Skip to main content

Abstract

Major contributors in the control of food intake include behavioral response to the environment, hedonic behavior, and metabolism: nutrient sensors, neuropeptide hormones, and peripheral hormones. All combined contribute to three primary stimuli to eat: hunger, reward, and stress. The brain plays a critical role in relaying information about the neuroendocrine and endocrine system regulating the energy network. The mechanisms for controlling food intake require interaction among three major components: the gut, brain, and adipose tissue. The parasympathetic, sympathetic, and other systems are also needed for communication between the brain satiety center, gut, and adipose tissue. These neuronal circuits include many neuropeptide hormones and peptide hormones coming from the periphery, all acting in concert in the regulation of food intake and energy homeostasis. This chapter describes mostly brain peptide hormones and some coming from the periphery. The interested reader could find a full description of all peptide hormones involved in energy balance regulation in a recent review by Crespo et al. (2014). Although regulation of energy homeostasis engages several brain regions including the brainstem, cortex, amygdala, and the limbic system, it is the hypothalamus that is responsible for integrating neuronal and humoral signals in the control feeding behavior. In response to sensory and social stimulation including visual, smell, taste, stress, reward, culture, and exercise, a feeding center in the hypothalamus initiates food uptake that is then terminated by a satiety center. Both the gastrointestinal tract and the white fat cells are responsible for releasing hormone signals that are integrated with the hypothalamus and nucleus of the solitary tract (NTS) to control feeding neural circuits. In spite of the sophistication of these interconnected systems, which are tightly regulated to control energy demand with energy expenditure, the recent sizeable increase in the prevalence of obesity seen in modern urban societies represents a deviation of this evolutionary control of weight homeostasis. Among the major contributors to this disarrangement of the feeding control system are highly palatable and relatively cheap foods ubiquitously available and unfamiliar to our genetic repertoire. The massive reduction in physical activity also contributed to this condition. These current life factors combined with the evolutionary genetic predisposition are the leading causes of the common obesity. This chapter describes the role of neuropeptide and some essential peripheral hormones interacting in the hypothalamus toward controlling feeding behavior. The role of hypothalamic nutrient sensors, important in metabolic sensing, is discussed in Chap. 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera, G., Subburaju, S., Young, S., & Chen, J. (2008). The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Progress in Brain Research, 29–39. https://doi.org/10.1016/S0079-6123(08)00403-2.

  • Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382, 250–252.

    Article  CAS  PubMed  Google Scholar 

  • Air, E. L., Benoit, S. C., Blake Smith, K. A., Clegg, D. J., & Woods, S. C. (2002). Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacology, Biochemistry, and Behavior, 72, 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Ao, Y., Go, V. L., Toy, N., Li, T., Wang, Y., Song, M. K., Reeve, J. R., Jr., Liu, Y., & Yang, H. (2006). Brainstem thyrotropin-releasing hormone regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion. Endocrinology, 6004–6010. https://doi.org/10.1210/en.2006-0820.

    Article  PubMed  CAS  Google Scholar 

  • Bagdade, J. D., Bierman, E. L., & Porte, D., Jr. (1967). The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. The Journal of Clinical Ivestigation, 1549–1557. https://doi.org/10.1172/JCI105646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balthasar, N., Coppari, R., McMinn, J., Liu, S. M., Lee, C. E., Tang, V., Kenny, C. D., McGovern, R. A., Chua, S. C., Jr., Elmquist, J. K., & Lowell, B. B. (2004). Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 42, 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Barsh, G. S., & Schwartz, M. W. (2002). Genetic approaches to studying energy balance: Perception and integration. Nature Reviews Genetics, 3(8), 589–600.

    Article  PubMed  CAS  Google Scholar 

  • Bates, S. H., Stearns, W. H., Dundon, T. A., Schubert, M., Tso, A. W., Wang, Y., Banks, A. S., Lavery, H. J., Haq, A. K., Maratos-Flier, E., Neel, B. G., Schwartz, M. W., & Myers, M. G., Jr. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 421, 856–859.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, H., Morella, K. K., White, D. W., Dembski, M., Bailon, P. S., Kim, H., Lai, C.-F., & Tartaglia, L. A. (1996). The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proceedings of the National Academy of Sciences, 93, 8374–8378.

    Article  CAS  Google Scholar 

  • Baura, G. D., Foster, D. M., Porte, D., Jr., Kahn, S. E., Bergman, R. N., Cobelli, C., & Schwartz, M. W. (1993). Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. The Journal of Clinical Ivestigation, 92, 1824–1830. https://doi.org/10.1172/JCI116773.

    Article  CAS  Google Scholar 

  • Beck, B., Jhanwar-Uniyal, M., Burlet, A., Chapleur-Chateau, M., Leibowitz, S. F., & Burlet, C. (1990). Rapid and localized alterations of neuropeptide Y in discrete hypothalamic nuclei with feeding status. Brain Research, 528, 245–249.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, S. C., Air, E. L., Coolen, L. M., Strauss, R., Jackman, A., Clegg, D. J., Seeley, R. J., & Woods, S. C. (2002). The catabolic action of insulin in the brain is mediated by melanocortins. Journal of Neuroscience, 22, 9048–9052.

    Article  PubMed  CAS  Google Scholar 

  • Berthoud, H. R. (2011). Metabolic and hedonic drives in the neural control of appetite: Who is the boss? Current Opinion in Neurobiology, 888–896. https://doi.org/10.1016/j.conb.2011.09.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bi, S., Ladenheim, E. E., Schwartz, G. J., & Moran, T. H. (2001). A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281, R254–R260.

    Article  PubMed  CAS  Google Scholar 

  • Biebermann, H., Castaneda, T. R., van Landeghem, F., von Deimling, A., Escher, F., Brabant, G., Hebebrand, J., Hinney, A., Tschop, M. H., Gruters, A., & Krude, H. (2006). A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metabolism, 141–146. https://doi.org/10.1016/j.cmet.2006.01.007.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, N. C., Anderson, K. K., Reuter, A. L., Stallings, N. R., & Parker, K. L. (2008). Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology, 2138–2148. https://doi.org/10.1210/en.2007-1200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bjørbæk, C., Uotani, S., da Silva, B., & Flier, J. S. (1997). Divergent signaling capacities of the long and short isoforms of the leptin receptor. Journal of Biological Chemistry, 272, 32686–32695.

    Article  PubMed  Google Scholar 

  • Broadwell, R. D., & Brightman, M. W. (1976). Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. The Journal of Comparative Neurology, 257–283. https://doi.org/10.1002/cne.901660302.

    Article  PubMed  CAS  Google Scholar 

  • Broberger, C., Johansen, J., Johansson, C., Schalling, M., & Hokfelt, T. (1998). The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proceedings of the National Academy of Sciences, 95, 15043–15048.

    Article  CAS  Google Scholar 

  • Bronstein, D. M., Schafer, M. K., Watson, S. J., & Akil, H. (1992). Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: Detection of POMC mRNA. Brain Research, 587, 269–275.

    Article  PubMed  CAS  Google Scholar 

  • Bumaschny, V. F., Yamashita, M., Casas-Cordero, R., Otero-Corchon, V., de Souza, F. S., Rubinstein, M., & Low, M. J. (2012). Obesity-programmed mice are rescued by early genetic intervention. The Journal of Clinical Investigation, 4203–4212. https://doi.org/10.1172/JCI62543.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., & Burn, P. (1995). Recombinant mouse OB protein: Evidence for peripheral signal linking adiposity and central neural networks. Science, 269, 546–549.

    Article  PubMed  CAS  Google Scholar 

  • Cao, J., Papadopoulou, N., Kempuraj, D., Boucher, W. S., Sugimoto, K., Cetrulo, C. L., & Theoharides, T. C. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. The Journal of Immunology, 174, 7665–7675.

    Article  PubMed  CAS  Google Scholar 

  • Cason, A. M., Smith, R. J., Tahsili-Fahadan, P., Moorman, D. E., Sartor, G. C., & Aston-Jones, G. (2010). Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiology & Behavior, 419–428. https://doi.org/10.1016/j.physbeh.2010.03.009.

    Article  CAS  Google Scholar 

  • Chao, P. T., Yang, L., Aja, S., Moran, T. H., & Bi, S. (2011). Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metabolism, 573–583. https://doi.org/10.1016/j.cmet.2011.02.019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, H., Chatlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breitbart, R. E., Duyk, G. M., Tepper, R. I., & Morgenstern, J. P. (1996). Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell, 84, 491–495.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, C. C., Clifton, D. K., & Steiner, R. A. (1997). Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology, 138, 4489–4492.

    Article  PubMed  CAS  Google Scholar 

  • Cheung, C. C., Kurrasch, D. M., Liang, J. K., & Ingraham, H. A. (2013). Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. The Journal of Comparative Neurology, 1268–1288. https://doi.org/10.1002/cne.23226.

    Article  PubMed  CAS  Google Scholar 

  • Chieffi, S., Carotenuto, M., Monda, V., Valenzano, A., Villano, I., Precenzano, F., Tafuri, D., Salerno, M., Filippi, N., Nuccio, F., Ruberto, M., De Luca, V., Cipolloni, L., Cibelli, G., Mollica, M. P., Iacono, D., Nigro, E., Monda, M., Messina, G., & Messina, A. (2017). Orexin system: The key for a healthy life. Frontiers in Physiology, 357. https://doi.org/10.3389/fphys.2017.00357.

  • Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England Journal of Medicine, 1351–1362. https://doi.org/10.1056/NEJM199505183322008.

    Article  PubMed  CAS  Google Scholar 

  • Ciriello, J., McMurray, J. C., Babic, T., & de Oliveira, C. V. (2003). Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Research, 991, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Clark, J. T., Kalra, P. S., Crowley, W. R., & Kalra, S. P. (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology, 427–429. https://doi.org/10.1210/endo-115-1-427.

    Article  PubMed  CAS  Google Scholar 

  • Clement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J. M., Basdevant, A., Bougneres, P., Lebouc, Y., Froguel, P., & Guy-Grand, B. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392, 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, D. L. (1982). Thermogenesis in diabetes-obesity syndromes in mutant mice. Diabetologia, 22, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Coll, A. P., Farooqi, I. S., Challis, B. G., Yeo, G. S., & O'Rahilly, S. (2004). Proopiomelanocortin and energy balance: Insights from human and murine genetics. The Journal of Clinical Endocrinology & Metabolism, 89, 2557–2562.

    Article  CAS  Google Scholar 

  • Commins, S. P., Watson, P. M., Padgett, M. A., Dudley, A., Argyropoulos, G., & Gettys, T. W. (1999). Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology, 140, 292–300.

    Article  PubMed  CAS  Google Scholar 

  • Commins, S. P., Watson, P. M., Levin, N., Beiler, R. J., & Gettys, T. W. (2000). Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different beta-adrenoceptor subtypes. Journal of Biological Chemistry, 33059–33067. https://doi.org/10.1074/jbc.M006328200. M006328200 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Corander, M. P., Rimmington, D., Challis, B. G., O'Rahilly, S., & Coll, A. P. (2011). Loss of agouti-related peptide does not significantly impact the phenotype of murine POMC deficiency. Endocrinology, 1819–1828. https://doi.org/10.1210/en.2010-1450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cowley, M. A., Smart, J. L., Rubinstein, M., Cerdan, M. G., Diano, S., Horvath, T. L., Cone, R. D., & Low, M. J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411, 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Cyr, N. E., Toorie, A. M., Steger, J. S., Sochat, M. M., Hyner, S., Perello, M., Stuart, R., & Nillni, E. A. (2013). Mechanisms by which the orexigen NPY regulates anorexigenic alpha-MSH and TRH. American Journal of Physiology-Endocrinology and Metabolism, 67, E640–E650. https://doi.org/10.1152/ajpendo.00448.2012.

    Article  CAS  Google Scholar 

  • da Silva, A. A., Kuo, J. J., & Hall, J. E. (2004). Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension, 43, 1312–1317.

    Article  PubMed  CAS  Google Scholar 

  • Davis, A. M., Seney, M. L., Stallings, N. R., Zhao, L., Parker, K. L., & Tobet, S. A. (2004). Loss of steroidogenic factor 1 alters cellular topography in the mouse ventromedial nucleus of the hypothalamus. Journal of Neurobiology, 424–436. https://doi.org/10.1002/neu.20030.

    Article  PubMed  CAS  Google Scholar 

  • de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L., Gautvik, V. T., Bartlett, F. S., 2nd, Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M., & Sutcliffe, J. G. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences, 95, 322–327.

    Article  Google Scholar 

  • DiLeone, R. J., Taylor, J. R., & Picciotto, M. R. (2012). The drive to eat: Comparisons and distinctions between mechanisms of food reward and drug addiction. Nature Neuroscience, 1330–1335. https://doi.org/10.1038/nn.3202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Druce, M. R., Small, C. J., & Bloom, S. R. (2004). Minireview: Gut peptides regulating satiety. Endocrinology, 2660–2665. https://doi.org/10.1210/en.2004-0089.

    Article  PubMed  CAS  Google Scholar 

  • Dube, M. G., Kalra, S. P., & Kalra, P. S. (1999). Food intake elicited by central administration of orexins/hypocretins: Identification of hypothalamic sites of action. Brain Research, 842, 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Egawa, M., Yoshimatsu, H., & Bray, G. A. (1991). Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 260, R328–R334.

    Article  CAS  Google Scholar 

  • Elias, C. F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R. S., Bjorbaek, C., Flier, J. S., Saper, C. B., & Elmquist, J. K. (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron, 23, 775–786.

    Article  PubMed  CAS  Google Scholar 

  • Ellacott, K. L., & Cone, R. D. (2006). The role of the central melanocortin system in the regulation of food intake and energy homeostasis: Lessons from mouse models. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1265–1274.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elmquist, J. K., Bjorbaek, C., Ahima, R. S., Flier, J. S., & Saper, C. B. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. Journal of Comparative Neurology, 395, 535–547.

    Article  PubMed  CAS  Google Scholar 

  • Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 221–232. https://doi.org/S0896-6273(00)81084-3 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J. C., Clegg, K. E., & Palmiter, R. D. (1996a). Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature, 415–421. https://doi.org/10.1038/381415a0.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J. C., Hollopeter, G., & Palmiter, R. D. (1996b). Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science, 274, 1704–1707.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, M. B., Wunderlich, C. M., Hess, S., Paehler, M., Mesaros, A., Koralov, S. B., Kleinridders, A., Husch, A., Munzberg, H., Hampel, B., Alber, J., Kloppenburg, P., Bruning, J. C., & Wunderlich, F. T. (2009). Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. Journal of Neuroscience, 11582–11593. 29/37/11582 [pii]. https://doi.org/10.1523/JNEUROSCI.5712-08.2009.

    Article  PubMed  CAS  Google Scholar 

  • Everitt, B. J., Hokfelt, T., Terenius, L., Tatemoto, T., Mutt, V., & Goldstein, M. (1984). Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience, 11, 443.

    Article  PubMed  CAS  Google Scholar 

  • Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., & Cone, R. D. (1997). Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 385, 165–168.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, C., Legradi, G., Mihaly, E., Huang, Q. H., Tatro, J. B., Rand, W. M., Emerson, C. H., & Lechan, R. M. (2000a). alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. Journal of Neuroscience, 20, 1550–1558.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, C., Mihaly, E., Luo, L. G., Kelly, J., Clausen, J. T., Mao, Q., Rand, W. M., Moss, L. G., Kuhar, M., Emerson, C. H., Jackson, I. M., & Lechan, R. M. (2000b). Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. Journal of Neuroscience, 20, 9224–9234.

    Article  PubMed  CAS  Google Scholar 

  • Fekete, C., Kelly, J., Mihaly, E., Sarkar, S., Rand, W. M., Legradi, G., Emerson, C. H., & Lechan, R. M. (2001). Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology, 142, 2606–2613.

    Article  CAS  PubMed  Google Scholar 

  • Fekete, C., Sarkar, S., Rand, W. M., Harney, J. W., Emerson, C. H., Bianco, A. C., Beck-Sickinger, A., & Lechan, R. M. (2002). Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic-pituitary-thyroid axis. Endocrinology, 143, 4513–4519.

    Article  PubMed  CAS  Google Scholar 

  • Flier, J. S. (1998). Clinical review 94: What’s in a name? In search of leptin’s physiologic role. The Journal of Clinical Endocrinology and Metabolism, 83, 1407–1413.

    PubMed  CAS  Google Scholar 

  • Flier, J. S., & Maratos-Flier, E. (1998). Obesity and the hypothalamus: Novel peptides for new pathways. Cell, 92, 437–440.

    Article  PubMed  CAS  Google Scholar 

  • Fliers, E., Noppen, N. W., Wiersinga, W. M., Visser, T. J., & Swaab, D. F. (1994). Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibers in the human hypothalamus. Journal of Comparative Neurology, 350, 311–323.

    Article  PubMed  CAS  Google Scholar 

  • Gehlert, D. R., Chronwall, B. M., Schafer, M. P., & O'Donohue, T. L. (1987). Localization of neuropeptide Y messenger ribonucleic acid in rat and mouse brain by in situ hybridization. Synapse, 25–31. https://doi.org/10.1002/syn.890010106.

    Article  PubMed  CAS  Google Scholar 

  • Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M. H., & Skoda, R. C. (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proceedings of the National Academy of Sciences, 93, 6231–6235.

    Article  CAS  Google Scholar 

  • Gil, K., Bugajski, A., & Thor, P. (2011). Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. Journal of Physiology and Pharmacology, 62, 637–646.

    PubMed  CAS  Google Scholar 

  • Graham, M., Shutter, J. R., Sarmiento, U., Sarosi, I., & Stark, K. L. (1997). Overexpression of Agrp leads to obesity in transgenic mice. Nature Genetics, 273–274. https://doi.org/10.1038/ng1197-273.

    Article  PubMed  CAS  Google Scholar 

  • Greenman, Y., Kuperman, Y., Drori, Y., Asa, S. L., Navon, I., Forkosh, O., Gil, S., Stern, N., & Chen, A. (2013). Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Molecular Endocrinology, 1091–1102. https://doi.org/10.1210/me.2012-1344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gropp, E., Shanabrough, M., E Borok, A. W. X., Janoschek, R., Buch, T., Plum, L., Balthasar, N., Hampel, B., Waisman, A., Barsh, G. S., Horvath, T. L., & Bruning, J. C. (2005). Agouti-related peptide-expressing neurons are mandatory for feeding. Nature Neuroscience, 1289–1291. https://doi.org/10.1038/nn1548.

    Article  PubMed  CAS  Google Scholar 

  • Guan, X. M., Yu, H., Trumbauer, M., Frazier, E., Van der Ploeg, L. H., & Chen, H. (1998). Induction of neuropeptide Y expression in dorsomedial hypothalamus of diet-induced obese mice. Neuroreport, 9, 3415–3419.

    Article  PubMed  CAS  Google Scholar 

  • Guldenaar, S. E., Veldkamp, B., Bakker, O., Wiersinga, W. M., Swaab, D. F., & Fliers, E. (1996). Thyrotropin-releasing hormone gene expression in the human hypothalamus. Brain Research, 743, 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Guo, L., Munzberg, H., Stuart, R. C., Nillni, E. A., & Bjorbaek, C. (2004). N-acetylation of hypothalamic alpha-melanocyte-stimulating hormone and regulation by leptin. Proceedings of the National Academy of Sciences of the United States of America, 101, 11797–11802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halaas, J. L., Gajiwala, K. S., Maffei, M., Cohen, S. L., Chait, B. T., Rabinowitz, D., Lallone, R. L., Burley, S. K., & Friedman, J. M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269, 543–546.

    Article  PubMed  CAS  Google Scholar 

  • Haskell-Luevano, C., & Monck, E. K. (2001). Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regulatory Peptides, 99, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Havrankova, J., Roth, J., & Brownstein, M. (1978a). Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272, 827–829.

    Article  PubMed  CAS  Google Scholar 

  • Havrankova, J., Schmechel, D., Roth, J., & Brownstein, M. (1978b). Identification of insulin in rat brain. Proceedings of the National Academy of Sciences, 75, 5737–5741.

    Article  CAS  Google Scholar 

  • Haynes, W. G., Morgan, D. A., Djalali, A., Sivitz, W. I., & Mark, A. L. (1999). Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension, 33, 542–547.

    Article  PubMed  CAS  Google Scholar 

  • Hentges, S. T., Nishiyama, M., Overstreet, L. S., Stenzel-Poore, M., Williams, J. T., & Low, M. J. (2004). GABA release from proopiomelanocortin neurons. Journal of Neuroscience, 1578–1583. https://doi.org/10.1523/JNEUROSCI.3952-03.2004.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J., Ludwig, T. E., Salli, U., Stormshak, F., & Mirando, M. A. (2001). Autocrine/paracrine action of oxytocin in pig endometrium. Biology of Reproduction, 64, 1682–1688.

    Article  PubMed  CAS  Google Scholar 

  • Huo, L., Munzberg, H., Nillni, E. A., & Bjorbaek, C. (2004). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic trh gene expression by leptin. Endocrinology, 145, 2516–2523.

    Article  PubMed  CAS  Google Scholar 

  • Ihle, J. N. (1995). Cytokine receptor signalling. Nature, 377, 591–594.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, K., Taniguchi, Y., Inoue, K., Kurosumi, K., & Suzuki, M. (1988). Immunocytochemical delineation of thyrotropic area: Origin of thyrotropin-releasing hormone in the median eminence. Neuroendocrinology, 47, 384.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, S. A., & Michael, G. J. (1988). Efferent ACTH-IR opiocortin projections from nucleus tractus solitarius: A hypothalamic deafferentation study. Peptides, 9, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Kalra, S. P. (1997). Appetite and body weight regulation: is it all in the brain. Neuron, 19, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Kalra, S. P., Dube, M. G., Sahu, A., Phelps, C. P., & Kalra, P. S. (1991). Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proceedings of the National Academy of Sciences, 88, 10931–10935.

    Article  CAS  Google Scholar 

  • Kielar, D., Clark, J. S., Ciechanowicz, A., Kurzawski, G., Sulikowski, T., & Naruszewicz, M. (1998). Leptin receptor isoforms expressed in human adipose tissue. Metabolism, 47, 844–847.

    Article  PubMed  CAS  Google Scholar 

  • Kim, M. S., Small, C. J., Stanley, S. A., Morgan, D. G., Seal, L. J., Kong, W. M., Edwards, C. M., Abusnana, S., Sunter, D., Ghatei, M. A., & Bloom, S. R. (2000a). The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. The Journal of Clinical Investigation, 105, 1005–1011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, M. S., Rossi, M., Abusnana, S., Sunter, D., Morgan, D. G., Small, C. J., Edwards, C. M., Heath, M. M., Stanley, S. A., Seal, L. J., Bhatti, J. R., Smith, D. M., Ghatei, M. A., & Bloom, S. R. (2000b). Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes, 49, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. W., Zhao, L., Donato, J., Jr., Kohno, D., Xu, Y., Elias, C. F., Lee, C., Parker, K. L., & Elmquist, J. K. (2011). Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proceedings of the National Academy of Sciences of the United States of America, 10673–10678. https://doi.org/10.1073/pnas.1102364108.

    Article  Google Scholar 

  • Kim, J. D., Leyva, S., & Diano, S. (2014). Hormonal regulation of the hypothalamic melanocortin system. Frontiers in Physiology, 480. https://doi.org/10.3389/fphys.2014.00480.

  • Kishi, T., Aschkenasi, C. J., Lee, C. E., Mountjoy, K. G., Saper, C. B., & Elmquist, J. K. (2003). Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. Journal of Comparative Neurology, 457, 213–235.

    Article  PubMed  CAS  Google Scholar 

  • Kitamura, T., Feng, Y., Kitamura, Y. I., Chua, S. C., Jr., Xu, A. W., Barsh, G. S., Rossetti, L., & Accili, D. (2006). Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 12, 534–540.

    Article  PubMed  CAS  Google Scholar 

  • Kong, X., Yu, J., Bi, J., Qi, H., W Di, L. W., Wang, L., Zha, J., Lv, S., Zhang, F., Y Li, F. H., Liu, F., Zhou, H., Liu, J., & Ding, G. (2014). Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes. https://doi.org/10.2337/db14-0395.

  • Konner, A. C., Janoschek, R., Plum, L., Jordan, S. D., Rother, E., X Ma, C. X., Enriori, P., Hampel, B., Barsh, G. S., Kahn, C. R., Cowley, M. A., Ashcroft, F. M., & Bruning, J. C. (2007). Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metabolism, 438–449. https://doi.org/10.1016/j.cmet.2007.05.004.

    Article  PubMed  CAS  Google Scholar 

  • Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 204–214. https://doi.org/10.1016/j.ejphar.2007.11.066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs, K. J. (2013). CRH: The link between hormonal-, metabolic- and behavioral responses to stress. Journal of Chemical Neuroanatomy, 25–33. https://doi.org/10.1016/j.jchemneu.2013.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Krude, H., & Gruters, A. (2000). Implications of proopiomelanocortin (POMC) mutations in humans: The POMC deficiency syndrome. Trends in Endocrinology and Metabolism: TEM, 11, 15–22.

    Article  PubMed  CAS  Google Scholar 

  • Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G., & Gruters, A. (1998). Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genetics, 155–157. https://doi.org/10.1038/509.

    Article  PubMed  CAS  Google Scholar 

  • Laryea, G., Schutz, G., & Muglia, L. J. (2013). Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Molecular Endocrinology, 1655–1665. https://doi.org/10.1210/me.2013-1187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, M., & Wardlaw, S. L. (2007). The central melanocortin system and the regulation of energy balance. Frontiers in Bioscience, 12, 3994–4010.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G. H., Proenca, R., Montez, J. M., Carroll, K. M., Darvishzadeh, J. G., Lee, J. I., & Friedman, J. M. (1996). Abnormal splicing of the leptin receptor in diabetic mice. Nature, 379, 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. S., Challis, B. G., Thompson, D. A., Yeo, G. S., Keogh, J. M., Madonna, M. E., Wraight, V., Sims, M., Vatin, V., Meyre, D., Shield, J., Burren, C., Ibrahim, Z., Cheetham, T., Swift, P., Blackwood, A., Hung, C. C., Wareham, N. J., Froguel, P., Millhauser, G. L., O'Rahilly, S., & Farooqi, I. S. (2006). A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metabolism, 135–140. https://doi.org/10.1016/j.cmet.2006.01.006.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M., Kim, A., Chua, S. C., Jr., Obici, S., & Wardlaw, S. L. (2007). Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, E121–E131. https://doi.org/10.1152/ajpendo.00555.2006.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, M., Varela, L., Vazquez, M. J., Rodriguez-Cuenca, S., Gonzalez, C. R., Velagapudi, V. R., Morgan, D. A., Schoenmakers, E., Agassandian, K., Lage, R., Martinez de Morentin, P. B., Tovar, S., Nogueiras, R., Carling, D., Lelliott, C., Gallego, R., Oresic, M., Chatterjee, K., Saha, A. K., Rahmouni, K., Dieguez, C., & Vidal-Puig, A. (2010). Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 1001–1008. https://doi.org/10.1038/nm.2207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovejoy, D. A., Chang, B. S., Lovejoy, N. R., & del Castillo, J. (2014). Molecular evolution of GPCRs: CRH/CRH receptors. Journal of Molecular Endocrinology, T43–T60. https://doi.org/10.1530/JME-13-0238.

    Article  PubMed  CAS  Google Scholar 

  • Luiten, P. G. M., Horst, G. Z., Karst, H., & Steffans, A. B. (1985). The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Research, 329, 374–378.

    Article  PubMed  CAS  Google Scholar 

  • Marks, J. L., Porte, D., Jr., Stahl, W. L., & Baskin, D. G. (1990). Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology, 3234–3236. https://doi.org/10.1210/endo-127-6-3234.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, D. J., Weingarth, D. T., Novi, D. E., Chen, H. Y., Trumbauer, M. E., Chen, A. S., Guan, X. M., Jiang, M. M., Feng, Y., Camacho, R. E., Shen, Z., EG Frazier, H. Y., Metzger, J. M., Kuca, S. J., Shearman, L. P., Gopal-Truter, S., MacNeil, D. J., Strack, A. M., MacIntyre, D. E., Van der Ploeg, L. H., & Qian, S. (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proceedings of the National Academy of Sciences of the United States of America, (5), 3240. https://doi.org/10.1073/pnas.052706899.

    Article  CAS  Google Scholar 

  • Martinez de Morentin, P. B., Whittle, A. J., Ferno, J., Nogueiras, R., Dieguez, C., Vidal-Puig, A., & Lopez, M. (2012). Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes, 807–817. https://doi.org/10.2337/db11-1079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mastorakos, G., & Zapanti, E. (2004). The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: The role of corticotropin releasing hormone. Nutritional Neuroscience, 271–280. https://doi.org/10.1080/10284150400020516.

    Article  PubMed  CAS  Google Scholar 

  • Mathews, S. T., Singh, G. P., Ranalletta, M., Cintron, V. J., Qiang, X., Goustin, A. S., Jen, K. L., Charron, M. J., Jahnen-Dechent, W., & Grunberger, G. (2002). Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes, 51, 2450–2458.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, M. K., Andrews, K. M., Fenner, D., & Grossman, S. P. (1993). Chronic intrahypothalamic insulin infusion in the rat: Behavioral specificity. Physiology & Behavior, 54, 1031–1034.

    Article  CAS  Google Scholar 

  • Menyhert, J., Wittmann, G., Lechan, R. M., Keller, E., Liposits, Z., & Fekete, C. (2007). Cocaine- and amphetamine-regulated transcript (CART) is colocalized with the orexigenic neuropeptide Y and agouti-related protein and absent from the anorexigenic alpha-melanocyte-stimulating hormone neurons in the infundibular nucleus of the human hypothalamus. Endocrinology, 148, 4276–4281.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, J. G., Moar, K. M., & Hoggard, N. (1998). Localization of leptin receptor (Ob-R) messenger ribonucleic acid in the rodent hindbrain. Endocrinology, 139, 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Mercer, A. J., Hentges, S. T., Meshul, C. K., & Low, M. J. (2013). Unraveling the central proopiomelanocortin neural circuits. Frontiers in Neuroscience, 19. https://doi.org/10.3389/fnins.2013.00019.

  • Mihaly, E., Fekete, C., Tatro, J. B., Liposits, Z., Stopa, E. G., & Lechan, R. M. (2000). Hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the human hypothalamus are innervated by neuropeptide Y, agouti-related protein, and alpha-melanocyte-stimulating hormone. The Journal of Clinical Endocrinology & Metabolism, 85, 2596–2603.

    CAS  Google Scholar 

  • Mizuno, T. M., & Mobbs, C. V. (1999). Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology, 140, 814–817.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T. M., Makimura, H., Silverstein, J., Roberts, J. L., Lopingco, T., & Mobbs, C. V. (1999). Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology, 140, 4551–4557.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, T. M., Kelley, K. A., Pasinetti, G. M., Roberts, J. L., & Mobbs, C. V. (2003). Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice. Diabetes, 52, 2675–2683.

    Article  PubMed  CAS  Google Scholar 

  • Montague, C. T., Farooqi, I. S., Whitehead, J. P., Soos, M. A., Rau, H., Wareham, N. J., Sewter, C. P., Digby, J. E., Mohammed, S. N., Hurst, J. A., Cheetham, C. H., Earley, A. R., Barnett, A. H., Prins, J. B., & O'Rahilly, S. (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387, 903–908.

    Article  PubMed  CAS  Google Scholar 

  • Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443, 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Munzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N., & Bjorbaek, C. (2003). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology, 144, 2121–2131.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, A. D., Mitchell, N. F., Lin, S., Macia, L., Yulyaningsih, E., Baldock, P. A., Enriquez, R. F., Zhang, L., Shi, Y. C., Zolotukhin, S., Herzog, H., & Sainsbury, A. (2012). Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS ONE, e40191. https://doi.org/10.1371/journal.pone.0040191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nillni, E. A. (2010). Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Frontiers in Neuroendocrinology, 134–156 .doi: S0091-3022(10)00002-6 [pii]. https://doi.org/10.1016/j.yfrne.2010.01.001.

  • Nillni, E. A., & Sevarino, K. A. (1999). The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocrine Reviews, 20, 599–648.

    PubMed  CAS  Google Scholar 

  • Nillni, E. A., Vaslet, C., Harris, M., Hollenberg, A., Bjorbak, C., & Flier, J. S. (2000). Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. Journal of Biological Chemistry, 275, 36124–36133.

    Article  PubMed  CAS  Google Scholar 

  • Obici, S. (2009). Molecular targets for obesity therapy in the brain. Endocrinology, 150(6), 2512–2517.

    Article  PubMed  CAS  Google Scholar 

  • Ollmann, M. M., Wilson, B. D., Yang, Y. K., Kerns, J. A., Chen, Y., Gantz, I., & Barsh, G. S. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science, 278, 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., & Eskay, R. L. (1987). Distribution and possible origin of beta-endorphin and ACTH in discrete brainstem nuclei of rats. Neuropeptides, 9, 123–137.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits, M., Mezey, E., & Eskay, R. L. (1987). Pro-opiomelanocortin-derived peptides (ACTH/beta-endorphin/alpha-MSH) in brainstem baroreceptor areas of the rat. Brain Research, 436, 323–338.

    Article  PubMed  CAS  Google Scholar 

  • Palmiter, R. D., Erickson, J. C., Hollopeter, G., Baraban, S. C., & Schwartz, M. W. (1998). Life without neuropeptide Y. Recent Progress in Hormone Research, 53, 163–199.

    PubMed  CAS  Google Scholar 

  • Parise, E. M., Lilly, N., Kay, K., Dossat, A. M., Seth, R., Overton, J. M., & Williams, D. L. (2011). Evidence for the role of hindbrain orexin-1 receptors in the control of meal size. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, R1692–R1699. https://doi.org/10.1152/ajpregu.00044.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T., & Collins, F. (1995). Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269, 540–543.

    Article  PubMed  CAS  Google Scholar 

  • Perello, M., Stuart, R. C., & Nillni, E. A. (2006). The role of intracerebroventricular administration of leptin in the stimulation of prothyrotropin releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology, 147, 3296–3306.

    Article  PubMed  CAS  Google Scholar 

  • Perello, M., Stuart, R. C., & Nillni, E. A. (2007). Differential Effects of Fasting and Leptin on Pro-Opiomelanocortin Peptides in the Arcuate Nucleus and in the Nucleus of the Solitary Tract. American Journal of Physiology Endocrinology and Metabolism. Am J Physiol Endocrinol Metab. 2007 May;292(5):E1348–57. Epub 2007 Jan 16.

    Article  PubMed  CAS  Google Scholar 

  • Peyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G., & Kilduff, T. S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 18, 9996–10015.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pilcher, W. H., & Joseph, S. A. (1986). Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG). Peptides, 7, 783–789.

    Article  PubMed  CAS  Google Scholar 

  • Poggioli, R., Vergoni, A. V., & Bertolini, A. (1986). ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists. Peptides, 7, 843–848.

    Article  PubMed  CAS  Google Scholar 

  • Qian, S., Chen, H., Weingarth, D., Trumbauer, M. E., Novi, D. E., X Guan, H. Y., Shen, Z., Feng, Y., Frazier, E., Chen, A., Camacho, R. E., Shearman, L. P., Gopal-Truter, S., MacNeil, D. J., Van der Ploeg, L. H., & Marsh, D. J. (2002). Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Molecular and Cellular Biology, 22, 5027–5035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raadsheer, F. C., Sluiter, A. A., Ravid, R., Tilders, F. J., & Swaab, D. F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Research, 615, 50–62.

    Article  PubMed  CAS  Google Scholar 

  • Resch, J. M., Boisvert, J. P., Hourigan, A. E., Mueller, C. R., Yi, S. S., & Choi, S. (2011). Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, R1625–R1634. https://doi.org/10.1152/ajpregu.00334.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rho, J. H., & Swanson, L. W. (1987). Neuroendocrine CRF motoneurons: Intrahypothalamic axon terminals shown with a new retrograde-Lucifer-immuno method. Brain Research, 436, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Richard, D., & Baraboi, D. (2004). Circuitries involved in the control of energy homeostasis and the hypothalamic-pituitary-adrenal axis activity. Treatments in Endocrinology, 3, 269–277.

    Article  PubMed  Google Scholar 

  • Richard, D., Huang, Q., & Timofeeva, E. (2000). The corticotropin-releasing hormone system in the regulation of energy balance in obesity. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 24, S36–S39.

    Article  CAS  Google Scholar 

  • Roeling, T. A., Veening, J. G., Peters, J. P., Vermelis, M. E., & Nieuwenhuys, R. (1993). Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience, 56, 199–225.

    Article  PubMed  CAS  Google Scholar 

  • Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch, J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J., & Yanagisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92, 573–585.

    Article  CAS  PubMed  Google Scholar 

  • Salem, V., & Bloom, S. R. (2010). Approaches to the pharmacological treatment of obesity. Expert Review of Clinical Pharmacology, 3(1), 73–88.

    Article  PubMed  Google Scholar 

  • Sarkar, S., Legradi, G., & Lechan, R. M. (2002). Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Research, 945, 50–59.

    Article  PubMed  CAS  Google Scholar 

  • Savontaus, E., Breen, T. L., Kim, A., Yang, L. M., Chua, S. C., Jr., & Wardlaw, S. L. (2004). Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology, 3881–3891. https://doi.org/10.1210/en.2004-0263.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., & Pfeiffer, S. W. (1988). Ultrastructural localization of neuropeptide Y and galanin immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Research, 474, 231.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko, P. E., & Swanson, L. W. (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. Journal of Comparative Neurology, 260–272. https://doi.org/10.1002/cne.902050306.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. W., Baskin, D. G., Bukowski, T. R., Kuijper, J. L., Foster, D., Lasser, G., Prunkard, D. E., Porte, D. J., Woods, S. C., Seeley, R. J., & Weigle, D. S. (1996a). Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes, 45, 531–535.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P., & Baskin, D. G. (1996b). Identification of targets of leptin action in rat hypothalamus. The Journal of Clinical Investigation, 98, 1101–1106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz, G. J., Whitney, A., Skoglund, C., Castonguay, T. W., & Moran, T. H. (1999). Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. The American Journal of Physiology, 277, R1144–R1151.

    PubMed  CAS  Google Scholar 

  • Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., & Baskin, D. G. (2000). Central nervous system control of food intake. Nature, 404, 661–671.

    Article  PubMed  CAS  Google Scholar 

  • Seeley, R. J., Yagaloff, K. A., Fisher, S. L., Burn, P., Thiele, T. E., van Dijk, G., Baskin, D. G., & Schwartz, M. W. (1997). Melanocortin receptors in leptin effects. Nature, 390, 349.

    Article  PubMed  CAS  Google Scholar 

  • Segal, J. P., Stallings, N. R., Lee, C. E., Zhao, L., Socci, N., Viale, A., Harris, T. M., Soares, M. B., Childs, G., Elmquist, J. K., Parker, K. L., & Friedman, J. M. (2005). Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. Journal of Neuroscience, 4181–4188. https://doi.org/10.1523/JNEUROSCI.0158-05.2005.

    Article  PubMed  CAS  Google Scholar 

  • Seimon, R. V., Hostland, N., Silveira, S. L., Gibson, A. A., & Sainsbury, A. (2013). Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: Implications for diet-induced changes in body composition. Hormone Molecular Biology and Clinical Investigation, 71–80. https://doi.org/10.1515/hmbci-2013-0038.

  • Skibicka, K. P., & Grill, H. J. (2009). Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology, 1705–1711. https://doi.org/10.1210/en.2008-1316.

    Article  PubMed  CAS  Google Scholar 

  • Small, C. J., Liu, Y. L., Stanley, S. A., Connoley, I. P., Kennedy, A., Stock, M. J., & Bloom, S. R. (2003). Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 530–533. https://doi.org/10.1038/sj.ijo.0802253.

    Article  PubMed  CAS  Google Scholar 

  • Sobrino Crespo, C., Perianes Cachero, A., Puebla Jimenez, L., Barrios, V., & Arilla Ferreiro, E. (2014). Peptides and food intake. Frontiers in Endocrinology, 58. https://doi.org/10.3389/fendo.2014.00058.

  • Sohn, J. W., Elmquist, J. K., & Williams, K. W. (2013). Neuronal circuits that regulate feeding behavior and metabolism. Trends in Neurosciences, 504–512. https://doi.org/10.1016/j.tins.2013.05.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Solomon, S. (1999). POMC-derived peptides and their biological action. Annals of the New York Academy of Sciences, 885, 22–40.

    Article  CAS  PubMed  Google Scholar 

  • Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, 434. https://doi.org/10.3389/fpsyg.2014.00434.

  • Spencer, S. J., & Tilbrook, A. (2011). The glucocorticoid contribution to obesity. Stress, 233–246. https://doi.org/10.3109/10253890.2010.534831.

    Article  CAS  PubMed  Google Scholar 

  • Stanley, B. G., Kyrkouli, S. E., Lampert, S., & Leibowitz, S. F. (1986). Neuropeptide Y chronically injected into the hypothalamus: A powerful neurochemical inducer of hyperphagia and obesity. Peptides, 7, 1189–1192.

    Article  PubMed  CAS  Google Scholar 

  • Ste Marie, L., Luquet, S., Curtis, W., & Palmiter, R. D. (2005). Norepinephrine- and epinephrine-deficient mice gain weight normally on a high-fat diet. Obesity Research, 1518–1522. https://doi.org/10.1038/oby.2005.185.

  • Stephens, T. W., Basinski, M., Bristow, P. K., Bue-Valleskey, J. M., Burgett, S. G., Craft, L., Hale, J., Hoffmann, J., Hsiung, H. M., Kriauciunas, A., et al. (1995). The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature, 377, 530–532.

    Article  PubMed  CAS  Google Scholar 

  • Stuber, G. D., & Wise, R. A. (2016). Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 198–205. https://doi.org/10.1038/nn.4220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W., Sawchenko, P. E., Wiegand, S. J., & Price, J. L. (1980). Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Research, 198, 190–195.

    Article  PubMed  CAS  Google Scholar 

  • Tataranni, P. A., Larson, D. E., Snitker, S., Young, J. B., Flatt, J. P., & Ravussin, E. (1996). Effects of glucocorticoids on energy metabolism and food intake in humans. The American Journal of Physiology, 271, E317–E325.

    PubMed  CAS  Google Scholar 

  • Thornton, J. E., Cheung, C. C., Clifton, D. K., & Steiner, R. A. (1997). Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology, 138, 5063–5066.

    Article  PubMed  CAS  Google Scholar 

  • Tolle, V., & Low, M. J. (2008). In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes, 86–94. https://doi.org/10.2337/db07-0733.

    Article  PubMed  CAS  Google Scholar 

  • Toorie, A. M., & Nillni, E. A. (2014). Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Molecular Endocrinology, 1423–1434. https://doi.org/10.1210/me.2014-1115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toorie, A. M., Cyr, N. E., Steger, J. S., Beckman, R., Farah, G., & Nillni, E. A. (2016). The nutrient and energy sensor Sirt1 regulates the hypothalamic-pituitary-adrenal (HPA) axis by altering the production of the prohormone convertase 2 (PC2) essential in the maturation of corticotropin releasing hormone (CRH) from its prohormone in male rats. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M115.675264.

  • Toriya, M., Maekawa, F., Maejima, Y., Onaka, T., Fujiwara, K., Nakagawa, T., Nakata, M., & Yada, T. (2010). Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 987–995. https://doi.org/10.1111/j.1365-2826.2010.02039.x.

    Article  PubMed  CAS  Google Scholar 

  • Travagli, R. A., Hermann, G. E., Browning, K. N., & Rogers, R. C. (2006). Brainstem circuits regulating gastric function. Annual Review of Physiology, 279–305. https://doi.org/10.1146/annurev.physiol.68.040504.094635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trayhurn, P., Thurlby, P. L., & James, W. P. (1977). Thermogenic defect in pre-obese ob/ob mice. Nature, 266, 60–62.

    Article  PubMed  CAS  Google Scholar 

  • Vaisse, C., Halaas, J. L., Horvath, C. M., Darnell, J. J. E., Stoffel, M., & Friedman, J. M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genetics, 14, 95–97.

    Article  PubMed  CAS  Google Scholar 

  • Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 18;213(4514):1394–1397.

    Article  PubMed  CAS  Google Scholar 

  • Veo, K., Reinick, C., Liang, L., Moser, E., Angleson, J. K., & Dores, R. M. (2011). Observations on the ligand selectivity of the melanocortin 2 receptor. General and Comparative Endocrinology, 3–9. https://doi.org/10.1016/j.ygcen.2011.04.006.

    Article  PubMed  CAS  Google Scholar 

  • Whittle, A. J., & Vidal-Puig, A. (2012). NPs – heart hormones that regulate brown fat? The Journal of Clinical Investigation, 804–807. https://doi.org/10.1172/JCI62595.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Willesen, M. G., Kristensen, P., & Romer, J. (1999). Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology, 70, 306–316.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. L., Kaplan, J. M., & Grill, H. J. (2000). The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology, 141, 1332–1337.

    Article  PubMed  CAS  Google Scholar 

  • Wirth, M. M., PK Olszewski, C. Y., Levine, A. S., & Giraudo, S. Q. (2001). Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides, 22, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Woods, S. C., Lotter, E. C., McKay, L. D., & Porte, D., Jr. (1979). Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature, 282, 503–505.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Q., & Palmiter, R. D. (2011). GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. European Journal of Pharmacology, 21–27. https://doi.org/10.1016/j.ejphar.2010.10.110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., Tecott, L. H., & Reichardt, L. F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 736–742. https://doi.org/10.1038/nn1073.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, A. W., Kaelin, C. B., Morton, G. J., Ogimoto, K., Stanhope, K., Graham, J., Baskin, D. G., Havel, P., Schwartz, M. W., & Barsh, G. S. (2005). Effects of hypothalamic neurodegeneration on energy balance. PLoS Biology, e415. https://doi.org/10.1371/journal.pbio.0030415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yaswen, L., Diehl, N., Brennan, M. B., & Hochgeschwender, U. (1999). Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Medicine, 1066–1070. https://doi.org/10.1038/12506.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., O'Rahilly, S., & Farooqi, I. S. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 1187–1189. https://doi.org/10.1038/nn1336.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, R., Dhillon, H., Yin, H., Yoshimura, A., Lowell, B. B., Maratos-Flier, E., & Flier, J. S. (2008). Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology, 5654–5661. https://doi.org/10.1210/en.2008-0805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, K., Ao, Y., Harper, R. M., Go, V. L., & Yang, H. (2013). Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: Hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience, 43, 54. https://doi.org/10.1016/j.neuroscience.2013.05.017.

  • Zheng, H., Patterson, L. M., Phifer, C. B., & Berthoud, H. R. (2005). Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289, R247–R258.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, H., Patterson, L. M., Rhodes, C. J., Louis, G. W., Skibicka, K. P., Grill, H. J., Myers, M. G., Jr., & Berthoud, H. R. (2010). A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, R720–R728. https://doi.org/10.1152/ajpregu.00619.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziegler, C. G., Krug, A. W., Zouboulis, C. C., & Bornstein, S. R. (2007). Corticotropin releasing hormone and its function in the skin. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 106–109. https://doi.org/10.1055/s-2007-961809.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo A. Nillni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nillni, E.A. (2018). Neuropeptides Controlling Our Behavior. In: Nillni, E. (eds) Textbook of Energy Balance, Neuropeptide Hormones, and Neuroendocrine Function. Springer, Cham. https://doi.org/10.1007/978-3-319-89506-2_2

Download citation

Publish with us

Policies and ethics