509–12.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Schippinger G, et al. Does single intramuscular application of autologous conditioned plasma influence systemic circulating growth factors? J Sports Sci Med. 2012;11(3):551–6.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Schippinger G, et al. Influence of intramuscular application of autologous conditioned plasma on systemic circulating IGF-1. J Sports Sci Med. 2011;10(3):439–44.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Reurink G, et al. Platelet-rich plasma injections in acute muscle injury. N Engl J Med. 2014;370(26):2546–7.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Reurink G, et al. Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med. 2015;49(18):1206–12.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Hamilton B, et al. Platelet-rich plasma does not enhance return to play in hamstring injuries: a randomised controlled trial. Br J Sports Med. 2015;49(14):943–50.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Rossi LA, et al. Does platelet-rich plasma decrease time to return to sports in acute muscle tear? A randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(10):3319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol. 2015;6:87.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84-A(5):822–32.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    de Jong S, et al. Fibrosis and cardiac arrhythmias. J Cardiovasc Pharmacol. 2011;57(6):630–8.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286–92.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Anitua E, Troya M, Orive G. Plasma rich in growth factors promote gingival tissue regeneration by stimulating fibroblast proliferation and migration and by blocking transforming growth factor-beta1-induced myodifferentiation. J Periodontol. 2012;83(8):1028–37.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Anitua E, et al. Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-Induced myodifferentiation. Invest Ophthalmol Vis Sci. 2011;52(9):6066–73.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Koulikovska M, et al. Platelet-rich plasma prolongs myofibroblast accumulation in corneal stroma with incisional wound. Curr Eye Res. 2015;40(11):1102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Vidal B, et al. Fibrinogen drives dystrophic muscle fibrosis via a TGFbeta/alternative macrophage activation pathway. Genes Dev. 2008;22(13):1747–52.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Novak ML, Koh TJ. Phenotypic transitions of macrophages orchestrate tissue repair. Am J Pathol. 2013;183(5):1352–63.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res. 2012;347(1):177–86.PubMedCrossRefGoogle Scholar
  145. 145.
    Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337–45.PubMedGoogle Scholar
  147. 147.
    Bonner JC. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev. 2004;15(4):255–73.PubMedCrossRefGoogle Scholar
  148. 148.
    Rhee S, Grinnell F. P21-activated kinase 1: convergence point in PDGF- and LPA-stimulated collagen matrix contraction by human fibroblasts. J Cell Biol. 2006;172(3):423–32.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Jinnin M, et al. Regulation of fibrogenic/fibrolytic genes by platelet-derived growth factor C, a novel growth factor, in human dermal fibroblasts. J Cell Physiol. 2005;202(2):510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Kelc R, Vogrin M. Concerns about fibrosis development after scaffolded PRP therapy of muscle injuries: commentary on an article by Sanchez et al.: "Muscle repair: platelet-rich plasma derivates as a bridge from spontaneity to intervention.". Injury. 2015;46(2):428.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Sugiura T, et al. Increased HGF and c-Met in muscle tissues of polymyositis and dermatomyositis patients: beneficial roles of HGF in muscle regeneration. Clin Immunol. 2010;136(3):387–99.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Rothan HA, et al. Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int J Med Sci. 2014;11(10):1029–38.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Delos D, et al. The effect of platelet-rich plasma on muscle contusion healing in a rat model. Am J Sports Med. 2014;42(9):2067–74.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Terada S, et al. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am. 2013;95(11):980–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Li H, et al. Customized platelet-rich plasma with transforming growth factor beta1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials. 2016;87:147–56.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Murray IR, et al. Minimum information for studies evaluating biologics in orthopaedics (MIBO): platelet-rich plasma and mesenchymal stem cells. J Bone Joint Surg Am. 2017;99(10):809–19.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Hogan MV, et al. Tissue engineering of ligaments for reconstructive surgery. Arthroscopy. 2015;31(5):971–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Musculoskeletal Growth & Regeneration Laboratory, Department of Orthopedics Surgery, School of MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations