Advertisement

Neuropeptides Controlling Our Behavior

  • Eduardo A. Nillni
Chapter

Abstract

Major contributors in the control of food intake include behavioral response to the environment, hedonic behavior, and metabolism: nutrient sensors, neuropeptide hormones, and peripheral hormones. All combined contribute to three primary stimuli to eat: hunger, reward, and stress. The brain plays a critical role in relaying information about the neuroendocrine and endocrine system regulating the energy network. The mechanisms for controlling food intake require interaction among three major components: the gut, brain, and adipose tissue. The parasympathetic, sympathetic, and other systems are also needed for communication between the brain satiety center, gut, and adipose tissue. These neuronal circuits include many neuropeptide hormones and peptide hormones coming from the periphery, all acting in concert in the regulation of food intake and energy homeostasis. This chapter describes mostly brain peptide hormones and some coming from the periphery. The interested reader could find a full description of all peptide hormones involved in energy balance regulation in a recent review by Crespo et al. (2014). Although regulation of energy homeostasis engages several brain regions including the brainstem, cortex, amygdala, and the limbic system, it is the hypothalamus that is responsible for integrating neuronal and humoral signals in the control feeding behavior. In response to sensory and social stimulation including visual, smell, taste, stress, reward, culture, and exercise, a feeding center in the hypothalamus initiates food uptake that is then terminated by a satiety center. Both the gastrointestinal tract and the white fat cells are responsible for releasing hormone signals that are integrated with the hypothalamus and nucleus of the solitary tract (NTS) to control feeding neural circuits. In spite of the sophistication of these interconnected systems, which are tightly regulated to control energy demand with energy expenditure, the recent sizeable increase in the prevalence of obesity seen in modern urban societies represents a deviation of this evolutionary control of weight homeostasis. Among the major contributors to this disarrangement of the feeding control system are highly palatable and relatively cheap foods ubiquitously available and unfamiliar to our genetic repertoire. The massive reduction in physical activity also contributed to this condition. These current life factors combined with the evolutionary genetic predisposition are the leading causes of the common obesity. This chapter describes the role of neuropeptide and some essential peripheral hormones interacting in the hypothalamus toward controlling feeding behavior. The role of hypothalamic nutrient sensors, important in metabolic sensing, is discussed in Chap.  7.

Keywords

Hypothalamus peptides neuroendocrine TSH TRH CRH ACTH oxytocin prolactin growth hormone neurosecretory NPY α-MSH arcuate nucleus lateral hypothalamus dorsomedial hypothalamus brain stem ghrelin PYY CCK leptin adiponectin glucose amino acids ventromedial hypothalamus proTRH proNPY POMC CREB cAMP PKA PC1 PC2 Egr-1 paraventricular nucleus insulin proinsulin STAT3 Foxo1 CPE CPD thyroid hormone median eminence feeding energy expenditure 

References

  1. Aguilera, G., Subburaju, S., Young, S., & Chen, J. (2008). The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Progress in Brain Research, 29–39. https://doi.org/10.1016/S0079-6123(08)00403-2.
  2. Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382, 250–252.CrossRefPubMedGoogle Scholar
  3. Air, E. L., Benoit, S. C., Blake Smith, K. A., Clegg, D. J., & Woods, S. C. (2002). Acute third ventricular administration of insulin decreases food intake in two paradigms. Pharmacology, Biochemistry, and Behavior, 72, 423–429.PubMedCrossRefGoogle Scholar
  4. Ao, Y., Go, V. L., Toy, N., Li, T., Wang, Y., Song, M. K., Reeve, J. R., Jr., Liu, Y., & Yang, H. (2006). Brainstem thyrotropin-releasing hormone regulates food intake through vagal-dependent cholinergic stimulation of ghrelin secretion. Endocrinology, 6004–6010. https://doi.org/10.1210/en.2006-0820.PubMedCrossRefGoogle Scholar
  5. Bagdade, J. D., Bierman, E. L., & Porte, D., Jr. (1967). The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. The Journal of Clinical Ivestigation, 1549–1557. https://doi.org/10.1172/JCI105646.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Balthasar, N., Coppari, R., McMinn, J., Liu, S. M., Lee, C. E., Tang, V., Kenny, C. D., McGovern, R. A., Chua, S. C., Jr., Elmquist, J. K., & Lowell, B. B. (2004). Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron, 42, 983–991.PubMedCrossRefGoogle Scholar
  7. Barsh, G. S., & Schwartz, M. W. (2002). Genetic approaches to studying energy balance: Perception and integration. Nature Reviews Genetics, 3(8), 589–600.PubMedCrossRefGoogle Scholar
  8. Bates, S. H., Stearns, W. H., Dundon, T. A., Schubert, M., Tso, A. W., Wang, Y., Banks, A. S., Lavery, H. J., Haq, A. K., Maratos-Flier, E., Neel, B. G., Schwartz, M. W., & Myers, M. G., Jr. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 421, 856–859.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Baumann, H., Morella, K. K., White, D. W., Dembski, M., Bailon, P. S., Kim, H., Lai, C.-F., & Tartaglia, L. A. (1996). The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proceedings of the National Academy of Sciences, 93, 8374–8378.CrossRefGoogle Scholar
  10. Baura, G. D., Foster, D. M., Porte, D., Jr., Kahn, S. E., Bergman, R. N., Cobelli, C., & Schwartz, M. W. (1993). Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. The Journal of Clinical Ivestigation, 92, 1824–1830. https://doi.org/10.1172/JCI116773.CrossRefGoogle Scholar
  11. Beck, B., Jhanwar-Uniyal, M., Burlet, A., Chapleur-Chateau, M., Leibowitz, S. F., & Burlet, C. (1990). Rapid and localized alterations of neuropeptide Y in discrete hypothalamic nuclei with feeding status. Brain Research, 528, 245–249.PubMedCrossRefGoogle Scholar
  12. Benoit, S. C., Air, E. L., Coolen, L. M., Strauss, R., Jackman, A., Clegg, D. J., Seeley, R. J., & Woods, S. C. (2002). The catabolic action of insulin in the brain is mediated by melanocortins. Journal of Neuroscience, 22, 9048–9052.PubMedCrossRefGoogle Scholar
  13. Berthoud, H. R. (2011). Metabolic and hedonic drives in the neural control of appetite: Who is the boss? Current Opinion in Neurobiology, 888–896. https://doi.org/10.1016/j.conb.2011.09.004.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bi, S., Ladenheim, E. E., Schwartz, G. J., & Moran, T. H. (2001). A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 281, R254–R260.PubMedCrossRefGoogle Scholar
  15. Biebermann, H., Castaneda, T. R., van Landeghem, F., von Deimling, A., Escher, F., Brabant, G., Hebebrand, J., Hinney, A., Tschop, M. H., Gruters, A., & Krude, H. (2006). A role for beta-melanocyte-stimulating hormone in human body-weight regulation. Cell Metabolism, 141–146. https://doi.org/10.1016/j.cmet.2006.01.007.PubMedCrossRefGoogle Scholar
  16. Bingham, N. C., Anderson, K. K., Reuter, A. L., Stallings, N. R., & Parker, K. L. (2008). Selective loss of leptin receptors in the ventromedial hypothalamic nucleus results in increased adiposity and a metabolic syndrome. Endocrinology, 2138–2148. https://doi.org/10.1210/en.2007-1200.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bjørbæk, C., Uotani, S., da Silva, B., & Flier, J. S. (1997). Divergent signaling capacities of the long and short isoforms of the leptin receptor. Journal of Biological Chemistry, 272, 32686–32695.PubMedCrossRefGoogle Scholar
  18. Broadwell, R. D., & Brightman, M. W. (1976). Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. The Journal of Comparative Neurology, 257–283. https://doi.org/10.1002/cne.901660302.PubMedCrossRefGoogle Scholar
  19. Broberger, C., Johansen, J., Johansson, C., Schalling, M., & Hokfelt, T. (1998). The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proceedings of the National Academy of Sciences, 95, 15043–15048.CrossRefGoogle Scholar
  20. Bronstein, D. M., Schafer, M. K., Watson, S. J., & Akil, H. (1992). Evidence that beta-endorphin is synthesized in cells in the nucleus tractus solitarius: Detection of POMC mRNA. Brain Research, 587, 269–275.PubMedCrossRefGoogle Scholar
  21. Bumaschny, V. F., Yamashita, M., Casas-Cordero, R., Otero-Corchon, V., de Souza, F. S., Rubinstein, M., & Low, M. J. (2012). Obesity-programmed mice are rescued by early genetic intervention. The Journal of Clinical Investigation, 4203–4212. https://doi.org/10.1172/JCI62543.PubMedCrossRefGoogle Scholar
  22. Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., & Burn, P. (1995). Recombinant mouse OB protein: Evidence for peripheral signal linking adiposity and central neural networks. Science, 269, 546–549.PubMedCrossRefGoogle Scholar
  23. Cao, J., Papadopoulou, N., Kempuraj, D., Boucher, W. S., Sugimoto, K., Cetrulo, C. L., & Theoharides, T. C. (2005). Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. The Journal of Immunology, 174, 7665–7675.PubMedCrossRefGoogle Scholar
  24. Cason, A. M., Smith, R. J., Tahsili-Fahadan, P., Moorman, D. E., Sartor, G. C., & Aston-Jones, G. (2010). Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiology & Behavior, 419–428. https://doi.org/10.1016/j.physbeh.2010.03.009.CrossRefGoogle Scholar
  25. Chao, P. T., Yang, L., Aja, S., Moran, T. H., & Bi, S. (2011). Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metabolism, 573–583. https://doi.org/10.1016/j.cmet.2011.02.019.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen, H., Chatlat, O., Tartaglia, L. A., Woolf, E. A., Weng, X., Ellis, S. J., Lakey, N. D., Culpepper, J., Moore, K. J., Breitbart, R. E., Duyk, G. M., Tepper, R. I., & Morgenstern, J. P. (1996). Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell, 84, 491–495.PubMedCrossRefGoogle Scholar
  27. Cheung, C. C., Clifton, D. K., & Steiner, R. A. (1997). Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology, 138, 4489–4492.PubMedCrossRefGoogle Scholar
  28. Cheung, C. C., Kurrasch, D. M., Liang, J. K., & Ingraham, H. A. (2013). Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. The Journal of Comparative Neurology, 1268–1288. https://doi.org/10.1002/cne.23226.PubMedCrossRefGoogle Scholar
  29. Chieffi, S., Carotenuto, M., Monda, V., Valenzano, A., Villano, I., Precenzano, F., Tafuri, D., Salerno, M., Filippi, N., Nuccio, F., Ruberto, M., De Luca, V., Cipolloni, L., Cibelli, G., Mollica, M. P., Iacono, D., Nigro, E., Monda, M., Messina, G., & Messina, A. (2017). Orexin system: The key for a healthy life. Frontiers in Physiology, 357. https://doi.org/10.3389/fphys.2017.00357.
  30. Chrousos, G. P. (1995). The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. The New England Journal of Medicine, 1351–1362. https://doi.org/10.1056/NEJM199505183322008.PubMedCrossRefGoogle Scholar
  31. Ciriello, J., McMurray, J. C., Babic, T., & de Oliveira, C. V. (2003). Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Research, 991, 133–141.PubMedCrossRefGoogle Scholar
  32. Clark, J. T., Kalra, P. S., Crowley, W. R., & Kalra, S. P. (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology, 427–429. https://doi.org/10.1210/endo-115-1-427.PubMedCrossRefGoogle Scholar
  33. Clement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J. M., Basdevant, A., Bougneres, P., Lebouc, Y., Froguel, P., & Guy-Grand, B. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392, 398–401.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Coleman, D. L. (1982). Thermogenesis in diabetes-obesity syndromes in mutant mice. Diabetologia, 22, 205–211.PubMedCrossRefGoogle Scholar
  35. Coll, A. P., Farooqi, I. S., Challis, B. G., Yeo, G. S., & O'Rahilly, S. (2004). Proopiomelanocortin and energy balance: Insights from human and murine genetics. The Journal of Clinical Endocrinology & Metabolism, 89, 2557–2562.CrossRefGoogle Scholar
  36. Commins, S. P., Watson, P. M., Padgett, M. A., Dudley, A., Argyropoulos, G., & Gettys, T. W. (1999). Induction of uncoupling protein expression in brown and white adipose tissue by leptin. Endocrinology, 140, 292–300.PubMedCrossRefGoogle Scholar
  37. Commins, S. P., Watson, P. M., Levin, N., Beiler, R. J., & Gettys, T. W. (2000). Central leptin regulates the UCP1 and ob genes in brown and white adipose tissue via different beta-adrenoceptor subtypes. Journal of Biological Chemistry, 33059–33067. https://doi.org/10.1074/jbc.M006328200. M006328200 [pii].PubMedCrossRefGoogle Scholar
  38. Corander, M. P., Rimmington, D., Challis, B. G., O'Rahilly, S., & Coll, A. P. (2011). Loss of agouti-related peptide does not significantly impact the phenotype of murine POMC deficiency. Endocrinology, 1819–1828. https://doi.org/10.1210/en.2010-1450.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Cowley, M. A., Smart, J. L., Rubinstein, M., Cerdan, M. G., Diano, S., Horvath, T. L., Cone, R. D., & Low, M. J. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411, 480–484.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cyr, N. E., Toorie, A. M., Steger, J. S., Sochat, M. M., Hyner, S., Perello, M., Stuart, R., & Nillni, E. A. (2013). Mechanisms by which the orexigen NPY regulates anorexigenic alpha-MSH and TRH. American Journal of Physiology-Endocrinology and Metabolism, 67, E640–E650. https://doi.org/10.1152/ajpendo.00448.2012.CrossRefGoogle Scholar
  41. da Silva, A. A., Kuo, J. J., & Hall, J. E. (2004). Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension, 43, 1312–1317.PubMedCrossRefGoogle Scholar
  42. Davis, A. M., Seney, M. L., Stallings, N. R., Zhao, L., Parker, K. L., & Tobet, S. A. (2004). Loss of steroidogenic factor 1 alters cellular topography in the mouse ventromedial nucleus of the hypothalamus. Journal of Neurobiology, 424–436. https://doi.org/10.1002/neu.20030.PubMedCrossRefGoogle Scholar
  43. de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L., Gautvik, V. T., Bartlett, F. S., 2nd, Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M., & Sutcliffe, J. G. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proceedings of the National Academy of Sciences, 95, 322–327.CrossRefGoogle Scholar
  44. DiLeone, R. J., Taylor, J. R., & Picciotto, M. R. (2012). The drive to eat: Comparisons and distinctions between mechanisms of food reward and drug addiction. Nature Neuroscience, 1330–1335. https://doi.org/10.1038/nn.3202.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Druce, M. R., Small, C. J., & Bloom, S. R. (2004). Minireview: Gut peptides regulating satiety. Endocrinology, 2660–2665. https://doi.org/10.1210/en.2004-0089.PubMedCrossRefGoogle Scholar
  46. Dube, M. G., Kalra, S. P., & Kalra, P. S. (1999). Food intake elicited by central administration of orexins/hypocretins: Identification of hypothalamic sites of action. Brain Research, 842, 473–477.PubMedCrossRefGoogle Scholar
  47. Egawa, M., Yoshimatsu, H., & Bray, G. A. (1991). Neuropeptide Y suppresses sympathetic activity to interscapular brown adipose tissue in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 260, R328–R334.CrossRefGoogle Scholar
  48. Elias, C. F., Aschkenasi, C., Lee, C., Kelly, J., Ahima, R. S., Bjorbaek, C., Flier, J. S., Saper, C. B., & Elmquist, J. K. (1999). Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron, 23, 775–786.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ellacott, K. L., & Cone, R. D. (2006). The role of the central melanocortin system in the regulation of food intake and energy homeostasis: Lessons from mouse models. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 1265–1274.PubMedCrossRefGoogle Scholar
  50. Elmquist, J. K., Bjorbaek, C., Ahima, R. S., Flier, J. S., & Saper, C. B. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. Journal of Comparative Neurology, 395, 535–547.PubMedCrossRefGoogle Scholar
  51. Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 221–232. https://doi.org/S0896-6273(00)81084-3 [pii].PubMedCrossRefGoogle Scholar
  52. Erickson, J. C., Clegg, K. E., & Palmiter, R. D. (1996a). Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature, 415–421. https://doi.org/10.1038/381415a0.PubMedCrossRefGoogle Scholar
  53. Erickson, J. C., Hollopeter, G., & Palmiter, R. D. (1996b). Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science, 274, 1704–1707.PubMedCrossRefGoogle Scholar
  54. Ernst, M. B., Wunderlich, C. M., Hess, S., Paehler, M., Mesaros, A., Koralov, S. B., Kleinridders, A., Husch, A., Munzberg, H., Hampel, B., Alber, J., Kloppenburg, P., Bruning, J. C., & Wunderlich, F. T. (2009). Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. Journal of Neuroscience, 11582–11593. 29/37/11582 [pii]. https://doi.org/10.1523/JNEUROSCI.5712-08.2009.PubMedCrossRefGoogle Scholar
  55. Everitt, B. J., Hokfelt, T., Terenius, L., Tatemoto, T., Mutt, V., & Goldstein, M. (1984). Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience, 11, 443.PubMedCrossRefGoogle Scholar
  56. Fan, W., Boston, B. A., Kesterson, R. A., Hruby, V. J., & Cone, R. D. (1997). Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature, 385, 165–168.PubMedCrossRefGoogle Scholar
  57. Fekete, C., Legradi, G., Mihaly, E., Huang, Q. H., Tatro, J. B., Rand, W. M., Emerson, C. H., & Lechan, R. M. (2000a). alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. Journal of Neuroscience, 20, 1550–1558.PubMedCrossRefGoogle Scholar
  58. Fekete, C., Mihaly, E., Luo, L. G., Kelly, J., Clausen, J. T., Mao, Q., Rand, W. M., Moss, L. G., Kuhar, M., Emerson, C. H., Jackson, I. M., & Lechan, R. M. (2000b). Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. Journal of Neuroscience, 20, 9224–9234.PubMedCrossRefGoogle Scholar
  59. Fekete, C., Kelly, J., Mihaly, E., Sarkar, S., Rand, W. M., Legradi, G., Emerson, C. H., & Lechan, R. M. (2001). Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology, 142, 2606–2613.CrossRefPubMedGoogle Scholar
  60. Fekete, C., Sarkar, S., Rand, W. M., Harney, J. W., Emerson, C. H., Bianco, A. C., Beck-Sickinger, A., & Lechan, R. M. (2002). Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic-pituitary-thyroid axis. Endocrinology, 143, 4513–4519.PubMedCrossRefGoogle Scholar
  61. Flier, J. S. (1998). Clinical review 94: What’s in a name? In search of leptin’s physiologic role. The Journal of Clinical Endocrinology and Metabolism, 83, 1407–1413.PubMedGoogle Scholar
  62. Flier, J. S., & Maratos-Flier, E. (1998). Obesity and the hypothalamus: Novel peptides for new pathways. Cell, 92, 437–440.PubMedCrossRefGoogle Scholar
  63. Fliers, E., Noppen, N. W., Wiersinga, W. M., Visser, T. J., & Swaab, D. F. (1994). Distribution of thyrotropin-releasing hormone (TRH)-containing cells and fibers in the human hypothalamus. Journal of Comparative Neurology, 350, 311–323.PubMedCrossRefGoogle Scholar
  64. Gehlert, D. R., Chronwall, B. M., Schafer, M. P., & O'Donohue, T. L. (1987). Localization of neuropeptide Y messenger ribonucleic acid in rat and mouse brain by in situ hybridization. Synapse, 25–31. https://doi.org/10.1002/syn.890010106.PubMedCrossRefGoogle Scholar
  65. Ghilardi, N., Ziegler, S., Wiestner, A., Stoffel, R., Heim, M. H., & Skoda, R. C. (1996). Defective STAT signaling by the leptin receptor in diabetic mice. Proceedings of the National Academy of Sciences, 93, 6231–6235.CrossRefGoogle Scholar
  66. Gil, K., Bugajski, A., & Thor, P. (2011). Electrical vagus nerve stimulation decreases food consumption and weight gain in rats fed a high-fat diet. Journal of Physiology and Pharmacology, 62, 637–646.PubMedGoogle Scholar
  67. Graham, M., Shutter, J. R., Sarmiento, U., Sarosi, I., & Stark, K. L. (1997). Overexpression of Agrp leads to obesity in transgenic mice. Nature Genetics, 273–274. https://doi.org/10.1038/ng1197-273.PubMedCrossRefGoogle Scholar
  68. Greenman, Y., Kuperman, Y., Drori, Y., Asa, S. L., Navon, I., Forkosh, O., Gil, S., Stern, N., & Chen, A. (2013). Postnatal ablation of POMC neurons induces an obese phenotype characterized by decreased food intake and enhanced anxiety-like behavior. Molecular Endocrinology, 1091–1102. https://doi.org/10.1210/me.2012-1344.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gropp, E., Shanabrough, M., E Borok, A. W. X., Janoschek, R., Buch, T., Plum, L., Balthasar, N., Hampel, B., Waisman, A., Barsh, G. S., Horvath, T. L., & Bruning, J. C. (2005). Agouti-related peptide-expressing neurons are mandatory for feeding. Nature Neuroscience, 1289–1291. https://doi.org/10.1038/nn1548.PubMedCrossRefGoogle Scholar
  70. Guan, X. M., Yu, H., Trumbauer, M., Frazier, E., Van der Ploeg, L. H., & Chen, H. (1998). Induction of neuropeptide Y expression in dorsomedial hypothalamus of diet-induced obese mice. Neuroreport, 9, 3415–3419.PubMedCrossRefGoogle Scholar
  71. Guldenaar, S. E., Veldkamp, B., Bakker, O., Wiersinga, W. M., Swaab, D. F., & Fliers, E. (1996). Thyrotropin-releasing hormone gene expression in the human hypothalamus. Brain Research, 743, 93–101.PubMedCrossRefGoogle Scholar
  72. Guo, L., Munzberg, H., Stuart, R. C., Nillni, E. A., & Bjorbaek, C. (2004). N-acetylation of hypothalamic alpha-melanocyte-stimulating hormone and regulation by leptin. Proceedings of the National Academy of Sciences of the United States of America, 101, 11797–11802.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Halaas, J. L., Gajiwala, K. S., Maffei, M., Cohen, S. L., Chait, B. T., Rabinowitz, D., Lallone, R. L., Burley, S. K., & Friedman, J. M. (1995). Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 269, 543–546.PubMedCrossRefGoogle Scholar
  74. Haskell-Luevano, C., & Monck, E. K. (2001). Agouti-related protein functions as an inverse agonist at a constitutively active brain melanocortin-4 receptor. Regulatory Peptides, 99, 1–7.PubMedCrossRefGoogle Scholar
  75. Havrankova, J., Roth, J., & Brownstein, M. (1978a). Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272, 827–829.PubMedCrossRefGoogle Scholar
  76. Havrankova, J., Schmechel, D., Roth, J., & Brownstein, M. (1978b). Identification of insulin in rat brain. Proceedings of the National Academy of Sciences, 75, 5737–5741.CrossRefGoogle Scholar
  77. Haynes, W. G., Morgan, D. A., Djalali, A., Sivitz, W. I., & Mark, A. L. (1999). Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension, 33, 542–547.PubMedCrossRefGoogle Scholar
  78. Hentges, S. T., Nishiyama, M., Overstreet, L. S., Stenzel-Poore, M., Williams, J. T., & Low, M. J. (2004). GABA release from proopiomelanocortin neurons. Journal of Neuroscience, 1578–1583. https://doi.org/10.1523/JNEUROSCI.3952-03.2004.PubMedCrossRefGoogle Scholar
  79. Hu, J., Ludwig, T. E., Salli, U., Stormshak, F., & Mirando, M. A. (2001). Autocrine/paracrine action of oxytocin in pig endometrium. Biology of Reproduction, 64, 1682–1688.PubMedCrossRefGoogle Scholar
  80. Huo, L., Munzberg, H., Nillni, E. A., & Bjorbaek, C. (2004). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic trh gene expression by leptin. Endocrinology, 145, 2516–2523.PubMedCrossRefGoogle Scholar
  81. Ihle, J. N. (1995). Cytokine receptor signalling. Nature, 377, 591–594.PubMedCrossRefGoogle Scholar
  82. Ishikawa, K., Taniguchi, Y., Inoue, K., Kurosumi, K., & Suzuki, M. (1988). Immunocytochemical delineation of thyrotropic area: Origin of thyrotropin-releasing hormone in the median eminence. Neuroendocrinology, 47, 384.PubMedCrossRefGoogle Scholar
  83. Joseph, S. A., & Michael, G. J. (1988). Efferent ACTH-IR opiocortin projections from nucleus tractus solitarius: A hypothalamic deafferentation study. Peptides, 9, 193–201.PubMedCrossRefGoogle Scholar
  84. Kalra, S. P. (1997). Appetite and body weight regulation: is it all in the brain. Neuron, 19, 227–230.PubMedCrossRefGoogle Scholar
  85. Kalra, S. P., Dube, M. G., Sahu, A., Phelps, C. P., & Kalra, P. S. (1991). Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proceedings of the National Academy of Sciences, 88, 10931–10935.CrossRefGoogle Scholar
  86. Kielar, D., Clark, J. S., Ciechanowicz, A., Kurzawski, G., Sulikowski, T., & Naruszewicz, M. (1998). Leptin receptor isoforms expressed in human adipose tissue. Metabolism, 47, 844–847.PubMedCrossRefGoogle Scholar
  87. Kim, M. S., Small, C. J., Stanley, S. A., Morgan, D. G., Seal, L. J., Kong, W. M., Edwards, C. M., Abusnana, S., Sunter, D., Ghatei, M. A., & Bloom, S. R. (2000a). The central melanocortin system affects the hypothalamo-pituitary thyroid axis and may mediate the effect of leptin. The Journal of Clinical Investigation, 105, 1005–1011.PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kim, M. S., Rossi, M., Abusnana, S., Sunter, D., Morgan, D. G., Small, C. J., Edwards, C. M., Heath, M. M., Stanley, S. A., Seal, L. J., Bhatti, J. R., Smith, D. M., Ghatei, M. A., & Bloom, S. R. (2000b). Hypothalamic localization of the feeding effect of agouti-related peptide and alpha-melanocyte-stimulating hormone. Diabetes, 49, 177–182.PubMedCrossRefGoogle Scholar
  89. Kim, K. W., Zhao, L., Donato, J., Jr., Kohno, D., Xu, Y., Elias, C. F., Lee, C., Parker, K. L., & Elmquist, J. K. (2011). Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proceedings of the National Academy of Sciences of the United States of America, 10673–10678. https://doi.org/10.1073/pnas.1102364108.CrossRefGoogle Scholar
  90. Kim, J. D., Leyva, S., & Diano, S. (2014). Hormonal regulation of the hypothalamic melanocortin system. Frontiers in Physiology, 480. https://doi.org/10.3389/fphys.2014.00480.
  91. Kishi, T., Aschkenasi, C. J., Lee, C. E., Mountjoy, K. G., Saper, C. B., & Elmquist, J. K. (2003). Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. Journal of Comparative Neurology, 457, 213–235.PubMedCrossRefGoogle Scholar
  92. Kitamura, T., Feng, Y., Kitamura, Y. I., Chua, S. C., Jr., Xu, A. W., Barsh, G. S., Rossetti, L., & Accili, D. (2006). Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nature Medicine, 12, 534–540.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kong, X., Yu, J., Bi, J., Qi, H., W Di, L. W., Wang, L., Zha, J., Lv, S., Zhang, F., Y Li, F. H., Liu, F., Zhou, H., Liu, J., & Ding, G. (2014). Glucocorticoids transcriptionally regulate miR-27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes. https://doi.org/10.2337/db14-0395.
  94. Konner, A. C., Janoschek, R., Plum, L., Jordan, S. D., Rother, E., X Ma, C. X., Enriori, P., Hampel, B., Barsh, G. S., Kahn, C. R., Cowley, M. A., Ashcroft, F. M., & Bruning, J. C. (2007). Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metabolism, 438–449. https://doi.org/10.1016/j.cmet.2007.05.004.PubMedCrossRefGoogle Scholar
  95. Korosi, A., & Baram, T. Z. (2008). The central corticotropin releasing factor system during development and adulthood. European Journal of Pharmacology, 204–214. https://doi.org/10.1016/j.ejphar.2007.11.066.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kovacs, K. J. (2013). CRH: The link between hormonal-, metabolic- and behavioral responses to stress. Journal of Chemical Neuroanatomy, 25–33. https://doi.org/10.1016/j.jchemneu.2013.05.003.CrossRefPubMedGoogle Scholar
  97. Krude, H., & Gruters, A. (2000). Implications of proopiomelanocortin (POMC) mutations in humans: The POMC deficiency syndrome. Trends in Endocrinology and Metabolism: TEM, 11, 15–22.PubMedCrossRefGoogle Scholar
  98. Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G., & Gruters, A. (1998). Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nature Genetics, 155–157. https://doi.org/10.1038/509.PubMedCrossRefGoogle Scholar
  99. Laryea, G., Schutz, G., & Muglia, L. J. (2013). Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Molecular Endocrinology, 1655–1665. https://doi.org/10.1210/me.2013-1187.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lee, M., & Wardlaw, S. L. (2007). The central melanocortin system and the regulation of energy balance. Frontiers in Bioscience, 12, 3994–4010.PubMedCrossRefGoogle Scholar
  101. Lee, G. H., Proenca, R., Montez, J. M., Carroll, K. M., Darvishzadeh, J. G., Lee, J. I., & Friedman, J. M. (1996). Abnormal splicing of the leptin receptor in diabetic mice. Nature, 379, 632–635.PubMedCrossRefGoogle Scholar
  102. Lee, Y. S., Challis, B. G., Thompson, D. A., Yeo, G. S., Keogh, J. M., Madonna, M. E., Wraight, V., Sims, M., Vatin, V., Meyre, D., Shield, J., Burren, C., Ibrahim, Z., Cheetham, T., Swift, P., Blackwood, A., Hung, C. C., Wareham, N. J., Froguel, P., Millhauser, G. L., O'Rahilly, S., & Farooqi, I. S. (2006). A POMC variant implicates beta-melanocyte-stimulating hormone in the control of human energy balance. Cell Metabolism, 135–140. https://doi.org/10.1016/j.cmet.2006.01.006.PubMedCrossRefGoogle Scholar
  103. Lee, M., Kim, A., Chua, S. C., Jr., Obici, S., & Wardlaw, S. L. (2007). Transgenic MSH overexpression attenuates the metabolic effects of a high-fat diet. American Journal of Physiology-Endocrinology and Metabolism, E121–E131. https://doi.org/10.1152/ajpendo.00555.2006.PubMedCrossRefGoogle Scholar
  104. Lopez, M., Varela, L., Vazquez, M. J., Rodriguez-Cuenca, S., Gonzalez, C. R., Velagapudi, V. R., Morgan, D. A., Schoenmakers, E., Agassandian, K., Lage, R., Martinez de Morentin, P. B., Tovar, S., Nogueiras, R., Carling, D., Lelliott, C., Gallego, R., Oresic, M., Chatterjee, K., Saha, A. K., Rahmouni, K., Dieguez, C., & Vidal-Puig, A. (2010). Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine, 1001–1008. https://doi.org/10.1038/nm.2207.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Lovejoy, D. A., Chang, B. S., Lovejoy, N. R., & del Castillo, J. (2014). Molecular evolution of GPCRs: CRH/CRH receptors. Journal of Molecular Endocrinology, T43–T60. https://doi.org/10.1530/JME-13-0238.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Luiten, P. G. M., Horst, G. Z., Karst, H., & Steffans, A. B. (1985). The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Research, 329, 374–378.PubMedCrossRefGoogle Scholar
  107. Marks, J. L., Porte, D., Jr., Stahl, W. L., & Baskin, D. G. (1990). Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology, 3234–3236. https://doi.org/10.1210/endo-127-6-3234.PubMedCrossRefGoogle Scholar
  108. Marsh, D. J., Weingarth, D. T., Novi, D. E., Chen, H. Y., Trumbauer, M. E., Chen, A. S., Guan, X. M., Jiang, M. M., Feng, Y., Camacho, R. E., Shen, Z., EG Frazier, H. Y., Metzger, J. M., Kuca, S. J., Shearman, L. P., Gopal-Truter, S., MacNeil, D. J., Strack, A. M., MacIntyre, D. E., Van der Ploeg, L. H., & Qian, S. (2002). Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proceedings of the National Academy of Sciences of the United States of America, (5), 3240. https://doi.org/10.1073/pnas.052706899.CrossRefGoogle Scholar
  109. Martinez de Morentin, P. B., Whittle, A. J., Ferno, J., Nogueiras, R., Dieguez, C., Vidal-Puig, A., & Lopez, M. (2012). Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes, 807–817. https://doi.org/10.2337/db11-1079.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mastorakos, G., & Zapanti, E. (2004). The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: The role of corticotropin releasing hormone. Nutritional Neuroscience, 271–280. https://doi.org/10.1080/10284150400020516.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Mathews, S. T., Singh, G. P., Ranalletta, M., Cintron, V. J., Qiang, X., Goustin, A. S., Jen, K. L., Charron, M. J., Jahnen-Dechent, W., & Grunberger, G. (2002). Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes, 51, 2450–2458.PubMedCrossRefGoogle Scholar
  112. McGowan, M. K., Andrews, K. M., Fenner, D., & Grossman, S. P. (1993). Chronic intrahypothalamic insulin infusion in the rat: Behavioral specificity. Physiology & Behavior, 54, 1031–1034.CrossRefGoogle Scholar
  113. Menyhert, J., Wittmann, G., Lechan, R. M., Keller, E., Liposits, Z., & Fekete, C. (2007). Cocaine- and amphetamine-regulated transcript (CART) is colocalized with the orexigenic neuropeptide Y and agouti-related protein and absent from the anorexigenic alpha-melanocyte-stimulating hormone neurons in the infundibular nucleus of the human hypothalamus. Endocrinology, 148, 4276–4281.PubMedCrossRefGoogle Scholar
  114. Mercer, J. G., Moar, K. M., & Hoggard, N. (1998). Localization of leptin receptor (Ob-R) messenger ribonucleic acid in the rodent hindbrain. Endocrinology, 139, 29–34.PubMedCrossRefGoogle Scholar
  115. Mercer, A. J., Hentges, S. T., Meshul, C. K., & Low, M. J. (2013). Unraveling the central proopiomelanocortin neural circuits. Frontiers in Neuroscience, 19. https://doi.org/10.3389/fnins.2013.00019.
  116. Mihaly, E., Fekete, C., Tatro, J. B., Liposits, Z., Stopa, E. G., & Lechan, R. M. (2000). Hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the human hypothalamus are innervated by neuropeptide Y, agouti-related protein, and alpha-melanocyte-stimulating hormone. The Journal of Clinical Endocrinology & Metabolism, 85, 2596–2603.Google Scholar
  117. Mizuno, T. M., & Mobbs, C. V. (1999). Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology, 140, 814–817.PubMedCrossRefGoogle Scholar
  118. Mizuno, T. M., Makimura, H., Silverstein, J., Roberts, J. L., Lopingco, T., & Mobbs, C. V. (1999). Fasting regulates hypothalamic neuropeptide Y, agouti-related peptide, and proopiomelanocortin in diabetic mice independent of changes in leptin or insulin. Endocrinology, 140, 4551–4557.PubMedCrossRefGoogle Scholar
  119. Mizuno, T. M., Kelley, K. A., Pasinetti, G. M., Roberts, J. L., & Mobbs, C. V. (2003). Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice. Diabetes, 52, 2675–2683.PubMedCrossRefGoogle Scholar
  120. Montague, C. T., Farooqi, I. S., Whitehead, J. P., Soos, M. A., Rau, H., Wareham, N. J., Sewter, C. P., Digby, J. E., Mohammed, S. N., Hurst, J. A., Cheetham, C. H., Earley, A. R., Barnett, A. H., Prins, J. B., & O'Rahilly, S. (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387, 903–908.PubMedCrossRefGoogle Scholar
  121. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443, 289–295.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Munzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N., & Bjorbaek, C. (2003). Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology, 144, 2121–2131.PubMedCrossRefGoogle Scholar
  123. Nguyen, A. D., Mitchell, N. F., Lin, S., Macia, L., Yulyaningsih, E., Baldock, P. A., Enriquez, R. F., Zhang, L., Shi, Y. C., Zolotukhin, S., Herzog, H., & Sainsbury, A. (2012). Y1 and Y5 receptors are both required for the regulation of food intake and energy homeostasis in mice. PLoS ONE, e40191. https://doi.org/10.1371/journal.pone.0040191.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Nillni, E. A. (2010). Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Frontiers in Neuroendocrinology, 134–156 .doi: S0091-3022(10)00002-6 [pii]. https://doi.org/10.1016/j.yfrne.2010.01.001.
  125. Nillni, E. A., & Sevarino, K. A. (1999). The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocrine Reviews, 20, 599–648.PubMedPubMedCentralGoogle Scholar
  126. Nillni, E. A., Vaslet, C., Harris, M., Hollenberg, A., Bjorbak, C., & Flier, J. S. (2000). Leptin regulates prothyrotropin-releasing hormone biosynthesis. Evidence for direct and indirect pathways. Journal of Biological Chemistry, 275, 36124–36133.PubMedCrossRefGoogle Scholar
  127. Obici, S. (2009). Molecular targets for obesity therapy in the brain. Endocrinology, 150(6), 2512–2517.PubMedCrossRefGoogle Scholar
  128. Ollmann, M. M., Wilson, B. D., Yang, Y. K., Kerns, J. A., Chen, Y., Gantz, I., & Barsh, G. S. (1997). Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science, 278, 135–138.PubMedCrossRefGoogle Scholar
  129. Palkovits, M., & Eskay, R. L. (1987). Distribution and possible origin of beta-endorphin and ACTH in discrete brainstem nuclei of rats. Neuropeptides, 9, 123–137.PubMedCrossRefGoogle Scholar
  130. Palkovits, M., Mezey, E., & Eskay, R. L. (1987). Pro-opiomelanocortin-derived peptides (ACTH/beta-endorphin/alpha-MSH) in brainstem baroreceptor areas of the rat. Brain Research, 436, 323–338.PubMedCrossRefGoogle Scholar
  131. Palmiter, R. D., Erickson, J. C., Hollopeter, G., Baraban, S. C., & Schwartz, M. W. (1998). Life without neuropeptide Y. Recent Progress in Hormone Research, 53, 163–199.PubMedGoogle Scholar
  132. Parise, E. M., Lilly, N., Kay, K., Dossat, A. M., Seth, R., Overton, J. M., & Williams, D. L. (2011). Evidence for the role of hindbrain orexin-1 receptors in the control of meal size. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, R1692–R1699. https://doi.org/10.1152/ajpregu.00044.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T., & Collins, F. (1995). Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269, 540–543.PubMedCrossRefGoogle Scholar
  134. Perello, M., Stuart, R. C., & Nillni, E. A. (2006). The role of intracerebroventricular administration of leptin in the stimulation of prothyrotropin releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology, 147, 3296–3306.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Perello, M., Stuart, R. C., & Nillni, E. A. (2007). Differential Effects of Fasting and Leptin on Pro-Opiomelanocortin Peptides in the Arcuate Nucleus and in the Nucleus of the Solitary Tract. American Journal of Physiology Endocrinology and Metabolism. Am J Physiol Endocrinol Metab. 2007 May;292(5):E1348–57. Epub 2007 Jan 16.PubMedCrossRefGoogle Scholar
  136. Peyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C., Sutcliffe, J. G., & Kilduff, T. S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. The Journal of Neuroscience, 18, 9996–10015.PubMedCrossRefGoogle Scholar
  137. Pilcher, W. H., & Joseph, S. A. (1986). Differential sensitivity of hypothalamic and medullary opiocortin and tyrosine hydroxylase neurons to the neurotoxic effects of monosodium glutamate (MSG). Peptides, 7, 783–789.PubMedCrossRefGoogle Scholar
  138. Poggioli, R., Vergoni, A. V., & Bertolini, A. (1986). ACTH-(1-24) and alpha-MSH antagonize feeding behavior stimulated by kappa opiate agonists. Peptides, 7, 843–848.PubMedCrossRefGoogle Scholar
  139. Qian, S., Chen, H., Weingarth, D., Trumbauer, M. E., Novi, D. E., X Guan, H. Y., Shen, Z., Feng, Y., Frazier, E., Chen, A., Camacho, R. E., Shearman, L. P., Gopal-Truter, S., MacNeil, D. J., Van der Ploeg, L. H., & Marsh, D. J. (2002). Neither agouti-related protein nor neuropeptide Y is critically required for the regulation of energy homeostasis in mice. Molecular and Cellular Biology, 22, 5027–5035.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Raadsheer, F. C., Sluiter, A. A., Ravid, R., Tilders, F. J., & Swaab, D. F. (1993). Localization of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the human hypothalamus; age-dependent colocalization with vasopressin. Brain Research, 615, 50–62.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Resch, J. M., Boisvert, J. P., Hourigan, A. E., Mueller, C. R., Yi, S. S., & Choi, S. (2011). Stimulation of the hypothalamic ventromedial nuclei by pituitary adenylate cyclase-activating polypeptide induces hypophagia and thermogenesis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, R1625–R1634. https://doi.org/10.1152/ajpregu.00334.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Rho, J. H., & Swanson, L. W. (1987). Neuroendocrine CRF motoneurons: Intrahypothalamic axon terminals shown with a new retrograde-Lucifer-immuno method. Brain Research, 436, 143–147.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Richard, D., & Baraboi, D. (2004). Circuitries involved in the control of energy homeostasis and the hypothalamic-pituitary-adrenal axis activity. Treatments in Endocrinology, 3, 269–277.PubMedCrossRefGoogle Scholar
  144. Richard, D., Huang, Q., & Timofeeva, E. (2000). The corticotropin-releasing hormone system in the regulation of energy balance in obesity. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 24, S36–S39.CrossRefGoogle Scholar
  145. Roeling, T. A., Veening, J. G., Peters, J. P., Vermelis, M. E., & Nieuwenhuys, R. (1993). Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience, 56, 199–225.PubMedCrossRefGoogle Scholar
  146. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H., Williams, S. C., Richardson, J. A., Kozlowski, G. P., Wilson, S., Arch, J. R., Buckingham, R. E., Haynes, A. C., Carr, S. A., Annan, R. S., McNulty, D. E., Liu, W. S., Terrett, J. A., Elshourbagy, N. A., Bergsma, D. J., & Yanagisawa, M. (1998). Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 92, 573–585.CrossRefGoogle Scholar
  147. Salem, V., & Bloom, S. R. (2010). Approaches to the pharmacological treatment of obesity. Expert Review of Clinical Pharmacology, 3(1), 73–88.PubMedCrossRefGoogle Scholar
  148. Sarkar, S., Legradi, G., & Lechan, R. M. (2002). Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH- and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Research, 945, 50–59.PubMedCrossRefGoogle Scholar
  149. Savontaus, E., Breen, T. L., Kim, A., Yang, L. M., Chua, S. C., Jr., & Wardlaw, S. L. (2004). Metabolic effects of transgenic melanocyte-stimulating hormone overexpression in lean and obese mice. Endocrinology, 3881–3891. https://doi.org/10.1210/en.2004-0263.PubMedCrossRefGoogle Scholar
  150. Sawchenko, P. E., & Pfeiffer, S. W. (1988). Ultrastructural localization of neuropeptide Y and galanin immunoreactivity in the paraventricular nucleus of the hypothalamus in the rat. Brain Research, 474, 231.PubMedCrossRefGoogle Scholar
  151. Sawchenko, P. E., & Swanson, L. W. (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. Journal of Comparative Neurology, 260–272. https://doi.org/10.1002/cne.902050306.PubMedCrossRefGoogle Scholar
  152. Schwartz, M. W., Baskin, D. G., Bukowski, T. R., Kuijper, J. L., Foster, D., Lasser, G., Prunkard, D. E., Porte, D. J., Woods, S. C., Seeley, R. J., & Weigle, D. S. (1996a). Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes, 45, 531–535.PubMedCrossRefGoogle Scholar
  153. Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P., & Baskin, D. G. (1996b). Identification of targets of leptin action in rat hypothalamus. The Journal of Clinical Investigation, 98, 1101–1106.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Schwartz, G. J., Whitney, A., Skoglund, C., Castonguay, T. W., & Moran, T. H. (1999). Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. The American Journal of Physiology, 277, R1144–R1151.PubMedGoogle Scholar
  155. Schwartz, M. W., Woods, S. C., Porte, D., Jr., Seeley, R. J., & Baskin, D. G. (2000). Central nervous system control of food intake. Nature, 404, 661–671.PubMedCrossRefGoogle Scholar
  156. Seeley, R. J., Yagaloff, K. A., Fisher, S. L., Burn, P., Thiele, T. E., van Dijk, G., Baskin, D. G., & Schwartz, M. W. (1997). Melanocortin receptors in leptin effects. Nature, 390, 349.PubMedCrossRefGoogle Scholar
  157. Segal, J. P., Stallings, N. R., Lee, C. E., Zhao, L., Socci, N., Viale, A., Harris, T. M., Soares, M. B., Childs, G., Elmquist, J. K., Parker, K. L., & Friedman, J. M. (2005). Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. Journal of Neuroscience, 4181–4188. https://doi.org/10.1523/JNEUROSCI.0158-05.2005.PubMedCrossRefGoogle Scholar
  158. Seimon, R. V., Hostland, N., Silveira, S. L., Gibson, A. A., & Sainsbury, A. (2013). Effects of energy restriction on activity of the hypothalamo-pituitary-adrenal axis in obese humans and rodents: Implications for diet-induced changes in body composition. Hormone Molecular Biology and Clinical Investigation, 71–80. https://doi.org/10.1515/hmbci-2013-0038.
  159. Skibicka, K. P., & Grill, H. J. (2009). Hindbrain leptin stimulation induces anorexia and hyperthermia mediated by hindbrain melanocortin receptors. Endocrinology, 1705–1711. https://doi.org/10.1210/en.2008-1316.PubMedCrossRefGoogle Scholar
  160. Small, C. J., Liu, Y. L., Stanley, S. A., Connoley, I. P., Kennedy, A., Stock, M. J., & Bloom, S. R. (2003). Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 530–533. https://doi.org/10.1038/sj.ijo.0802253.PubMedCrossRefGoogle Scholar
  161. Sobrino Crespo, C., Perianes Cachero, A., Puebla Jimenez, L., Barrios, V., & Arilla Ferreiro, E. (2014). Peptides and food intake. Frontiers in Endocrinology, 58. https://doi.org/10.3389/fendo.2014.00058.
  162. Sohn, J. W., Elmquist, J. K., & Williams, K. W. (2013). Neuronal circuits that regulate feeding behavior and metabolism. Trends in Neurosciences, 504–512. https://doi.org/10.1016/j.tins.2013.05.003.PubMedPubMedCentralCrossRefGoogle Scholar
  163. Solomon, S. (1999). POMC-derived peptides and their biological action. Annals of the New York Academy of Sciences, 885, 22–40.CrossRefPubMedGoogle Scholar
  164. Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, 434. https://doi.org/10.3389/fpsyg.2014.00434.
  165. Spencer, S. J., & Tilbrook, A. (2011). The glucocorticoid contribution to obesity. Stress, 233–246. https://doi.org/10.3109/10253890.2010.534831.CrossRefPubMedGoogle Scholar
  166. Stanley, B. G., Kyrkouli, S. E., Lampert, S., & Leibowitz, S. F. (1986). Neuropeptide Y chronically injected into the hypothalamus: A powerful neurochemical inducer of hyperphagia and obesity. Peptides, 7, 1189–1192.PubMedCrossRefGoogle Scholar
  167. Ste Marie, L., Luquet, S., Curtis, W., & Palmiter, R. D. (2005). Norepinephrine- and epinephrine-deficient mice gain weight normally on a high-fat diet. Obesity Research, 1518–1522. https://doi.org/10.1038/oby.2005.185.
  168. Stephens, T. W., Basinski, M., Bristow, P. K., Bue-Valleskey, J. M., Burgett, S. G., Craft, L., Hale, J., Hoffmann, J., Hsiung, H. M., Kriauciunas, A., et al. (1995). The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature, 377, 530–532.PubMedCrossRefGoogle Scholar
  169. Stuber, G. D., & Wise, R. A. (2016). Lateral hypothalamic circuits for feeding and reward. Nature Neuroscience, 198–205. https://doi.org/10.1038/nn.4220.PubMedPubMedCentralCrossRefGoogle Scholar
  170. Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.PubMedCrossRefGoogle Scholar
  171. Swanson, L. W., Sawchenko, P. E., Wiegand, S. J., & Price, J. L. (1980). Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Research, 198, 190–195.PubMedCrossRefGoogle Scholar
  172. Tataranni, P. A., Larson, D. E., Snitker, S., Young, J. B., Flatt, J. P., & Ravussin, E. (1996). Effects of glucocorticoids on energy metabolism and food intake in humans. The American Journal of Physiology, 271, E317–E325.PubMedPubMedCentralGoogle Scholar
  173. Thornton, J. E., Cheung, C. C., Clifton, D. K., & Steiner, R. A. (1997). Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinology, 138, 5063–5066.PubMedCrossRefGoogle Scholar
  174. Tolle, V., & Low, M. J. (2008). In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes, 86–94. https://doi.org/10.2337/db07-0733.PubMedCrossRefGoogle Scholar
  175. Toorie, A. M., & Nillni, E. A. (2014). Minireview: Central Sirt1 regulates energy balance via the melanocortin system and alternate pathways. Molecular Endocrinology, 1423–1434. https://doi.org/10.1210/me.2014-1115.PubMedPubMedCentralCrossRefGoogle Scholar
  176. Toorie, A. M., Cyr, N. E., Steger, J. S., Beckman, R., Farah, G., & Nillni, E. A. (2016). The nutrient and energy sensor Sirt1 regulates the hypothalamic-pituitary-adrenal (HPA) axis by altering the production of the prohormone convertase 2 (PC2) essential in the maturation of corticotropin releasing hormone (CRH) from its prohormone in male rats. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M115.675264.
  177. Toriya, M., Maekawa, F., Maejima, Y., Onaka, T., Fujiwara, K., Nakagawa, T., Nakata, M., & Yada, T. (2010). Long-term infusion of brain-derived neurotrophic factor reduces food intake and body weight via a corticotrophin-releasing hormone pathway in the paraventricular nucleus of the hypothalamus. Journal of Neuroendocrinology, 987–995. https://doi.org/10.1111/j.1365-2826.2010.02039.x.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Travagli, R. A., Hermann, G. E., Browning, K. N., & Rogers, R. C. (2006). Brainstem circuits regulating gastric function. Annual Review of Physiology, 279–305. https://doi.org/10.1146/annurev.physiol.68.040504.094635.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Trayhurn, P., Thurlby, P. L., & James, W. P. (1977). Thermogenic defect in pre-obese ob/ob mice. Nature, 266, 60–62.PubMedCrossRefGoogle Scholar
  180. Vaisse, C., Halaas, J. L., Horvath, C. M., Darnell, J. J. E., Stoffel, M., & Friedman, J. M. (1996). Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nature Genetics, 14, 95–97.PubMedCrossRefGoogle Scholar
  181. Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 18;213(4514):1394–1397.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Veo, K., Reinick, C., Liang, L., Moser, E., Angleson, J. K., & Dores, R. M. (2011). Observations on the ligand selectivity of the melanocortin 2 receptor. General and Comparative Endocrinology, 3–9. https://doi.org/10.1016/j.ygcen.2011.04.006.PubMedPubMedCentralCrossRefGoogle Scholar
  183. Whittle, A. J., & Vidal-Puig, A. (2012). NPs – heart hormones that regulate brown fat? The Journal of Clinical Investigation, 804–807. https://doi.org/10.1172/JCI62595.PubMedCrossRefGoogle Scholar
  184. Willesen, M. G., Kristensen, P., & Romer, J. (1999). Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology, 70, 306–316.PubMedCrossRefGoogle Scholar
  185. Williams, D. L., Kaplan, J. M., & Grill, H. J. (2000). The role of the dorsal vagal complex and the vagus nerve in feeding effects of melanocortin-3/4 receptor stimulation. Endocrinology, 141, 1332–1337.PubMedCrossRefGoogle Scholar
  186. Wirth, M. M., PK Olszewski, C. Y., Levine, A. S., & Giraudo, S. Q. (2001). Paraventricular hypothalamic alpha-melanocyte-stimulating hormone and MTII reduce feeding without causing aversive effects. Peptides, 22, 129–134.PubMedCrossRefGoogle Scholar
  187. Woods, S. C., Lotter, E. C., McKay, L. D., & Porte, D., Jr. (1979). Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature, 282, 503–505.PubMedCrossRefGoogle Scholar
  188. Wu, Q., & Palmiter, R. D. (2011). GABAergic signaling by AgRP neurons prevents anorexia via a melanocortin-independent mechanism. European Journal of Pharmacology, 21–27. https://doi.org/10.1016/j.ejphar.2010.10.110.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., Tecott, L. H., & Reichardt, L. F. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 736–742. https://doi.org/10.1038/nn1073.PubMedPubMedCentralCrossRefGoogle Scholar
  190. Xu, A. W., Kaelin, C. B., Morton, G. J., Ogimoto, K., Stanhope, K., Graham, J., Baskin, D. G., Havel, P., Schwartz, M. W., & Barsh, G. S. (2005). Effects of hypothalamic neurodegeneration on energy balance. PLoS Biology, e415. https://doi.org/10.1371/journal.pbio.0030415.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yaswen, L., Diehl, N., Brennan, M. B., & Hochgeschwender, U. (1999). Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Medicine, 1066–1070. https://doi.org/10.1038/12506.PubMedCrossRefGoogle Scholar
  192. Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., O'Rahilly, S., & Farooqi, I. S. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 1187–1189. https://doi.org/10.1038/nn1336.PubMedCrossRefGoogle Scholar
  193. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., & Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature, 372, 425–432.PubMedCrossRefGoogle Scholar
  194. Zhang, R., Dhillon, H., Yin, H., Yoshimura, A., Lowell, B. B., Maratos-Flier, E., & Flier, J. S. (2008). Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology, 5654–5661. https://doi.org/10.1210/en.2008-0805.PubMedPubMedCentralCrossRefGoogle Scholar
  195. Zhao, K., Ao, Y., Harper, R. M., Go, V. L., & Yang, H. (2013). Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: Hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience, 43, 54. https://doi.org/10.1016/j.neuroscience.2013.05.017.
  196. Zheng, H., Patterson, L. M., Phifer, C. B., & Berthoud, H. R. (2005). Brain stem melanocortinergic modulation of meal size and identification of hypothalamic POMC projections. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289, R247–R258.PubMedCrossRefGoogle Scholar
  197. Zheng, H., Patterson, L. M., Rhodes, C. J., Louis, G. W., Skibicka, K. P., Grill, H. J., Myers, M. G., Jr., & Berthoud, H. R. (2010). A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, R720–R728. https://doi.org/10.1152/ajpregu.00619.2009.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Ziegler, C. G., Krug, A. W., Zouboulis, C. C., & Bornstein, S. R. (2007). Corticotropin releasing hormone and its function in the skin. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 106–109. https://doi.org/10.1055/s-2007-961809.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Emeritus Professor of Medicine, Molecular Biology, Cell Biology & Biochemistry, Department of Medicine, Molecular Biology, Cell Biology & BiochemistryThe Warren Alpert Medical School of Brown UniversityProvidenceUSA

Personalised recommendations