Advertisement

Introduction to Molecular Mechanisms in Notch Signal Transduction and Disease Pathogenesis

  • Benedetto Daniele Giaimo
  • Tilman Borggrefe
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1066)

Abstract

The Notch signaling pathway plays a pivotal role in development, physiology and diseases such as cancer. In this chapter, we first give an overview of the different molecular mechanisms that regulate Notch signaling. Each subject is covered in more depth in the subsequent chapters of this book. Next, we will use the inflammatory system as an example to discuss the physiological function of Notch signaling. This is followed by a discussion of recent advances in the different pathophysiological roles of Notch signaling in leukemia as well as a wide range of solid cancers. Finally, we discuss how information about pathogenic mutations in Notch pathway components, combined with structural biological data, are beginning to provide important biological and mechanistic insights about the pathway.

Keywords

Notch Transcription Cancer Inflammation 

Notes

Acknowledgements

We are grateful to Dr. Rhett A. Kovall (University of Cincinnati, USA) for providing us with Fig. 2 and to Drs. Shinya Yamamoto and Jose L. Salazar (Baylor College of Medicine, Houston, USA) and Francesca Ferrante (University of Giessen, Germany) for critical reading. This work was supported by the collaborative research grant TRR81, the Excellence Cluster for Cardio Pulmonary System (ECCPS) and the University of Giessen (Germany).

References

  1. Artavanis-Tsakonas S, Muskavitch MA, Yedvobnick B (1983) Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci U S A 80(7):1977–1981CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aste-Amezaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, Huang L, Vitelli S, Vo KT, Haytko P, Zhao JZ, Baleydier F, L’Heureux S, Wang H, Gordon WR, Thoryk E, Andrawes MB, Tiyanont K, Stegmaier K, Roti G, Ross KN, Franlin LL, Wang H, Wang F, Chastain M, Bett AJ, Audoly LP, Aster JC, Blacklow SC, Huber HE (2010) Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One 5(2):e9094.  https://doi.org/10.1371/journal.pone.0009094 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aster JC, Pear WS, Blacklow SC (2017) The varied roles of Notch in cancer. Annu Rev Pathol 12:245–275.  https://doi.org/10.1146/annurev-pathol-052016-100127 CrossRefPubMedGoogle Scholar
  4. Aydin IT, Melamed RD, Adams SJ, Castillo-Martin M, Demir A, Bryk D, Brunner G, Cordon-Cardo C, Osman I, Rabadan R, Celebi JT (2014) FBXW7 mutations in melanoma and a new therapeutic paradigm. J Natl Cancer Inst 106(6):dju107.  https://doi.org/10.1093/jnci/dju107 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Backvall H, Stromberg S, Gustafsson A, Asplund A, Sivertsson A, Lundeberg J, Ponten F (2004) Mutation spectra of epidermal p53 clones adjacent to basal cell carcinoma and squamous cell carcinoma. Exp Dermatol 13(10):643–650.  https://doi.org/10.1111/j.0906-6705.2004.00211.x CrossRefPubMedGoogle Scholar
  6. Balint K, Xiao M, Pinnix CC, Soma A, Veres I, Juhasz I, Brown EJ, Capobianco AJ, Herlyn M, Liu ZJ (2005) Activation of Notch1 signaling is required for beta-catenin-mediated human primary melanoma progression. J Clin Invest 115(11):3166–3176.  https://doi.org/10.1172/JCI25001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L, Cortes ML, Fernandez-Lopez JC, Peng S, Ardlie KG, Auclair D, Bautista-Pina V, Duke F, Francis J, Jung J, Maffuz-Aziz A, Onofrio RC, Parkin M, Pho NH, Quintanar-Jurado V, Ramos AH, Rebollar-Vega R, Rodriguez-Cuevas S, Romero-Cordoba SL, Schumacher SE, Stransky N, Thompson KM, Uribe-Figueroa L, Baselga J, Beroukhim R, Polyak K, Sgroi DC, Richardson AL, Jimenez-Sanchez G, Lander ES, Gabriel SB, Garraway LA, Golub TR, Melendez-Zajgla J, Toker A, Getz G, Hidalgo-Miranda A, Meyerson M (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409.  https://doi.org/10.1038/nature11154 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760.  https://doi.org/10.1038/nature05236 CrossRefPubMedGoogle Scholar
  9. Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, Gine E, Pinyol M, Royo C, Nadeu F, Conde L, Juan M, Clot G, Vizan P, Di Croce L, Puente DA, Lopez-Guerra M, Moros A, Roue G, Aymerich M, Villamor N, Colomo L, Martinez A, Valera A, Martin-Subero JI, Amador V, Hernandez L, Rozman M, Enjuanes A, Forcada P, Muntanola A, Hartmann EM, Calasanz MJ, Rosenwald A, Ott G, Hernandez-Rivas JM, Klapper W, Siebert R, Wiestner A, Wilson WH, Colomer D, Lopez-Guillermo A, Lopez-Otin C, Puente XS, Campo E (2013) Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 110(45):18250–18255.  https://doi.org/10.1073/pnas.1314608110 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bhola NE, Jansen VM, Koch JP, Li H, Formisano L, Williams JA, Grandis JR, Arteaga CL (2016) Treatment of triple-negative breast cancer with TORC1/2 inhibitors sustains a drug-resistant and Notch-dependent cancer stem cell population. Cancer Res 76(2):440–452.  https://doi.org/10.1158/0008-5472.CAN-15-1640-T CrossRefPubMedGoogle Scholar
  11. Bi YL, Min M, Shen W, Liu Y (2016) Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity. Tumour Biol J Int Soc Oncodev Biol Med 37(11):15145–15155.  https://doi.org/10.1007/s13277-016-5311-8 CrossRefGoogle Scholar
  12. Billiard F, Kirshner JR, Tait M, Danave A, Taheri S, Zhang W, Waite JC, Olson K, Chen G, Coetzee S, Hylton D, Murphy AJ, Yancopoulos GD, Thurston G, Skokos D (2011) Ongoing Dll4-Notch signaling is required for T-cell homeostasis in the adult thymus. Eur J Immunol 41(8):2207–2216.  https://doi.org/10.1002/eji.201041343 CrossRefPubMedGoogle Scholar
  13. Bittolo T, Pozzo F, Bomben R, D’Agaro T, Bravin V, Bulian P, Rossi FM, Zucchetto A, Degan M, Macor P, D’Arena G, Chiarenza A, Zaja F, Pozzato G, Di Raimondo F, Rossi D, Gaidano G, Del Poeta G, Gattei V, Dal Bo M (2017) Mutations in the 3’ untranslated region of NOTCH1 are associated with low CD20 expression levels chronic lymphocytic leukemia. Haematologica 102(8):e305–e309.  https://doi.org/10.3324/haematol.2016.162594 CrossRefPubMedGoogle Scholar
  14. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90(2):281–291CrossRefPubMedGoogle Scholar
  15. Boonyatecha N, Sangphech N, Wongchana W, Kueanjinda P, Palaga T (2012) Involvement of Notch signaling pathway in regulating IL-12 expression via c-Rel in activated macrophages. Mol Immunol 51(3–4):255–262.  https://doi.org/10.1016/j.molimm.2012.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Borges M, Linnoila RI, van de Velde HJ, Chen H, Nelkin BD, Mabry M, Baylin SB, Ball DW (1997) An achaete-scute homologue essential for neuroendocrine differentiation in the lung. Nature 386(6627):852–855.  https://doi.org/10.1038/386852a0 CrossRefPubMedGoogle Scholar
  17. Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66(10):1631–1646.  https://doi.org/10.1007/s00018-009-8668-7 CrossRefPubMedGoogle Scholar
  18. Borggrefe T, Lauth M, Zwijsen A, Huylebroeck D, Oswald F, Giaimo BD (2016) The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFbeta/BMP and hypoxia pathways. Biochim Biophys Acta 1863(2):303–313.  https://doi.org/10.1016/j.bbamcr.2015.11.020 CrossRefPubMedGoogle Scholar
  19. Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, Happich M, Muckenthaler MU, Kulozik AE (2006) Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 108(4):1151–1157.  https://doi.org/10.1182/blood-2005-12-4956 CrossRefPubMedGoogle Scholar
  20. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israel A (2000) A novel proteolytic cleavage involved in Notch signaling : the role of the disintegrin-metalloprotease TACE. Mol Cell 5(2):207–216CrossRefPubMedGoogle Scholar
  21. Canalis E, Sanjay A, Yu J, Zanotti S (2017) An antibody to Notch2 reverses the osteopenic phenotype of Hajdu-Cheney mutant male mice. Endocrinology 158(4):730–742.  https://doi.org/10.1210/en.2016-1787 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70.  https://doi.org/10.1038/nature11412 CrossRefGoogle Scholar
  23. Cantarini MC, de la Monte SM, Pang M, Tong M, D’Errico A, Trevisani F, Wands JR (2006) Aspartyl-asparagyl beta hydroxylase over-expression in human hepatoma is linked to activation of insulin-like growth factor and notch signaling mechanisms. Hepatology 44(2):446–457.  https://doi.org/10.1002/hep.21272 CrossRefPubMedGoogle Scholar
  24. Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H, Wu L, Griffin JD (2010) Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 1(8):822–835.  https://doi.org/10.1177/1947601910383564 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG, Dering J, Reedijk M (2010) Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat 123(1):113–124.  https://doi.org/10.1007/s10549-009-0621-9 CrossRefPubMedGoogle Scholar
  26. Collins KJ, Yuan Z, Kovall RA (2014) Structure and function of the CSL-KyoT2 corepressor complex: a negative regulator of Notch signaling. Structure 22(1):70–81.  https://doi.org/10.1016/j.str.2013.10.010 CrossRefPubMedGoogle Scholar
  27. Contreras AN, Yuan Z, Kovall RA (2015) Thermodynamic binding analysis of Notch transcription complexes from Drosophila melanogaster. Protein Sci 24(5):812–822.  https://doi.org/10.1002/pro.2652 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Cook N, Frese KK, Bapiro TE, Jacobetz MA, Gopinathan A, Miller JL, Rao SS, Demuth T, Howat WJ, Jodrell DI, Tuveson DA (2012) Gamma secretase inhibition promotes hypoxic necrosis in mouse pancreatic ductal adenocarcinoma. J Exp Med 209(3):437–444.  https://doi.org/10.1084/jem.20111923 CrossRefPubMedPubMedCentralGoogle Scholar
  29. D’Agaro T, Bittolo T, Bravin V, Dal Bo M, Pozzo F, Bulian P, Rossi FM, Zucchetto A, Degan M, D’Arena G, Chiarenza A, Zaja F, Pozzato G, Di Raimondo F, Rossi D, Gaidano G, Del Poeta G, Gattei V, Bomben R (2017) NOTCH1 mutational status in chronic lymphocytic leukaemia: clinical relevance of subclonal mutations and mutation types. Br J Haematol.  https://doi.org/10.1111/bjh.14843
  30. D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27(38):5148–5167.  https://doi.org/10.1038/onc.2008.229 CrossRefPubMedPubMedCentralGoogle Scholar
  31. De Keersmaecker K, Lahortiga I, Mentens N, Folens C, Van Neste L, Bekaert S, Vandenberghe P, Odero MD, Marynen P, Cools J (2008) In vitro validation of gamma-secretase inhibitors alone or in combination with other anti-cancer drugs for the treatment of T-cell acute lymphoblastic leukemia. Haematologica 93(4):533–542.  https://doi.org/10.3324/haematol.11894 CrossRefPubMedGoogle Scholar
  32. De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, Murtaugh LC (2008) Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci U S A 105(48):18907–18912.  https://doi.org/10.1073/pnas.0810111105 CrossRefGoogle Scholar
  33. del Amo FF, Gendron-Maguire M, Swiatek PJ, Jenkins NA, Copeland NG, Gridley T (1993) Cloning, analysis, and chromosomal localization of Notch-1, a mouse homolog of Drosophila Notch. Genomics 15(2):259–264.  https://doi.org/10.1006/geno.1993.1055 CrossRefPubMedGoogle Scholar
  34. Demehri S, Turkoz A, Kopan R (2009) Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16(1):55–66.  https://doi.org/10.1016/j.ccr.2009.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Dill MT, Tornillo L, Fritzius T, Terracciano L, Semela D, Bettler B, Heim MH, Tchorz JS (2013) Constitutive Notch2 signaling induces hepatic tumors in mice. Hepatology 57(4):1607–1619.  https://doi.org/10.1002/hep.26165 CrossRefPubMedGoogle Scholar
  36. Ducharme V, Guauque-Olarte S, Gaudreault N, Pibarot P, Mathieu P, Bosse Y (2013) NOTCH1 genetic variants in patients with tricuspid calcific aortic valve stenosis. J Heart Valve Dis 22(2):142–149PubMedGoogle Scholar
  37. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661CrossRefPubMedGoogle Scholar
  38. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J, Grunn A, Fangazio M, Capello D, Monti S, Cresta S, Gargiulo E, Forconi F, Guarini A, Arcaini L, Paulli M, Laurenti L, Larocca LM, Marasca R, Gattei V, Oscier D, Bertoni F, Mullighan CG, Foa R, Pasqualucci L, Rabadan R, Dalla-Favera R, Gaidano G (2011) Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 208(7):1389–1401.  https://doi.org/10.1084/jem.20110921 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Foffa I, Ait Ali L, Panesi P, Mariani M, Festa P, Botto N, Vecoli C, Andreassi MG (2013) Sequencing of NOTCH1, GATA5, TGFBR1 and TGFBR2 genes in familial cases of bicuspid aortic valve. BMC Med Genet 14:44.  https://doi.org/10.1186/1471-2350-14-44 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16.  https://doi.org/10.1002/stem.254 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Foldi J, Chung AY, Xu H, Zhu J, Outtz HH, Kitajewski J, Li Y, Hu X, Ivashkiv LB (2010) Autoamplification of Notch signaling in macrophages by TLR-induced and RBP-J-dependent induction of Jagged1. J Immunol 185(9):5023–5031.  https://doi.org/10.4049/jimmunol.1001544 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Foldi J, Shang Y, Zhao B, Ivashkiv LB, Hu X (2016) RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes. Protein & cell 7(3):201–209.  https://doi.org/10.1007/s13238-016-0248-7 CrossRefGoogle Scholar
  43. Fortini ME (2002) Gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol 3(9):673–684.  https://doi.org/10.1038/nrm910 CrossRefPubMedGoogle Scholar
  44. Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363(20):1938–1948.  https://doi.org/10.1056/NEJMra1001389 CrossRefPubMedGoogle Scholar
  45. Fryer CJ, Lamar E, Turbachova I, Kintner C, Jones KA (2002) Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev 16(11):1397–1411.  https://doi.org/10.1101/gad.991602 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fryer CJ, White JB, Jones KA (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16(4):509–520.  https://doi.org/10.1016/j.molcel.2004.10.014 CrossRefPubMedGoogle Scholar
  47. Fung E, Tang SM, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA, Carlesso N, Aster JC, Aikawa M (2007) Delta-like 4 induces notch signaling in macrophages: implications for inflammation. Circulation 115(23):2948–2956.  https://doi.org/10.1161/CIRCULATIONAHA.106.675462 CrossRefPubMedGoogle Scholar
  48. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21(21):2683–2710.  https://doi.org/10.1101/gad.1596707 CrossRefPubMedGoogle Scholar
  49. Gao J, Chen Y, Wu KC, Liu J, Zhao YQ, Pan YL, Du R, Zheng GR, Xiong YM, Xu HL, Fan DM (2010) RUNX3 directly interacts with intracellular domain of Notch1 and suppresses Notch signaling in hepatocellular carcinoma cells. Exp Cell Res 316(2):149–157.  https://doi.org/10.1016/j.yexcr.2009.09.025 CrossRefPubMedGoogle Scholar
  50. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437(7056):270–274.  https://doi.org/10.1038/nature03940 CrossRefPubMedGoogle Scholar
  51. Garraway LA, Sellers WR (2006) Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6(8):593–602.  https://doi.org/10.1038/nrc1947 CrossRefPubMedGoogle Scholar
  52. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, Leenders F, Lu X, Fernandez-Cuesta L, Bosco G, Muller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Putzer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmuller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castanos-Velez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Kohler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansen S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nurnberg P, Reinhardt C, Perner S, Heukamp L, Buttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK (2015) Comprehensive genomic profiles of small cell lung cancer. Nature 524(7563):47–53.  https://doi.org/10.1038/nature14664 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Gilbert CA, Daou MC, Moser RP, Ross AH (2010) Gamma-secretase inhibitors enhance temozolomide treatment of human gliomas by inhibiting neurosphere repopulation and xenograft recurrence. Cancer Res 70(17):6870–6879.  https://doi.org/10.1158/0008-5472.CAN-10-1378 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Grossman SA, Batara JF (2004) Current management of glioblastoma multiforme. Semin Oncol 31(5):635–644CrossRefPubMedGoogle Scholar
  55. Hanlon L, Avila JL, Demarest RM, Troutman S, Allen M, Ratti F, Rustgi AK, Stanger BZ, Radtke F, Adsay V, Long F, Capobianco AJ, Kissil JL (2010) Notch1 functions as a tumor suppressor in a model of K-ras-induced pancreatic ductal adenocarcinoma. Cancer Res 70(11):4280–4286.  https://doi.org/10.1158/0008-5472.CAN-09-4645 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Hansson ML, Popko-Scibor AE, Saint Just Ribeiro M, Dancy BM, Lindberg MJ, Cole PA, Wallberg AE (2009) The transcriptional coactivator MAML1 regulates p300 autoacetylation and HAT activity. Nucleic Acids Res 37(9):2996–3006.  https://doi.org/10.1093/nar/gkp163 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R (2015) SpDamID: marking DNA bound by protein complexes identifies Notch-Dimer responsive enhancers. Mol Cell 59(4):685–697.  https://doi.org/10.1016/j.molcel.2015.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hassed SJ, Wiley GB, Wang S, Lee JY, Li S, Xu W, Zhao ZJ, Mulvihill JJ, Robertson J, Warner J, Gaffney PM (2012) RBPJ mutations identified in two families affected by Adams-Oliver syndrome. Am J Hum Genet 91(2):391–395.  https://doi.org/10.1016/j.ajhg.2012.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hayashi I, Takatori S, Urano Y, Miyake Y, Takagi J, Sakata-Yanagimoto M, Iwanari H, Osawa S, Morohashi Y, Li T, Wong PC, Chiba S, Kodama T, Hamakubo T, Tomita T, Iwatsubo T (2012) Neutralization of the gamma-secretase activity by monoclonal antibody against extracellular domain of nicastrin. Oncogene 31(6):787–798.  https://doi.org/10.1038/onc.2011.265 CrossRefPubMedGoogle Scholar
  60. Hein K, Mittler G, Cizelsky W, Kuhl M, Ferrante F, Liefke R, Berger IM, Just S, Strang JE, Kestler HA, Oswald F, Borggrefe T (2015) Site-specific methylation of Notch1 controls the amplitude and duration of the Notch1 response. Sci Signal 8(369):ra30.  https://doi.org/10.1126/scisignal.2005892 CrossRefPubMedGoogle Scholar
  61. Hong SW, Hur W, Choi JE, Kim JH, Hwang D, Yoon SK (2016) Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation. Oncotarget 7(17):23482–23497.  https://doi.org/10.18632/oncotarget.8112 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Hu X, Chung AY, Wu I, Foldi J, Chen J, Ji JD, Tateya T, Kang YJ, Han J, Gessler M, Kageyama R, Ivashkiv LB (2008) Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 29(5):691–703.  https://doi.org/10.1016/j.immuni.2008.08.016 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Hu B, Castillo E, Harewood L, Ostano P, Reymond A, Dummer R, Raffoul W, Hoetzenecker W, Hofbauer GF, Dotto GP (2012) Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling. Cell 149(6):1207–1220.  https://doi.org/10.1016/j.cell.2012.03.048 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Hu L, Xue F, Shao M, Deng A, Wei G (2013) Aberrant expression of Notch3 predicts poor survival for hepatocellular carcinomas. Biosci Trends 7(3):152–156PubMedPubMedCentralGoogle Scholar
  65. Hu YJ, Li HY, Qiu KJ, Li DC, Zhou JH, Hu YH, Zhang FM (2014) Downregulation of Notch1 inhibits the invasion of human hepatocellular carcinoma HepG2 and MHCC97H cells through the regulation of PTEN and FAK. Int J Mol Med 34(4):1081–1086.  https://doi.org/10.3892/ijmm.2014.1889 CrossRefPubMedGoogle Scholar
  66. Hu Y, Su H, Li X, Guo G, Cheng L, Qin R, Qing G, Liu H (2015) The NOTCH ligand JAGGED2 promotes pancreatic cancer metastasis independent of NOTCH signaling activation. Mol Cancer Ther 14(1):289–297.  https://doi.org/10.1158/1535-7163.MCT-14-0501 CrossRefPubMedGoogle Scholar
  67. Huntzicker EG, Hotzel K, Choy L, Che L, Ross J, Pau G, Sharma N, Siebel CW, Chen X, French DM (2015) Differential effects of targeting Notch receptors in a mouse model of liver cancer. Hepatology 61(3):942–952.  https://doi.org/10.1002/hep.27566 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso AR, Pezzoli L, Vetro A, Barachetti D, Boni L, Federici D, Soto AM, Comas JV, Ferrazzi P, Zuffardi O (2012) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet 81(6):542–554.  https://doi.org/10.1111/j.1399-0004.2011.01674.x CrossRefPubMedGoogle Scholar
  69. Jiang T, Collins BJ, Jin N, Watkins DN, Brock MV, Matsui W, Nelkin BD, Ball DW (2009) Achaete-scute complex homologue 1 regulates tumor-initiating capacity in human small cell lung cancer. Cancer Res 69(3):845–854.  https://doi.org/10.1158/0008-5472.CAN-08-2762 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jung C, Mittler G, Oswald F, Borggrefe T (2013) RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta 1833(5):1180–1189.  https://doi.org/10.1016/j.bbamcr.2013.01.032 CrossRefPubMedGoogle Scholar
  71. Kao HY, Ordentlich P, Koyano-Nakagawa N, Tang Z, Downes M, Kintner CR, Evans RM, Kadesch T (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12(15):2269–2277CrossRefPubMedPubMedCentralGoogle Scholar
  72. Kapellos TS, Iqbal AJ (2016) Epigenetic control of macrophage polarisation and soluble mediator gene expression during Inflammation. Mediat Inflamm 2016:6591703.  https://doi.org/10.1155/2016/6591703 CrossRefGoogle Scholar
  73. Kent KC, Crenshaw ML, Goh DL, Dietz HC (2013) Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. J Thorac Cardiovasc Surg 146(1):158–165 e151.  https://doi.org/10.1016/j.jtcvs.2012.09.060 CrossRefPubMedGoogle Scholar
  74. Kidd S, Kelley MR, Young MW (1986) Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol 6(9):3094–3108CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kim RK, Kaushik N, Suh Y, Yoo KC, Cui YH, Kim MJ, Lee HJ, Kim IG, Lee SJ (2016) Radiation driven epithelial-mesenchymal transition is mediated by Notch signaling in breast cancer. Oncotarget 7(33):53430–53442.  https://doi.org/10.18632/oncotarget.10802 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kim W, Khan SK, Gvozdenovic-Jeremic J, Kim Y, Dahlman J, Kim H, Park O, Ishitani T, Jho EH, Gao B, Yang Y (2017) Hippo signaling interactions with Wnt/beta-catenin and Notch signaling repress liver tumorigenesis. J Clin Invest 127(1):137–152.  https://doi.org/10.1172/JCI88486 CrossRefPubMedGoogle Scholar
  77. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL, Gutierrez A, Stegmaier K, Kung AL, Root DE, Bradner JE, Aster JC, Kelliher MA, Bernstein BE (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46(4):364–370.  https://doi.org/10.1038/ng.2913 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C, Neel V, Dummer R, Wagner EF, Dotto GP (2008) EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol 10(8):902–911.  https://doi.org/10.1038/ncb1750 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17(1):117–127.  https://doi.org/10.1016/j.sbi.2006.11.004 CrossRefPubMedGoogle Scholar
  80. Kovall RA, Hendrickson WA (2004) Crystal structure of the nuclear effector of Notch signaling, CSL, bound to DNA. EMBO J 23(17):3441–3451.  https://doi.org/10.1038/sj.emboj.7600349 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, Tan K, Morin RD, Opat S, Sehn LH, Connors JM, Marra MA, Weng AP, Steidl C, Gascoyne RD (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119(9):1963–1971.  https://doi.org/10.1182/blood-2011-11-391474 CrossRefPubMedGoogle Scholar
  82. Kuiper RP, Vreede L, Venkatachalam R, Ricketts C, Kamping E, Verwiel E, Govaerts L, Debiec-Rychter M, Lerut E, van Erp F, Hoogerbrugge N, van Kempen L, Schoenmakers EF, Bonne A, Maher ER, Geurts van Kessel A (2009) The tumor suppressor gene FBXW7 is disrupted by a constitutional t(3;4)(q21;q31) in a patient with renal cell cancer. Cancer Genet Cytogenet 195(2):105–111.  https://doi.org/10.1016/j.cancergencyto.2009.07.001 CrossRefPubMedGoogle Scholar
  83. Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, Amadori A, Ferretti E, Gulino A, Vacca A, Screpanti I (2014) Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia 28(12):2324–2335.  https://doi.org/10.1038/leu.2014.133 CrossRefPubMedGoogle Scholar
  84. Lafkas D, Shelton A, Chiu C, de Leon Boenig G, Chen Y, Stawicki SS, Siltanen C, Reichelt M, Zhou M, Wu X, Eastham-Anderson J, Moore H, Roose-Girma M, Chinn Y, Hang JQ, Warming S, Egen J, Lee WP, Austin C, Wu Y, Payandeh J, Lowe JB, Siebel CW (2015) Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature 528 (7580):127-131. doi: https://doi.org/10.1038/nature15715
  85. Lake RJ, Grimm LM, Veraksa A, Banos A, Artavanis-Tsakonas S (2009) In vivo analysis of the Notch receptor S1 cleavage. PLoS One 4(8):e6728.  https://doi.org/10.1371/journal.pone.0006728 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Landor SK, Mutvei AP, Mamaeva V, Jin S, Busk M, Borra R, Gronroos TJ, Kronqvist P, Lendahl U, Sahlgren CM (2011) Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci U S A 108(46):18814–18819.  https://doi.org/10.1073/pnas.1104943108 CrossRefPubMedPubMedCentralGoogle Scholar
  87. Larson Gedman A, Chen Q, Kugel Desmoulin S, Ge Y, LaFiura K, Haska CL, Cherian C, Devidas M, Linda SB, Taub JW, Matherly LH (2009) The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the children’s oncology group. Leukemia 23(8):1417–1425.  https://doi.org/10.1038/leu.2009.64 CrossRefPubMedGoogle Scholar
  88. Lefort K, Mandinova A, Ostano P, Kolev V, Calpini V, Kolfschoten I, Devgan V, Lieb J, Raffoul W, Hohl D, Neel V, Garlick J, Chiorino G, Dotto GP (2007) Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 21(5):562–577.  https://doi.org/10.1101/gad.1484707 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767.  https://doi.org/10.1172/JCI45014 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Liefke R, Oswald F, Alvarado C, Ferres-Marco D, Mittler G, Rodriguez P, Dominguez M, Borggrefe T (2010) Histone demethylase KDM5A is an integral part of the core Notch-RBP-J repressor complex. Genes Dev 24(6):590–601.  https://doi.org/10.1101/gad.563210 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Lin SE, Oyama T, Nagase T, Harigaya K, Kitagawa M (2002) Identification of new human mastermind proteins defines a family that consists of positive regulators for notch signaling. J Biol Chem 277(52):50612–50620.  https://doi.org/10.1074/jbc.M209529200 CrossRefPubMedGoogle Scholar
  92. Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, Pinnix CC, Li X, Herlyn M (2006) Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66(8):4182–4190.  https://doi.org/10.1158/0008-5472.CAN-05-3589 CrossRefPubMedGoogle Scholar
  93. Liu H, Chi AW, Arnett KL, Chiang MY, Xu L, Shestova O, Wang H, Li YM, Bhandoola A, Aster JC, Blacklow SC, Pear WS (2010) Notch dimerization is required for leukemogenesis and T-cell development. Genes Dev 24(21):2395–2407.  https://doi.org/10.1101/gad.1975210 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Liu M, Lee DF, Chen CT, Yen CJ, Li LY, Lee HJ, Chang CJ, Chang WC, Hsu JM, Kuo HP, Xia W, Wei Y, Chiu PC, Chou CK, Du Y, Dhar D, Karin M, Chen CH, Hung MC (2012) IKKalpha activation of NOTCH links tumorigenesis via FOXA2 suppression. Mol Cell 45(2):171–184.  https://doi.org/10.1016/j.molcel.2011.11.018 CrossRefPubMedGoogle Scholar
  95. Logeat F, Bessia C, Brou C, LeBail O, Jarriault S, Seidah NG, Israel A (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A 95(14):8108–8112CrossRefPubMedPubMedCentralGoogle Scholar
  96. Luo J, Wang P, Wang R, Wang J, Liu M, Xiong S, Li Y, Cheng B (2016) The Notch pathway promotes the cancer stem cell characteristics of CD90+ cells in hepatocellular carcinoma. Oncotarget 7(8):9525–9537.  https://doi.org/10.18632/oncotarget.6672 CrossRefPubMedGoogle Scholar
  97. Ma L, Dong P, Liu L, Gao Q, Duan M, Zhang S, Chen S, Xue R, Wang X (2016) Overexpression of protein O-fucosyltransferase 1 accelerates hepatocellular carcinoma progression via the Notch signaling pathway. Biochem Biophys Res Commun 473(2):503–510.  https://doi.org/10.1016/j.bbrc.2016.03.062 CrossRefPubMedGoogle Scholar
  98. Malecki MJ, Sanchez-Irizarry C, Mitchell JL, Histen G, Xu ML, Aster JC, Blacklow SC (2006) Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 26(12):4642–4651.  https://doi.org/10.1128/MCB.01655-05 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Mancino A, Termanini A, Barozzi I, Ghisletti S, Ostuni R, Prosperini E, Ozato K, Natoli G (2015) A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev 29(4):394–408.  https://doi.org/10.1101/gad.257592.114 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE (2006) High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20(3):537–539.  https://doi.org/10.1038/sj.leu.2404101 CrossRefPubMedGoogle Scholar
  101. Mansour MR, Duke V, Foroni L, Patel B, Allen CG, Ancliff PJ, Gale RE, Linch DC (2007) Notch-1 mutations are secondary events in some patients with T-cell acute lymphoblastic leukemia. Clin Cancer Res 13(23):6964–6969.  https://doi.org/10.1158/1078-0432.CCR-07-1474 CrossRefPubMedGoogle Scholar
  102. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686.  https://doi.org/10.1016/j.it.2004.09.015 CrossRefPubMedGoogle Scholar
  103. Masek J, Andersson ER (2017) The developmental biology of genetic Notch disorders. Development 144(10):1743–1763.  https://doi.org/10.1242/dev.148007 CrossRefPubMedGoogle Scholar
  104. Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S, Leoncini G, Cirino G, Geppetti P, Santucci M (2006) Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Mod Path : an official Journal of the United States and Canadian Academy of Pathology, Inc 19(2):246–254.  https://doi.org/10.1038/modpathol.3800526 CrossRefGoogle Scholar
  105. Mazur PK, Einwachter H, Lee M, Sipos B, Nakhai H, Rad R, Zimber-Strobl U, Strobl LJ, Radtke F, Kloppel G, Schmid RM, Siveke JT (2010a) Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 107(30):13438–13443.  https://doi.org/10.1073/pnas.1002423107 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Mazur PK, Gruner BM, Nakhai H, Sipos B, Zimber-Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT (2010b) Identification of epidermal Pdx1 expression discloses different roles of Notch1 and Notch2 in murine Kras(G12D)-induced skin carcinogenesis in vivo. PLoS One 5(10):e13578.  https://doi.org/10.1371/journal.pone.0013578 CrossRefPubMedPubMedCentralGoogle Scholar
  107. McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, Cole SE (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet 17(18):2886–2893.  https://doi.org/10.1093/hmg/ddn187 CrossRefPubMedPubMedCentralGoogle Scholar
  108. McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM 3rd (2007) Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 134(2):290–296.  https://doi.org/10.1016/j.jtcvs.2007.02.041 CrossRefPubMedGoogle Scholar
  109. Meester JA, Southgate L, Stittrich AB, Venselaar H, Beekmans SJ, den Hollander N, Bijlsma EK, Helderman-van den Enden A, Verheij JB, Glusman G, Roach JC, Lehman A, Patel MS, de Vries BB, Ruivenkamp C, Itin P, Prescott K, Clarke S, Trembath R, Zenker M, Sukalo M, Van Laer L, Loeys B, Wuyts W (2015) Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome. Am J Hum Genet 97(3):475–482.  https://doi.org/10.1016/j.ajhg.2015.07.015 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD (2003) Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 3(6):565–576CrossRefPubMedGoogle Scholar
  111. Mizuhara E, Nakatani T, Minaki Y, Sakamoto Y, Ono Y, Takai Y (2005) MAGI1 recruits Dll1 to cadherin-based adherens junctions and stabilizes it on the cell surface. J Biol Chem 280(28):26499–26507.  https://doi.org/10.1074/jbc.M500375200 CrossRefPubMedGoogle Scholar
  112. Mohamed SA, Aherrahrou Z, Liptau H, Erasmi AW, Hagemann C, Wrobel S, Borzym K, Schunkert H, Sievers HH, Erdmann J (2006) Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun 345(4):1460–1465.  https://doi.org/10.1016/j.bbrc.2006.05.046 CrossRefPubMedGoogle Scholar
  113. Monsalve E, Ruiz-Garcia A, Baladron V, Ruiz-Hidalgo MJ, Sanchez-Solana B, Rivero S, Garcia-Ramirez JJ, Rubio A, Laborda J, Diaz-Guerra MJ (2009) Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol 39(9):2556–2570.  https://doi.org/10.1002/eji.200838722 CrossRefPubMedGoogle Scholar
  114. Morgan TH (1917) The theory of the gene. Am Nat 51:513–544CrossRefGoogle Scholar
  115. Moshkin YM, Kan TW, Goodfellow H, Bezstarosti K, Maeda RK, Pilyugin M, Karch F, Bray SJ, Demmers JA, Verrijzer CP (2009) Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol Cell 35(6):782–793.  https://doi.org/10.1016/j.molcel.2009.07.020 CrossRefPubMedGoogle Scholar
  116. Mulligan P, Yang F, Di Stefano L, Ji JY, Ouyang J, Nishikawa JL, Toiber D, Kulkarni M, Wang Q, Najafi-Shoushtari SH, Mostoslavsky R, Gygi SP, Gill G, Dyson NJ, Naar AM (2011) A SIRT1-LSD1 corepressor complex regulates Notch target gene expression and development. Mol Cell 42(5):689–699.  https://doi.org/10.1016/j.molcel.2011.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5(2):197–206CrossRefPubMedGoogle Scholar
  118. Nakayama T, Saitsu H, Endo W, Kikuchi A, Uematsu M, Haginoya K, Hino-fukuyo N, Kobayashi T, Iwasaki M, Tominaga T, Kure S, Matsumoto N (2014) RBPJ is disrupted in a case of proximal 4p deletion syndrome with epilepsy. Brain Dev 36(6):532–536.  https://doi.org/10.1016/j.braindev.2013.07.009 CrossRefPubMedGoogle Scholar
  119. Nam Y, Weng AP, Aster JC, Blacklow SC (2003) Structural requirements for assembly of the CSL.intracellular Notch1.Mastermind-like 1 transcriptional activation complex. J Biol Chem 278(23):21232–21239.  https://doi.org/10.1074/jbc.M301567200 CrossRefPubMedGoogle Scholar
  120. Nam Y, Sliz P, Song L, Aster JC, Blacklow SC (2006) Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124(5):973–983.  https://doi.org/10.1016/j.cell.2005.12.037 CrossRefPubMedGoogle Scholar
  121. Nam Y, Sliz P, Pear WS, Aster JC, Blacklow SC (2007) Cooperative assembly of higher-order Notch complexes functions as a switch to induce transcription. Proc Natl Acad Sci U S A 104(7):2103–2108.  https://doi.org/10.1073/pnas.0611092104 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Ngondo-Mbongo RP, Myslinski E, Aster JC, Carbon P (2013) Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11. Nucleic Acids Res 41(7):4000–4014.  https://doi.org/10.1093/nar/gkt088 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F (2003) Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 33(3):416–421.  https://doi.org/10.1038/ng1099 CrossRefPubMedGoogle Scholar
  124. Nishina S, Shiraha H, Nakanishi Y, Tanaka S, Matsubara M, Takaoka N, Uemura M, Horiguchi S, Kataoka J, Iwamuro M, Yagi T, Yamamoto K (2011) Restored expression of the tumor suppressor gene RUNX3 reduces cancer stem cells in hepatocellular carcinoma by suppressing Jagged1-Notch signaling. Oncol Rep 26(3):523–531.  https://doi.org/10.3892/or.2011.1336 CrossRefPubMedGoogle Scholar
  125. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, Draetta G, Sears R, Clurman BE, Look AT (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204(8):1813–1824.  https://doi.org/10.1084/jem.20070876 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Osada H, Tatematsu Y, Yatabe Y, Horio Y, Takahashi T (2005) ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Res 65(23):10680–10685.  https://doi.org/10.1158/0008-5472.CAN-05-1404 CrossRefPubMedGoogle Scholar
  127. Oswald F, Tauber B, Dobner T, Bourteele S, Kostezka U, Adler G, Liptay S, Schmid RM (2001) p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol Cell Biol 21(22):7761–7774.  https://doi.org/10.1128/MCB.21.22.7761-7774.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knochel W, Liptay S, Schmid RM (2002) SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J 21(20):5417–5426CrossRefPubMedPubMedCentralGoogle Scholar
  129. Oswald F, Winkler M, Cao Y, Astrahantseff K, Bourteele S, Knochel W, Borggrefe T (2005) RBP-Jkappa/SHARP recruits CtIP/CtBP corepressors to silence Notch target genes. Mol Cell Biol 25(23):10379–10390.  https://doi.org/10.1128/MCB.25.23.10379-10390.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Oswald F, Rodriguez P, Giaimo BD, Antonello ZA, Mira L, Mittler G, Thiel VN, Collins KJ, Tabaja N, Cizelsky W, Rothe M, Kuhl SJ, Kuhl M, Ferrante F, Hein K, Kovall RA, Dominguez M, Borggrefe T (2016) A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res 44(10):4703–4720.  https://doi.org/10.1093/nar/gkw105 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Outtz HH, Wu JK, Wang X, Kitajewski J (2010) Notch1 deficiency results in decreased inflammation during wound healing and regulates vascular endothelial growth factor receptor-1 and inflammatory cytokine expression in macrophages. J Immunol 185(7):4363–4373.  https://doi.org/10.4049/jimmunol.1000720 CrossRefPubMedGoogle Scholar
  132. Palaga T, Buranaruk C, Rengpipat S, Fauq AH, Golde TE, Kaufmann SH, Osborne BA (2008) Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol 38(1):174–183.  https://doi.org/10.1002/eji.200636999 CrossRefPubMedGoogle Scholar
  133. Palermo R, Checquolo S, Giovenco A, Grazioli P, Kumar V, Campese AF, Giorgi A, Napolitano M, Canettieri G, Ferrara G, Schinina ME, Maroder M, Frati L, Gulino A, Vacca A, Screpanti I (2012) Acetylation controls Notch3 stability and function in T-cell leukemia. Oncogene 31(33):3807–3817.  https://doi.org/10.1038/onc.2011.533 CrossRefPubMedGoogle Scholar
  134. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, Bhagat G, Agarwal AM, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zuniga-Pflucker JC, Dominguez M, Ferrando AA (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210.  https://doi.org/10.1038/nm1636 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Parks AL, Stout JR, Shepard SB, Klueg KM, Dos Santos AA, Parody TR, Vaskova M, Muskavitch MA (2006) Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila. Genetics 174(4):1947–1961.  https://doi.org/10.1534/genetics.106.061630 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Patel U, Rajasingh S, Samanta S, Cao T, Dawn B, Rajasingh J (2017) Macrophage polarization in response to epigenetic modifiers during infection and inflammation. Drug Discov Today 22(1):186–193.  https://doi.org/10.1016/j.drudis.2016.08.006 CrossRefPubMedGoogle Scholar
  137. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, Baltimore D (1996) Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183(5):2283–2291CrossRefPubMedGoogle Scholar
  138. Pece S, Serresi M, Santolini E, Capra M, Hulleman E, Galimberti V, Zurrida S, Maisonneuve P, Viale G, Di Fiore PP (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167(2):215–221.  https://doi.org/10.1083/jcb.200406140 CrossRefPubMedPubMedCentralGoogle Scholar
  139. Plentz R, Park JS, Rhim AD, Abravanel D, Hezel AF, Sharma SV, Gurumurthy S, Deshpande V, Kenific C, Settleman J, Majumder PK, Stanger BZ, Bardeesy N (2009) Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136(5):1741–1749. e1746.  https://doi.org/10.1053/j.gastro.2009.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  140. Porta C, Riboldi E, Ippolito A, Sica A (2015) Molecular and epigenetic basis of macrophage polarized activation. Semin Immunol 27(4):237–248.  https://doi.org/10.1016/j.smim.2015.10.003 CrossRefPubMedGoogle Scholar
  141. Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E, Gizdic B, Rossi FM, Bomben R, Zucchetto A, Benedetti D, Degan M, D’Arena G, Chiarenza A, Zaja F, Pozzato G, Rossi D, Gaidano G, Del Poeta G, Deaglio S, Gattei V, Dal Bo M (2016) NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 30(1):182–189.  https://doi.org/10.1038/leu.2015.182 CrossRefPubMedGoogle Scholar
  142. Pozzo F, Bittolo T, Vendramini E, Bomben R, Bulian P, Rossi FM, Zucchetto A, Tissino E, Degan M, D’Arena G, Di Raimondo F, Zaja F, Pozzato G, Rossi D, Gaidano G, Del Poeta G, Gattei V, Dal Bo M (2017) NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia 31(11):2407–2415.  https://doi.org/10.1038/leu.2017.90 CrossRefPubMedGoogle Scholar
  143. Proweller A, Tu L, Lepore JJ, Cheng L, Lu MM, Seykora J, Millar SE, Pear WS, Parmacek MS (2006) Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res 66(15):7438–7444.  https://doi.org/10.1158/0008-5472.CAN-06-0793 CrossRefPubMedGoogle Scholar
  144. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M, Bassaganyas L, Baumann T, Juan M, Lopez-Guerra M, Colomer D, Tubio JM, Lopez C, Navarro A, Tornador C, Aymerich M, Rozman M, Hernandez JM, Puente DA, Freije JM, Velasco G, Gutierrez-Fernandez A, Costa D, Carrio A, Guijarro S, Enjuanes A, Hernandez L, Yague J, Nicolas P, Romeo-Casabona CM, Himmelbauer H, Castillo E, Dohm JC, de Sanjose S, Piris MA, de Alava E, San Miguel J, Royo R, Gelpi JL, Torrents D, Orozco M, Pisano DG, Valencia A, Guigo R, Bayes M, Heath S, Gut M, Klatt P, Marshall J, Raine K, Stebbings LA, Futreal PA, Stratton MR, Campbell PJ, Gut I, Lopez-Guillermo A, Estivill X, Montserrat E, Lopez-Otin C, Campo E (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475(7354):101–105.  https://doi.org/10.1038/nature10113 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG, Fine HA (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65(6):2353–2363.  https://doi.org/10.1158/0008-5472.CAN-04-1890 CrossRefPubMedGoogle Scholar
  146. Qiu M, Peng Q, Jiang I, Carroll C, Han G, Rymer I, Lippincott J, Zachwieja J, Gajiwala K, Kraynov E, Thibault S, Stone D, Gao Y, Sofia S, Gallo J, Li G, Yang J, Li K, Wei P (2013) Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett 328(2):261–270.  https://doi.org/10.1016/j.canlet.2012.09.023 CrossRefPubMedGoogle Scholar
  147. Radtke F, Wilson A, Stark G, Bauer M, van Meerwijk J, MacDonald HR, Aguet M (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10(5):547–558CrossRefPubMedGoogle Scholar
  148. Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, Scorilas A, Klinakis A (2014) A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med 20(10):1199–1205.  https://doi.org/10.1038/nm.3678 CrossRefPubMedGoogle Scholar
  149. Rosati E, Sabatini R, Rampino G, Tabilio A, Di Ianni M, Fettucciari K, Bartoli A, Coaccioli S, Screpanti I, Marconi P (2009) Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113(4):856–865.  https://doi.org/10.1182/blood-2008-02-139725 CrossRefPubMedGoogle Scholar
  150. Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Fama R, Ciardullo C, Greco M, Cresta S, Piranda D, Holmes A, Fabbri G, Messina M, Rinaldi A, Wang J, Agostinelli C, Piccaluga PP, Lucioni M, Tabbo F, Serra R, Franceschetti S, Deambrogi C, Daniele G, Gattei V, Marasca R, Facchetti F, Arcaini L, Inghirami G, Bertoni F, Pileri SA, Deaglio S, Foa R, Dalla-Favera R, Pasqualucci L, Rabadan R, Gaidano G (2012) The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med 209(9):1537–1551.  https://doi.org/10.1084/jem.20120904 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Rustighi A, Tiberi L, Soldano A, Napoli M, Nuciforo P, Rosato A, Kaplan F, Capobianco A, Pece S, Di Fiore PP, Del Sal G (2009) The prolyl-isomerase Pin1 is a Notch1 target that enhances Notch1 activation in cancer. Nat Cell Biol 11(2):133–142.  https://doi.org/10.1038/ncb1822 CrossRefPubMedGoogle Scholar
  152. Rustighi A, Zannini A, Tiberi L, Sommaggio R, Piazza S, Sorrentino G, Nuzzo S, Tuscano A, Eterno V, Benvenuti F, Santarpia L, Aifantis I, Rosato A, Bicciato S, Zambelli A, Del Sal G (2014) Prolyl-isomerase Pin1 controls normal and cancer stem cells of the breast. EMBO Mol Med 6(1):99–119.  https://doi.org/10.1002/emmm.201302909 CrossRefPubMedGoogle Scholar
  153. Salat D, Liefke R, Wiedenmann J, Borggrefe T, Oswald F (2008) ETO, but not leukemogenic fusion protein AML1/ETO, augments RBP-Jkappa/SHARP-mediated repression of notch target genes. Mol Cell Biol 28(10):3502–3512.  https://doi.org/10.1128/MCB.01966-07 CrossRefPubMedPubMedCentralGoogle Scholar
  154. Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC (2004) Notch subunit heterodimerization and prevention of ligand-independent proteolytic activation depend, respectively, on a novel domain and the LNR repeats. Mol Cell Biol 24(21):9265–9273.  https://doi.org/10.1128/MCB.24.21.9265-9273.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Santio NM, Landor SK, Vahtera L, Yla-Pelto J, Paloniemi E, Imanishi SY, Corthals G, Varjosalo M, Manoharan GB, Uri A, Lendahl U, Sahlgren C, Koskinen PJ (2016) Phos phorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells. Oncotarget 7(28):43220–43238.  https://doi.org/10.18632/oncotarget.9215 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Simoes BM, O’Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, Alferez DG, Spence K, Santiago-Gomez A, Chemi F, Acar A, Gandhi A, Howell A, Brennan K, Ryden L, Catalano S, Ando S, Gee J, Ucar A, Sims AH, Marangoni E, Farnie G, Landberg G, Howell SJ, Clarke RB (2015) Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep 12(12):1968–1977.  https://doi.org/10.1016/j.celrep.2015.08.050 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM, Wang CY, Gao B, Jiang J, Yang Y (2010) Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A 107(4):1431–1436.  https://doi.org/10.1073/pnas.0911409107 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Southgate L, Sukalo M, Karountzos ASV, Taylor EJ, Collinson CS, Ruddy D, Snape KM, Dallapiccola B, Tolmie JL, Joss S, Brancati F, Digilio MC, Graul-Neumann LM, Salviati L, Coerdt W, Jacquemin E, Wuyts W, Zenker M, Machado RD, Trembath RC (2015) Haploinsufficiency of the NOTCH1 receptor as a cause of adams-oliver syndrome with variable cardiac anomalies. Circ Cardiovasc Genet 8(4):572–581.  https://doi.org/10.1161/CIRCGENETICS.115.001086 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Stittrich AB, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, Lam P, Khromykh A, Iyer RK, Vockley JG, Baveja R, Silva ES, Dixon J, Leon EL, Solomon BD, Glusman G, Niederhuber JE, Roach JC, Patel MS (2014) Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 95(3):275–284.  https://doi.org/10.1016/j.ajhg.2014.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Stoeck A, Lejnine S, Truong A, Pan L, Wang H, Zang C, Yuan J, Ware C, MacLean J, Garrett-Engele PW, Kluk M, Laskey J, Haines BB, Moskaluk C, Zawel L, Fawell S, Gilliland G, Zhang T, Kremer BE, Knoechel B, Bernstein BE, Pear WS, Liu XS, Aster JC, Sathyanarayanan S (2014) Discovery of biomarkers predictive of GSI response in triple-negative breast cancer and adenoid cystic carcinoma. Cancer Discov 4(10):1154–1167.  https://doi.org/10.1158/2159-8290.CD-13-0830 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66(3):1517–1525.  https://doi.org/10.1158/0008-5472.CAN-05-3054 CrossRefPubMedGoogle Scholar
  162. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 5(12):1416–1423CrossRefPubMedGoogle Scholar
  163. Thelu J, Rossio P, Favier B (2002) Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2:7CrossRefPubMedPubMedCentralGoogle Scholar
  164. Thiel V, Giaimo BD, Schwarz P, Soller K, Vas V, Bartkuhn M, Blatte TJ, Dohner K, Bullinger L, Borggrefe T, Geiger H, Oswald F (2017) Heterodimerization of AML1/ETO with CBFbeta is required for leukemogenesis but not for myeloproliferation. Leukemia 31(11):2491–2502.  https://doi.org/10.1038/leu.2017.105 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Thomas MM, Zhang Y, Mathew E, Kane KT, Maillard I, Pasca di Magliano M (2014) Epithelial Notch signaling is a limiting step for pancreatic carcinogenesis. BMC Cancer 14:862.  https://doi.org/10.1186/1471-2407-14-862 CrossRefPubMedPubMedCentralGoogle Scholar
  166. VanderWielen BD, Yuan Z, Friedmann DR, Kovall RA (2011) Transcriptional repression in the Notch pathway: thermodynamic characterization of CSL-MINT (Msx2-interacting nuclear target protein) complexes. J Biol Chem 286(17):14892–14902.  https://doi.org/10.1074/jbc.M110.181156 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Viatour P, Ehmer U, Saddic LA, Dorrell C, Andersen JB, Lin C, Zmoos AF, Mazur PK, Schaffer BE, Ostermeier A, Vogel H, Sylvester KG, Thorgeirsson SS, Grompe M, Sage J (2011) Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med 208(10):1963–1976.  https://doi.org/10.1084/jem.20110198 CrossRefPubMedPubMedCentralGoogle Scholar
  168. Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Sole M, Thung S, Stanger BZ, Llovet JM (2012) Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143(6):1660–1669. e1667.  https://doi.org/10.1053/j.gastro.2012.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L, Feng L, Liang YM, Han H (2010a) Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res 70(12):4840–4849.  https://doi.org/10.1158/0008-5472.CAN-10-0269 CrossRefPubMedGoogle Scholar
  170. Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010b) Notch promotes radioresistance of glioma stem cells. Stem Cells 28(1):17–28.  https://doi.org/10.1002/stem.261 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H, Pear WS, Schug J, Blacklow SC, Arnett KL, Bernstein BE, Kieff E, Aster JC (2011a) Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A 108(36):14908–14913.  https://doi.org/10.1073/pnas.1109023108 CrossRefPubMedPubMedCentralGoogle Scholar
  172. Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, Leigh IM, Collisson EA, Gordon PB, Jakkula L, Pennypacker S, Zou Y, Sharma M, North JP, Vemula SS, Mauro TM, Neuhaus IM, Leboit PE, Hur JS, Park K, Huh N, Kwok PY, Arron ST, Massion PP, Bale AE, Haussler D, Cleaver JE, Gray JW, Spellman PT, South AP, Aster JC, Blacklow SC, Cho RJ (2011b) Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 108(43):17761–17766.  https://doi.org/10.1073/pnas.1114669108 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS, Blacklow SC, Liu XS, Aster JC (2014) NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci U S A 111(2):705–710.  https://doi.org/10.1073/pnas.1315023111 CrossRefPubMedGoogle Scholar
  174. Wang K, Zhang Q, Li D, Ching K, Zhang C, Zheng X, Ozeck M, Shi S, Li X, Wang H, Rejto P, Christensen J, Olson P (2015) PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a gamma-secretase inhibitor. Clin Cancer Res Off J Am Assoc Can Res 21(6):1487–1496.  https://doi.org/10.1158/1078-0432.CCR-14-1348 CrossRefGoogle Scholar
  175. Wang S, Zhou R, Sun F, Li R, Wang M, Wu M (2017) The two novel DLL4-targeting antibody-drug conjugates MvM03 and MGD03 show potent anti-tumour activity in breast cancer xenograft models. Cancer Lett.  https://doi.org/10.1016/j.canlet.2017.09.004
  176. Weng AP, Ferrando AA, Lee W, JPt M, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271.  https://doi.org/10.1126/science.1102160 CrossRefPubMedGoogle Scholar
  177. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43(3 Pt 2):567–581CrossRefPubMedGoogle Scholar
  178. Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124(5):985–996.  https://doi.org/10.1016/j.cell.2006.01.035 CrossRefPubMedGoogle Scholar
  179. Wongchana W, Palaga T (2012) Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell Mol Immunol 9(2):155–162.  https://doi.org/10.1038/cmi.2011.36 CrossRefPubMedGoogle Scholar
  180. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD (2000) MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet 26(4):484–489.  https://doi.org/10.1038/82644 CrossRefPubMedGoogle Scholar
  181. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD (2002) Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 22(21):7688–7700CrossRefPubMedPubMedCentralGoogle Scholar
  182. Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin-Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG, Siebel CW (2010) Therapeutic antibody targeting of individual Notch receptors. Nature 464(7291):1052–1057.  https://doi.org/10.1038/nature08878 CrossRefPubMedGoogle Scholar
  183. Xie Q, Wu Q, Kim L, Miller TE, Liau BB, Mack SC, Yang K, Factor DC, Fang X, Huang Z, Zhou W, Alazem K, Wang X, Bernstein BE, Bao S, Rich JN (2016) RBPJ maintains brain tumor-initiating cells through CDK9-mediated transcriptional elongation. J Clin Invest 126(7):2757–2772.  https://doi.org/10.1172/JCI86114 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X (2012) Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol 13(7):642–650.  https://doi.org/10.1038/ni.2304 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Xu Z, Wang Z, Jia X, Wang L, Chen Z, Wang S, Wang M, Zhang J, Wu M (2016) MMGZ01, an anti-DLL4 monoclonal antibody, promotes nonfunctional vessels and inhibits breast tumor growth. Cancer Lett 372(1):118–127.  https://doi.org/10.1016/j.canlet.2015.12.025 CrossRefPubMedGoogle Scholar
  186. Xu T, Park SS, Giaimo BD, Hall D, Ferrante F, Ho DM, Hori K, Anhezini L, Ertl I, Bartkuhn M, Zhang H, Milon E, Ha K, Conlon KP, Kuick R, Govindarajoo B, Zhang Y, Sun Y, Dou Y, Basrur V, Elenitoba-Johnson KS, Nesvizhskii AI, Ceron J, Lee CY, Borggrefe T, Kovall RA, Rual JF (2017) RBPJ/CBF1 interacts with L3MBTL3/MBT1 to promote repression of Notch signaling via histone demethylase KDM1A/LSD1. EMBO J.  https://doi.org/10.15252/embj.201796525
  187. Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, Lelievre JD, Levy Y, Benkirane M (2012) NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell 48(3):445–458.  https://doi.org/10.1016/j.molcel.2012.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Yen WC, Fischer MM, Hynes M, Wu J, Kim E, Beviglia L, Yeung VP, Song X, Kapoun AM, Lewicki J, Gurney A, Simeone DM, Hoey T (2012) Anti-DLL4 has broad spectrum activity in pancreatic cancer dependent on targeting DLL4-Notch signaling in both tumor and vasculature cells. Clin Cancer Res Off J Am Assoc Can Res 18(19):5374–5386.  https://doi.org/10.1158/1078-0432.CCR-12-0736 CrossRefGoogle Scholar
  189. Yuan Z, Praxenthaler H, Tabaja N, Torella R, Preiss A, Maier D, Kovall RA (2016) Structure and function of the Su(H)-Hairless repressor complex, the major Antagonist of Notch signaling in Drosophila melanogaster. PLoS Biol 14(7):e1002509.  https://doi.org/10.1371/journal.pbio.1002509 CrossRefPubMedPubMedCentralGoogle Scholar
  190. Zhang W, Xu W, Xiong S (2010) Blockade of Notch1 signaling alleviates murine lupus via blunting macrophage activation and M2b polarization. J Immunol 184(11):6465–6478.  https://doi.org/10.4049/jimmunol.0904016 CrossRefPubMedGoogle Scholar
  191. Zhang Q, Wang C, Liu Z, Liu X, Han C, Cao X, Li N (2012) Notch signal suppresses Toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor kappaB activation. J Biol Chem 287(9):6208–6217.  https://doi.org/10.1074/jbc.M111.310375 CrossRefPubMedGoogle Scholar
  192. Zhang J, Shao X, Sun H, Liu K, Ding Z, Chen J, Fang L, Su W, Hong Y, Li H, Li H (2016a) NUMB negatively regulates the epithelial-mesenchymal transition of triple-negative breast cancer by antagonizing Notch signaling. Oncotarget 7(38):61036–61053.  https://doi.org/10.18632/oncotarget.11062 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Zhang S, Chung WC, Xu K (2016b) Lunatic fringe is a potent tumor suppressor in Kras-initiated pancreatic cancer. Oncogene 35(19):2485–2495.  https://doi.org/10.1038/onc.2015.306 CrossRefPubMedGoogle Scholar
  194. Zhang Q, Zhang Y, Parsels JD, Lohse I, Lawrence TS, Pasca di Magliano M, Sun Y, Morgan MA (2016c) Fbxw7 deletion accelerates KrasG12D-Driven pancreatic tumorigenesis via Yap accumulation. Neoplasia 18(11):666–673.  https://doi.org/10.1016/j.neo.2016.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  195. Zhou L, Wang DS, Li QJ, Sun W, Zhang Y, Dou KF (2012) Downregulation of the Notch signaling pathway inhibits hepatocellular carcinoma cell invasion by inactivation of matrix metalloproteinase-2 and -9 and vascular endothelial growth factor. Oncol Rep 28(3):874–882.  https://doi.org/10.3892/or.2012.1880 CrossRefPubMedGoogle Scholar
  196. Zhou L, Wang DS, Li QJ, Sun W, Zhang Y, Dou KF (2013) The down-regulation of Notch1 inhibits the invasion and migration of hepatocellular carcinoma cells by inactivating the cyclooxygenase-2/Snail/E-cadherin pathway in vitro. Dig Dis Sci 58(4):1016–1025.  https://doi.org/10.1007/s10620-012-2434-7 CrossRefPubMedGoogle Scholar
  197. Zhu B, Sun L, Luo W, Li M, Coy DH, Yu L, Yu W (2017) Activated Notch signaling augments cell growth in hepatocellular carcinoma via up-regulating the nuclear receptor NR4A2. Oncotarget 8(14):23289–23302.  https://doi.org/10.18632/oncotarget.15576 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM, Gu LJ, Tang JY, Liang H, Jiang H, Xue YQ, Shen ZX, Chen Z, Chen SJ (2006) NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 12(10):3043–3049.  https://doi.org/10.1158/1078-0432.CCR-05-2832 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biochemistry, University of GiessenGiessenGermany

Personalised recommendations