Advertisement

Transcriptional Regulation of Hypothalamic Energy Balance Genes

  • Deborah J. Good
Chapter

Abstract

Within the postnatal human brain, there are at least 4627 expressed transcription factors (Hawrylycz et al. 2012). These transcription factors are differentially expressed within the various lobes and structures of our brain, including the hypothalamus and its distinct set of nuclei. Data from my own laboratory indicates that there are as many as 2089 mRNAs coding for transcription factors within the hypothalamus alone (Jiang and Good, unpublished, referring to dataset within (Jiang et al. 2015)). When one begins to contemplate the enormity of having over 2000 different transcription factors to specify the thousands of proteins that make up the hypothalamus, it is clear that we are still a long way from completely figuring out how each of these are coordinated in response to energy balance signals. In addition to the transcription factors, thousands of noncoding RNAs mediate posttranscriptional regulatory signals, and both proteins and noncoding RNAs direct differential translation of mRNAs which specifies the hypothalamic proteome. This chapter provides an overview of what we know about transcriptional regulation of genes expressed within the hypothalamus, and discusses the questions that remain in order for us to fully understand the hypothalamic transcriptome and resulting proteome.

References

  1. Al Rayyan, N., Zhang, J., Burnside, A. S., & Good, D. J. (2014). Leptin signaling regulates hypothalamic expression of nescient helix-loop-helix 2 (Nhlh2) through signal transducer and activator 3 (Stat3). Molecular and Cellular Endocrinology, 134–142. https://doi.org/10.1016/j.mce.2014.01.017.CrossRefPubMedGoogle Scholar
  2. Alam, T., Bahar, B., Waters, S. M., McGee, M., O’Doherty, J. V., & Sweeney, T. (2012). Functional characterisation of the bovine neuropeptide Y gene promoter and evaluation of the transcriptional activities of promoter haplotypes. Molecular Biology Reports, 919–928. https://doi.org/10.1007/s11033-011-0817-z.CrossRefPubMedGoogle Scholar
  3. Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, I., Bornholdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C., Suzuki, T., Ntini, E., Arner, E., Valen, E., Li, K., Schwarzfischer, L., Glatz, D., Raithel, J., Lilje, B., Rapin, N., Bagger, F. O., Jorgensen, M., Andersen, P. R., Bertin, N., Rackham, O., Burroughs, A. M., Baillie, J. K., Ishizu, Y., Shimizu, Y., Furuhata, E., Maeda, S., Negishi, Y., Mungall, C. J., Meehan, T. F., Lassmann, T., Itoh, M., Kawaji, H., Kondo, N., Kawai, J., Lennartsson, A., Daub, C. O., Heutink, P., Hume, D. A., Jensen, T. H., Suzuki, H., Hayashizaki, Y., Muller, F., Consortium, F., Forrest, A. R., Carninci, P., Rehli, M., & Sandelin, A. (2014). An atlas of active enhancers across human cell types and tissues. Nature, 455–461. https://doi.org/10.1038/nature12787.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Begum, G., Stevens, A., Smith, E. B., Connor, K., Challis, J. R., Bloomfield, F., & White, A. (2012). Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. The FASEB Journal, 1694–1703. https://doi.org/10.1096/fj.11-198762.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belsham, D. D., Cai, F., Cui, H., Smukler, S. R., Salapatek, A. M., & Shkreta, L. (2004). Generation of a phenotypic array of hypothalamic neuronal cell models to study complex neuroendocrine disorders. Endocrinology, 393–400. https://doi.org/10.1210/en.2003-0946.CrossRefPubMedGoogle Scholar
  6. Belsham, D. D., Fick, L. J., Dalvi, P. S., Centeno, M. L., Chalmers, J. A., Lee, P. K., Wang, Y., Drucker, D. J., & Koletar, M. M. (2009). Ciliary neurotrophic factor recruitment of glucagon-like peptide-1 mediates neurogenesis, allowing immortalization of adult murine hypothalamic neurons. The FASEB Journal, 4256–4265. https://doi.org/10.1096/fj.09-133454.CrossRefPubMedGoogle Scholar
  7. Benite-Ribeiro, S. A., Putt, D. A., Soares-Filho, M. C., & Santos, J. M. (2016). The link between hypothalamic epigenetic modifications and long-term feeding control. Appetite, 445–453. https://doi.org/10.1016/j.appet.2016.08.111.CrossRefPubMedGoogle Scholar
  8. Cakir, I., Perello, M., Lansari, O., Messier, N. J., Vaslet, C. A., & Nillni, E. A. (2009). Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS One, e8322. https://doi.org/10.1371/journal.pone.0008322.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Consortium, F., Forrest, A. R., Kawaji, H., Rehli, M., Baillie, J. K., de Hoon, M. J., Haberle, V., Lassmann, T., Kulakovskiy, I. V., Lizio, M., Itoh, M., Andersson, R., Mungall, C. J., Meehan, T. F., Schmeier, S., Bertin, N., Jorgensen, M., Dimont, E., Arner, E., Schmidl, C., Schaefer, U., Medvedeva, Y. A., Plessy, C., Vitezic, M., Severin, J., Semple, C., Ishizu, Y., Young, R. S., Francescatto, M., Alam, I., Albanese, D., Altschuler, G. M., Arakawa, T., Archer, J. A., Arner, P., Babina, M., Rennie, S., Balwierz, P. J., Beckhouse, A. G., Pradhan-Bhatt, S., Blake, J. A., Blumenthal, A., Bodega, B., Bonetti, A., Briggs, J., Brombacher, F., Burroughs, A. M., Califano, A., Cannistraci, C. V., Carbajo, D., Chen, Y., Chierici, M., Ciani, Y., Clevers, H. C., Dalla, E., Davis, C. A., Detmar, M., Diehl, A. D., Dohi, T., Drablos, F., Edge, A. S., Edinger, M., Ekwall, K., Endoh, M., Enomoto, H., Fagiolini, M., Fairbairn, L., Fang, H., Farach-Carson, M. C., Faulkner, G. J., Favorov, A. V., Fisher, M. E., Frith, M. C., Fujita, R., Fukuda, S., Furlanello, C., Furino, M., Furusawa, J., Geijtenbeek, T. B., Gibson, A. P., Gingeras, T., Goldowitz, D., Gough, J., Guhl, S., Guler, R., Gustincich, S., Ha, T. J., Hamaguchi, M., Hara, M., Harbers, M., Harshbarger, J., Hasegawa, A., Hasegawa, Y., Hashimoto, T., Herlyn, M., Hitchens, K. J., Ho Sui, S. J., Hofmann, O. M., Hoof, I., Hori, F., Huminiecki, L., Iida, K., Ikawa, T., Jankovic, B. R., Jia, H., Joshi, A., Jurman, G., Kaczkowski, B., Kai, C., Kaida, K., Kaiho, A., Kajiyama, K., Kanamori-Katayama, M., Kasianov, A. S., Kasukawa, T., Katayama, S., Kato, S., Kawaguchi, S., Kawamoto, H., Kawamura, Y. I., Kawashima, T., Kempfle, J. S., Kenna, T. J., Kere, J., Khachigian, L. M., Kitamura, T., Klinken, S. P., Knox, A. J., Kojima, M., Kojima, S., Kondo, N., Koseki, H., Koyasu, S., Krampitz, S., Kubosaki, A., Kwon, A. T., Laros, J. F., Lee, W., Lennartsson, A., Li, K., Lilje, B., Lipovich, L., Mackay-Sim, A., Manabe, R., Mar, J. C., Marchand, B., Mathelier, A., Mejhert, N., Meynert, A., Mizuno, Y., de Lima Morais, D. A., Morikawa, H., Morimoto, M., Moro, K., Motakis, E., Motohashi, H., Mummery, C. L., Murata, M., Nagao-Sato, S., Nakachi, Y., Nakahara, F., Nakamura, T., Nakamura, Y., Nakazato, K., van Nimwegen, E., Ninomiya, N., Nishiyori, H., Noma, S., Noma, S., Noazaki, T., Ogishima, S., Ohkura, N., Ohimiya, H., Ohno, H., Ohshima, M., Okada-Hatakeyama, M., Okazaki, Y., Orlando, V., Ovchinnikov, D. A., Pain, A., Passier, R., Patrikakis, M., Persson, H., Piazza, S., Prendergast, J. G., Rackham, O. J., Ramilowski, J. A., Rashid, M., Ravasi, T., Rizzu, P., Roncador, M., Roy, S., Rye, M. B., Saijyo, E., Sajantila, A., Saka, A., Sakaguchi, S., Sakai, M., Sato, H., Savvi, S., Saxena, A., Schneider, C., Schultes, E. A., Schulze-Tanzil, G. G., Schwegmann, A., Sengstag, T., Sheng, G., Shimoji, H., Shimoni, Y., Shin, J. W., Simon, C., Sugiyama, D., Sugiyama, T., Suzuki, M., Suzuki, N., Swoboda, R. K., t Hoen, P. A., Tagami, M., Takahashi, N., Takai, J., Tanaka, H., Tatsukawa, H., Tatum, Z., Thompson, M., Toyodo, H., Toyoda, T., Valen, E., van de Wetering, M., van den Berg, L. M., Verado, R., Vijayan, D., Vorontsov, I. E., Wasserman, W. W., Watanabe, S., Wells, C. A., Winteringham, L. N., Wolvetang, E., Wood, E. J., Yamaguchi, Y., Yamamoto, M., Yoneda, M., Yonekura, Y., Yoshida, S., Zabierowski, S. E., Zhang, P. G., Zhao, X., Zucchelli, S., Summers, K. M., Suzuki, H., Daub, C. O., Kawai, J., Heutink, P., Hide, W., Freeman, T. C., Lenhard, B., Bajic, V. B., Taylor, M. S., Makeev, V. J., Sandelin, A., Hume, D. A., Carninci, P., & Hayashizaki, Y. (2014). A promoter-level mammalian expression atlas. Nature, 462–470. https://doi.org/10.1038/nature13182.
  10. de Luis, D. A., Izaola, O., de la Fuente, B., Primo, D., & Aller, R. (2016). Polymorphism of neuropeptide Y gene rs16147 modifies the response to a hypocaloric diet on cardiovascular risk biomarkers and adipokines. Journal of Human Nutrition and Dietetics. https://doi.org/10.1111/jhn.12406.
  11. de Souza, F. S., Santangelo, A. M., Bumaschny, V., Avale, M. E., Smart, J. L., Low, M. J., & Rubinstein, M. (2005). Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting. Molecular and Cellular Biology, 3076–3086. https://doi.org/10.1128/MCB.25.8.3076-3086.2005.
  12. De Vitry, F., Camier, M., Czernichow, P., Benda, P., Cohen, P., & Tixier-Vidal, A. (1974). Establishment of a clone of mouse hypothalamic neurosecretory cells synthesizing neurophysin and vasopressin. Proceedings of the National Academy of Sciences of the United States of America, (9), 3575.CrossRefGoogle Scholar
  13. Flak, J. N., & Myers, M. G., Jr. (2016). Minireview: CNS Mechanisms of Leptin Action. Molecular Endocrinology, 3–12. https://doi.org/10.1210/me.2015-1232.CrossRefPubMedGoogle Scholar
  14. Fox, D. L., & Good, D. J. (2008). Nescient helix-loop-helix 2 interacts with signal transducer and activator of transcription 3 to regulate transcription of prohormone convertase 1/3. Molecular Endocrinology, 1438–1448. https://doi.org/10.1210/me.2008-0010.
  15. Fulco, C. P., Munschauer, M., Anyoha, R., Munson, G., Grossman, S. R., Perez, E. M., Kane, M., Cleary, B., Lander, E. S., & Engreitz, J. M. (2016). Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science, 769–773. https://doi.org/10.1126/science.aag2445.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Funato, H., Oda, S., Yokofujita, J., Igarashi, H., & Kuroda, M. (2011). Fasting and high-fat diet alter histone deacetylase expression in the medial hypothalamus. PLoS One, e18950. https://doi.org/10.1371/journal.pone.0018950.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gingerich, S., Wang, X., Lee, P. K., Dhillon, S. S., Chalmers, J. A., Koletar, M. M., & Belsham, D. D. (2009). The generation of an array of clonal, immortalized cell models from the rat hypothalamus: analysis of melatonin effects on kisspeptin and gonadotropin-inhibitory hormone neurons. Neuroscience, 1134–1140. https://doi.org/10.1016/j.neuroscience.2009.05.026.CrossRefPubMedGoogle Scholar
  18. Good, D. J. (2000). How tight are your genes? Transcriptional and posttranscriptional regulation of the leptin receptor, NPY, and POMC genes. Hormones and Behavior, 284–298. https://doi.org/10.1006/hbeh.2000.1587.CrossRefPubMedGoogle Scholar
  19. Hakvoort, T. B., Moerland, P. D., Frijters, R., Sokolovic, A., Labruyere, W. T., Vermeulen, J. L., Ver Loren van Themaat, E., Breit, T. M., Wittink, F. R., van Kampen, A. H., Verhoeven, A. J., Lamers, W. H., & Sokolovic, M. (2011). Interorgan coordination of the murine adaptive response to fasting. The Journal of Biological Chemistry, 16332–16343. https://doi.org/10.1074/jbc.M110.216986.CrossRefPubMedGoogle Scholar
  20. Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., van de Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L., Abajian, C., Beckmann, C. F., Bernard, A., Bertagnolli, D., Boe, A. F., Cartagena, P. M., Chakravarty, M. M., Chapin, M., Chong, J., Dalley, R. A., Daly, B. D., Dang, C., Datta, S., Dee, N., Dolbeare, T. A., Faber, V., Feng, D., Fowler, D. R., Goldy, J., Gregor, B. W., Haradon, Z., Haynor, D. R., Hohmann, J. G., Horvath, S., Howard, R. E., Jeromin, A., Jochim, J. M., Kinnunen, M., Lau, C., Lazarz, E. T., Lee, C., Lemon, T. A., Li, L., Li, Y., Morris, J. A., Overly, C. C., Parker, P. D., Parry, S. E., Reding, M., Royall, J. J., Schulkin, J., Sequeira, P. A., Slaughterbeck, C. R., Smith, S. C., Sodt, A. J., Sunkin, S. M., Swanson, B. E., Vawter, M. P., Williams, D., Wohnoutka, P., Zielke, H. R., Geschwind, D. H., Hof, P. R., Smith, S. M., Koch, C., Grant, S. G., & Jones, A. R. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 391–399. https://doi.org/10.1038/nature11405.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hoefflin, S., & Carter, D. A. (2014). Neuronal expression of SOX2 is enriched in specific hypothalamic cell groups. Journal of Chemical Neuroanatomy, 153–160. https://doi.org/10.1016/j.jchemneu.2014.09.003.CrossRefPubMedGoogle Scholar
  22. Huang, P. P., Brusman, L. E., Iyer, A. K., Webster, N. J., & Mellon, P. L. (2016). A Novel Gonadotropin-Releasing Hormone 1 (Gnrh1) Enhancer-Derived Noncoding RNA Regulates Gnrh1 Gene Expression in GnRH Neuronal Cell Models. PLoS One, e0158597. https://doi.org/10.1371/journal.pone.0158597.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Huo, L., Munzberg, H., Nillni, E. A., & Bjorbaek, C. (2004). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic trh gene expression by leptin. Endocrinology, 2516–2523. https://doi.org/10.1210/en.2003-1242.CrossRefPubMedGoogle Scholar
  24. Ilnytska, O., Stutz, A. M., Park-York, M., York, D. A., Ribnicky, D. M., Zuberi, A., Cefalu, W. T., & Argyropoulos, G. (2011). Molecular mechanisms for activation of the agouti-related protein and stimulation of appetite. Diabetes, 97–106. https://doi.org/10.2337/db10-0172.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jiang, H., & Good, D. J. (2016). A molecular conundrum involving hypothalamic responses to and roles of long non-coding RNAs following food deprivation. Molecular and Cellular Endocrinology, 52–60. https://doi.org/10.1016/j.mce.2016.08.028.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jiang, H., Modise, T., Helm, R., Jensen, R. V., & Good, D. J. (2015). Characterization of the hypothalamic transcriptome in response to food deprivation reveals global changes in long noncoding RNA, and cell cycle response genes. Genes & Nutrition, 48. https://doi.org/10.1007/s12263-015-0496-9.
  27. Jing, E., Nillni, E. A., Sanchez, V. C., Stuart, R. C., & Good, D. J. (2004). Deletion of the Nhlh2 transcription factor decreases the levels of the anorexigenic peptides alpha melanocyte-stimulating hormone and thyrotropin-releasing hormone and implicates prohormone convertases I and II in obesity. Endocrinology, 1503–1513. https://doi.org/10.1210/en.2003-0834.CrossRefPubMedGoogle Scholar
  28. Kim, H. D., Choe, H. K., Chung, S., Kim, M., Seong, J. Y., Son, G. H., & Kim, K. (2011). Class-C SOX transcription factors control GnRH gene expression via the intronic transcriptional enhancer. Molecular Endocrinology, 1184–1196. https://doi.org/10.1210/me.2010-0332.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kitamura, T., Feng, Y., Kitamura, Y. I., Chua, S. C., Jr., Xu, A. W., Barsh, G. S., Rossetti, L., & Accili, D. (2006). Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 534–540. https://doi.org/10.1038/nm1392.CrossRefPubMedGoogle Scholar
  30. Kuhnen, P., Handke, D., Waterland, R. A., Hennig, B. J., Silver, M., Fulford, A. J., Dominguez-Salas, P., Moore, S. E., Prentice, A. M., Spranger, J., Hinney, A., Hebebrand, J., Heppner, F. L., Walzer, L., Grotzinger, C., Gromoll, J., Wiegand, S., Gruters, A., & Krude, H. (2016). Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metabolism, 502–509. https://doi.org/10.1016/j.cmet.2016.08.001.CrossRefPubMedGoogle Scholar
  31. Kwon, O., Kim, K. W., & Kim, M. S. (2016). Leptin signalling pathways in hypothalamic neurons. Cellular and Molecular Life Sciences, 1457–1477. https://doi.org/10.1007/s00018-016-2133-1.CrossRefPubMedGoogle Scholar
  32. Lam, D. D., de Souza, F. S., Nasif, S., Yamashita, M., Lopez-Leal, R., Otero-Corchon, V., Meece, K., Sampath, H., Mercer, A. J., Wardlaw, S. L., Rubinstein, M., & Low, M. J. (2015). Partially redundant enhancers cooperatively maintain Mammalian pomc expression above a critical functional threshold. PLoS Genetics, e1004935. https://doi.org/10.1371/journal.pgen.1004935.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Landry, J. J., Pyl, P. T., Rausch, T., Zichner, T., Tekkedil, M. M., Stutz, A. M., Jauch, A., Aiyar, R. S., Pau, G., Delhomme, N., Gagneur, J., Korbel, J. O., Huber, W., & Steinmetz, L. M. (2013). The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda), 1213–1224. https://doi.org/10.1534/g3.113.005777.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Latella, M. C., Di Salvo, M. T., Cocchiarella, F., Benati, D., Grisendi, G., Comitato, A., Marigo, V., & Recchia, A. (2016). In vivo Editing of the Human Mutant Rhodopsin Gene by Electroporation of Plasmid-based CRISPR/Cas9 in the Mouse Retina. Molecular Therapy – Nucleic Acids, e389. https://doi.org/10.1038/mtna.2016.92.
  35. Lawson, M. A., Macconell, L. A., Kim, J., Powl, B. T., Nelson, S. B., & Mellon, P. L. (2002). Neuron-specific expression in vivo by defined transcription regulatory elements of the GnRH gene. Endocrinology, 1404–1412. https://doi.org/10.1210/endo.143.4.8751.CrossRefPubMedGoogle Scholar
  36. Lee, Y. S., Sasaki, T., Kobayashi, M., Kikuchi, O., Kim, H. J., Yokota-Hashimoto, H., Shimpuku, M., Susanti, V. Y., Ido-Kitamura, Y., Kimura, K., Inoue, H., Tanaka-Okamoto, M., Ishizaki, H., Miyoshi, J., Ohya, S., Tanaka, Y., Kitajima, S., & Kitamura, T. (2013). Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Diabetologia, 1383–1393. https://doi.org/10.1007/s00125-013-2879-z.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Libert, S., Pointer, K., Bell, E. L., Das, A., Cohen, D. E., Asara, J. M., Kapur, K., Bergmann, S., Preisig, M., Otowa, T., Kendler, K. S., Chen, X., Hettema, J. M., van den Oord, E. J., Rubio, J. P., & Guarente, L. (2011). SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell, 1459–1472. https://doi.org/10.1016/j.cell.2011.10.054.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Loganathan, N., & Belsham, D. D. (2016). Nutrient-sensing mechanisms in hypothalamic cell models: neuropeptide regulation and neuroinflammation in male- and female-derived cell lines. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, R217–R221. https://doi.org/10.1152/ajpregu.00168.2016.
  39. Ma, W., Fuentes, G., Shi, X., Verma, C., Radda, G. K., & Han, W. (2015). FoxO1 negatively regulates leptin-induced POMC transcription through its direct interaction with STAT3. Biochemical Journal, 291–298. https://doi.org/10.1042/BJ20141109.CrossRefPubMedGoogle Scholar
  40. Majzoub, J. A., Pappey, A., Burg, R., & Habener, J. F. (1984). Vasopressin gene is expressed at low levels in the hypothalamus of the Brattleboro rat. Proceedings of the National Academy of Sciences of the United States of America, 5296–5299.CrossRefGoogle Scholar
  41. Mayer, S. I., Dexheimer, V., Nishida, E., Kitajima, S., & Thiel, G. (2008). Expression of the transcriptional repressor ATF3 in gonadotrophs is regulated by Egr-1, CREB, and ATF2 after gonadotropin-releasing hormone receptor stimulation. Endocrinology, 6311–6325. https://doi.org/10.1210/en.2008-0251.CrossRefPubMedGoogle Scholar
  42. Mayfield, D. K., Brown, A. M., Page, G. P., Garvey, W. T., Shriver, M. D., & Argyropoulos, G. (2001). A role for the Agouti-Related Protein promoter in obesity and type 2 diabetes. Biochemical and Biophysical Research Communications, 568–573. https://doi.org/10.1006/bbrc.2001.5600.CrossRefPubMedGoogle Scholar
  43. Mellon, P. L., Windle, J. J., Goldsmith, P. C., Padula, C. A., Roberts, J. L., & Weiner, R. I. (1990). Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron, 5, 1–10.CrossRefPubMedGoogle Scholar
  44. Meng, F., Han, M., Zheng, B., Wang, C., Zhang, R., Zhang, X. H., & Wen, J. K. (2009). All-trans retinoic acid increases KLF4 acetylation by inducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 13–18. https://doi.org/10.1016/j.bbrc.2009.05.112.CrossRefPubMedGoogle Scholar
  45. Minokoshi, Y., Shiuchi, T., Lee, S., Suzuki, A., & Okamoto, S. (2008). Role of hypothalamic AMP-kinase in food intake regulation. Nutrition, 786–790. https://doi.org/10.1016/j.nut.2008.06.002.CrossRefPubMedGoogle Scholar
  46. Morrison, C. D., Morton, G. J., Niswender, K. D., Gelling, R. W., & Schwartz, M. W. (2005). Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. American Journal of Physiology. Endocrinology and Metabolism, E1051–E1057. https://doi.org/10.1152/ajpendo.00094.2005.CrossRefPubMedGoogle Scholar
  47. Muller, Y. L., Thearle, M. S., Piaggi, P., Hanson, R. L., Hoffman, D., Gene, B., Mahkee, D., Huang, K., Kobes, S., Votruba, S., Knowler, W. C., Bogardus, C., & Baier, L. J. (2014). Common genetic variation in and near the melanocortin 4 receptor gene (MC4R) is associated with body mass index in American Indian adults and children. Human Genetics, 1431–1441. https://doi.org/10.1007/s00439-014-1477-6.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Munzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N., & Bjorbaek, C. (2003). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology, 2121–2131. https://doi.org/10.1210/en.2002-221,037.CrossRefPubMedGoogle Scholar
  49. Plagemann, A., Harder, T., Brunn, M., Harder, A., Roepke, K., Wittrock-Staar, M., Ziska, T., Schellong, K., Rodekamp, E., Melchior, K., & Dudenhausen, J. W. (2009). Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. The Journal of Physiology, 4963–4976. https://doi.org/10.1113/jphysiol.2009.176156.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Plum, L., Lin, H. V., Aizawa, K. S., Liu, Y., & Accili, D. (2012). InsR/FoxO1 signaling curtails hypothalamic POMC neuron number. PLoS One, e31487. https://doi.org/10.1371/journal.pone.0031487.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Reich, N. C. (2007). STAT dynamics. Cytokine & Growth Factor Reviews, 511–518. https://doi.org/10.1016/j.cytogfr.2007.06.021.CrossRefGoogle Scholar
  52. Rubinstein, M., Mortrud, M., Liu, B., & Low, M. J. (1993). Rat and mouse proopiomelanocortin gene sequences target tissue-specific expression to the pituitary gland but not to the hypothalamus of transgenic mice. Neuroendocrinology, 58, 373–380.CrossRefPubMedGoogle Scholar
  53. Sagar, S. M., Sharp, F. R., & Curran, T. (1988). Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science, 240, 1328–1331.CrossRefPubMedGoogle Scholar
  54. Sanacora, G., Kershaw, M., Finkelstein, J. A., & White, J. D. (1990). Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology, 730–737. https://doi.org/10.1210/endo-127-2-730.CrossRefPubMedGoogle Scholar
  55. Sanchez, V. C., Goldstein, J., Stuart, R. C., Hovanesian, V., Huo, L., Munzberg, H., Friedman, T. C., Bjorbaek, C., & Nillni, E. A. (2004). Regulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone. The Journal of Clinical Investigation, 357–369. https://doi.org/10.1172/JCI21620.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schmale, H., & Richter, D. (1984). Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature, 308, 705–709.CrossRefPubMedGoogle Scholar
  57. Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y., Kohn, A., Rappaport, N., Safran, M., & Lancet, D. (2016). The GeneCards suite: from gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 1 30 1–1 30 33. https://doi.org/10.1002/cpbi.5.
  58. Tan, K. M., Ooi, S. Q., Ong, S. G., Kwan, C. S., Chan, R. M., Seng Poh, L. K., Mendoza, J., Heng, C. K., Loke, K. Y., & Lee, Y. S. (2014). Functional characterization of variants in MC4R gene promoter region found in obese children. The Journal of Clinical Endocrinology and Metabolism, (5), E931. https://doi.org/10.1210/jc.2013-3711.
  59. Tinkum, K. L., White, L. S., Marpegan, L., Herzog, E., Piwnica-Worms, D., & Piwnica-Worms, H. (2013). Forkhead box O1 (FOXO1) protein, but not p53, contributes to robust induction of p21 expression in fasted mice. The Journal of Biological Chemistry, 27999–28008. https://doi.org/10.1074/jbc.M113.494328.CrossRefPubMedGoogle Scholar
  60. Toorie, A. M., & Nillni, E. A. (2014). Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Molecular Endocrinology, 1423–1434. https://doi.org/10.1210/me.2014-1115.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Valli-Jaakola, K., Palvimo, J. J., Lipsanen-Nyman, M., Salomaa, V., Peltonen, L., Kontula, K., & Schalin-Jantti, C. (2006). A two-base deletion -439delGC in the melanocortin-4 receptor promoter associated with early-onset obesity. Hormone Research, 61–69. https://doi.org/10.1159/000093469.CrossRefGoogle Scholar
  62. van den Berg, L., van Beekum, O., Heutink, P., Felius, B. A., van de Heijning, M. P., Strijbis, S., van Spaendonk, R., Piancatelli, D., Garner, K. M., El Aouad, R., Sistermans, E., Adan, R. A., & Delemarre-van de Waal, H. A. (2011). Melanocortin-4 receptor gene mutations in a Dutch cohort of obese children. Obesity (Silver Spring), 604–611. https://doi.org/10.1038/oby.2010.259.
  63. Vella, K. R., Burnside, A. S., Brennan, K. M., & Good, D. J. (2007). Expression of the hypothalamic transcription factor Nhlh2 is dependent on energy availability. Journal of Neuroendocrinology, 499–510. https://doi.org/10.1111/j.1365-2826.2007.01556.x.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Voisin, S., Almen, M. S., Zheleznyakova, G. Y., Lundberg, L., Zarei, S., Castillo, S., Eriksson, F. E., Nilsson, E. K., Bluher, M., Bottcher, Y., Kovacs, P., Klovins, J., Rask-Andersen, M., & Schioth, H. B. (2015). Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Medicine, 103. https://doi.org/10.1186/s13073-015-0225-4.
  65. Wankhade, U. D., & Good, D. J. (2011). Melanocortin 4 receptor is a transcriptional target of nescient helix-loop-helix-2. Molecular and Cellular Endocrinology, 39–47. https://doi.org/10.1016/j.mce.2011.05.022.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Whyte, D. B., Lawson, M. A., Belsham, D. D., Eraly, S. A., Bond, C. T., Adelman, J. P., & Mellon, P. L. (1995). A neuron-specific enhancer targets expression of the gonadotropin-releasing hormone gene to hypothalamic neurosecretory neurons. Molecular Endocrinology, 467–477. https://doi.org/10.1210/mend.9.4.7659090.PubMedGoogle Scholar
  67. Yang, G., Lim, C. Y., Li, C., Xiao, X., Radda, G. K., Li, C., Cao, X., & Han, W. (2009). FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. The Journal of Biological Chemistry, 3719–3727. https://doi.org/10.1074/jbc.M804965200.CrossRefPubMedGoogle Scholar
  68. Young, J. I., Otero, V., Cerdan, M. G., Falzone, T. L., Chan, E. C., Low, M. J., & Rubinstein, M. (1998). Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice. The Journal of Neuroscience, 18, 6631–6640.CrossRefPubMedGoogle Scholar
  69. Zheng, J., Xiao, X., Zhang, Q., Yu, M., Xu, J., Wang, Z., Qi, C., & Wang, T. (2015). Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring. Metabolic Brain Disease, 1129–1137. https://doi.org/10.1007/s11011-015-9678-9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgUSA

Personalised recommendations