Advertisement

Obesity and the Growth Hormone Axis

  • Brooke Henry
  • Elizabeth A. Jensen
  • Edward O. List
  • Darlene E. Berryman
Chapter

Abstract

Growth hormone (GH), as its name implies, promotes growth and alters nutrient metabolism through direct activation of the GH receptor (GHR) on target tissues. GH also indirectly regulates growth and nutrient metabolism by altering production of additional factors. One of the most important secondary effects of GH action is insulin-like growth factor-1 (IGF-1). Many of the growth-promoting activities that result from GH occur via GH-stimulated IGF-1 production. Due to the strong link between GH and IGF-1, they are often referred to collectively as the GH/IGF-1 axis. The GH/IGF-1 axis has anabolic effects on most tissues, including the heart, liver, kidneys, and intestines; however, GH – but not IGF-1 – has a dramatic catabolic effect on adipose tissue (AT). This chapter will focus mainly on GH, describe the clinical conditions and mouse lines with alterations in this axis along with their adiposity phenotype, and conclude by considering the role and therapeutic use of GH in obesity.

Keywords

Adipose tissue Obesity Growth hormone Insulin-like growth factor 1 bGH mice GHR-/- mice GHA mice Acromegaly Laron syndrome Growth hormone deficiency 

References

  1. Abrahamsen, B., Nielsen, T. L., Hangaard, J., Gregersen, G., Vahl, N., Korsholm, L., Hansen, T. B., Andersen, M., & Hagen, C. (2004). Dose-, IGF-I- and sex-dependent changes in lipid profile and body composition during GH replacement therapy in adult onset GH deficiency. European Journal of Endocrinology, 150(5), 671–679.PubMedCrossRefGoogle Scholar
  2. Abreu, A., Tovar, A. P., Castellanos, R., Valenzuela, A., Giraldo, C. M., Pinedo, A. C., Guerrero, D. P., Barrera, C. A., Franco, H. I., Ribeiro-Oliveira, A., Jr., Vilar, L., Jallad, R. S., Duarte, F. G., Gadelha, M., Boguszewski, C. L., Abucham, J., Naves, L. A., Musolino, N. R., de Faria, M. E., Rossato, C., & Bronstein, M. D. (2016). Challenges in the diagnosis and management of acromegaly: A focus on comorbidities. Pituitary, 19(4), 448–457. https://doi.org/10.1007/s11102-016-0725-2.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agladioglu, S. Y., Cetinkaya, S., Savas Erdeve, S., Onder, A., Kendirci, H. N., Bas, V. N., & Aycan, Z. (2013). Diabetes mellitus with Laron syndrome: case report. Journal of Pediatric Endocrinology & Metabolism: JPEM, 26(9–10), 955–958. https://doi.org/10.1515/jpem-2012-0411.CrossRefGoogle Scholar
  4. Ahn, C. W., Kim, C. S., Nam, J. H., Kim, H. J., Nam, J. S., Park, J. S., Kang, E. S., Cha, B. S., Lim, S. K., Kim, K. R., Lee, H. C., & Huh, K. B. (2006). Effects of growth hormone on insulin resistance and atherosclerotic risk factors in obese type 2 diabetic patients with poor glycaemic control. Clinical Endocrinology, 64(4), 444–449.PubMedGoogle Scholar
  5. Alatzoglou, K. S., Webb, E. A., Le Tissier, P., & Dattani, M. T. (2014). Isolated growth hormone deficiency (GHD) in childhood and adolescence: Recent advances. Endocrine Reviews, 35(3), 376–432. https://doi.org/10.1210/er.2013-1067.PubMedCrossRefGoogle Scholar
  6. Alderman, J. M., Flurkey, K., Brooks, N. L., Naik, S. B., Gutierrez, J. M., Srinivas, U., Ziara, K. B., Jing, L., Boysen, G., Bronson, R., Klebanov, S., Chen, X., Swenberg, J. A., Stridsberg, M., Parker, C. E., Harrison, D. E., & Combs, T. P. (2009). Neuroendocrine inhibition of glucose production and resistance to cancer in dwarf mice. Experimental Gerontology, 44(1–2), 26–33.PubMedCrossRefGoogle Scholar
  7. Andersen B, Pearse RV 2nd, Jenne K, Sornson M, Lin SC, Bartke A, Rosenfeld MG (1995) The Ames dwarf gene is required for Pit-1 gene activation. Developmental Biology 172 (2):495–503.PubMedCrossRefGoogle Scholar
  8. Arai, Y., Takayama, M., Abe, Y., & Hirose, N. (2011). Adipokines and aging. Journal of Atherosclerosis and Thrombosis, 18(7), 545–550. doi:JST.JSTAGE/jat/7039 [pii].PubMedCrossRefGoogle Scholar
  9. Asayama, K., Amemiya, S., Kusano, S., & Kato, K. (1984). Growth-hormone-induced changes in postheparin plasma lipoprotein lipase and hepatic triglyceride lipase activities. Metabolism, 33(2), 129–131.PubMedCrossRefGoogle Scholar
  10. Bartke, A. (2003). Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice. Neuroendocrinology, 78(4), 210–216.PubMedCrossRefGoogle Scholar
  11. Bartke, A. (2008). Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: Novel findings. Aging Cell, 7(3), 285–290.PubMedCrossRefGoogle Scholar
  12. Bartke, A., & Westbrook, R. (2012). Metabolic characteristics of long-lived mice. Frontiers in Genetics, 3, 288. https://doi.org/10.3389/fgene.2012.00288.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bastie, C. C., Nahle, Z., McLoughlin, T., Esser, K., Zhang, W., Unterman, T., & Abumrad, N. A. (2005). FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. The Journal of Biological Chemistry, 280(14), 14222–14229. https://doi.org/10.1074/jbc.M413625200.PubMedCrossRefGoogle Scholar
  14. Beck, J. C., McGarry, E. E., Dyrenfurth, I., & Venning, E. H. (1957). Metabolic effects of human and monkey growth hormone in man. Science, 125, 884.PubMedCrossRefGoogle Scholar
  15. Benencia, F., Harshman, S., Duran-Ortiz, S., Lubbers, E. R., List, E. O., Householder, L., Alnaeeli, M., Liang, X., Welch, L., Kopchick, J. J., & Berryman, D. E. (2014). Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations. Endocrinology:en20141794. https://doi.org/10.1210/en.2014-1794.
  16. Bengtsson, B. A., Brummer, R. J., Eden, S., & Bosaeus, I. (1989). Body composition in acromegaly. Clinical Endocrinology, 30(2), 121–130.PubMedCrossRefGoogle Scholar
  17. Bengtsson B. A., Edén S., Lönn L., Kvist H., Stokland A., Lindstedt G., Bosaeus I., Tölli J., Sjöström L., & Isaksson O.G. (1993). Treatment of adults with growth hormone (GH) deficiency with recombinant human GH. The Journal of Clinical Endocrinology & Metabolism, 76(2), 309–317.Google Scholar
  18. Berryman, D., Householder, L., Lesende, V., List, E., & Kopchick, J. J. (2015). Living large: What mouse models reveal about growth hormone. In N. A. Berger (Ed.), Murine models, energy, balance, and Cancer (pp. 65–95). New York: Springer.CrossRefGoogle Scholar
  19. Berryman, D. E., Glad, C. A., List, E. O., & Johannsson, G. (2013). The GH/IGF-1 axis in obesity: Pathophysiology and therapeutic considerations. Nature Reviews. Endocrinology, 9(6), 346–356. https://doi.org/10.1038/nrendo.2013.64. nrendo.2013.64 [pii].PubMedCrossRefGoogle Scholar
  20. Berryman, D. E., List, E. O., Coschigano, K. T., Behar, K., Kim, J. K., & Kopchick, J. J. (2004). Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormone & IGF Research, 14(4), 309–318.CrossRefGoogle Scholar
  21. Berryman, D. E., List, E. O., Kohn, D. T., Coschigano, K. T., Seeley, R. J., & Kopchick, J. J. (2006). Effect of growth hormone on susceptibility to diet-induced obesity. Endocrinology, 147(6), 2801–2808. doi:en.2006-0086 [pii]. https://doi.org/10.1210/en.2006-0086.PubMedCrossRefGoogle Scholar
  22. Berryman, D. E., List, E. O., Palmer, A. J., Chung, M. Y., Wright-Piekarski, J., Lubbers, E., O’Connor, P., Okada, S., & Kopchick, J. J. (2010). Two-year body composition analyses of long-lived GHR null mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65(1), 31–40.PubMedCrossRefGoogle Scholar
  23. Berryman, D. E., List, E. O., Sackmann-Sala, L., Lubbers, E., Munn, R., & Kopchick, J. J. (2011). Growth hormone and adipose tissue: Beyond the adipocyte. Growth Hormone & IGF Research, 21(3), 113–123. https://doi.org/10.1016/j.ghir.2011.03.002. S1096-6374(11)00018-9 [pii].CrossRefGoogle Scholar
  24. Berryman, D. E., Lubbers, E. R., Magon, V., List, E. O., & Kopchick, J. J. (2014). A dwarf mouse model with decreased GH/IGF-1 activity that does not experience life-span extension: Potential impact of increased adiposity, leptin, and insulin with advancing age. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(2), 131–141. https://doi.org/10.1093/gerona/glt069. glt069 [pii].PubMedCrossRefGoogle Scholar
  25. Bonkowski, M. S., Rocha, J. S., Masternak, M. M., Al Regaiey, K. A., & Bartke, A. (2006). Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7901–7905.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Boot, A. M., Engels, M. A., Boerma, G. J., Krenning, E. P., & De Muinck Keizer-Schrama, S. M. (1997). Changes in bone mineral density, body composition, and lipid metabolism during growth hormone (GH) treatment in children with GH deficiency. The Journal of Clinical Endocrinology and Metabolism, 82(8), 2423–2428. https://doi.org/10.1210/jcem.82.8.4149.PubMedCrossRefGoogle Scholar
  27. Boucher, J., Softic, S., El Ouaamari, A., Krumpoch, M. T., Kleinridders, A., Kulkarni, R. N., O’Neill, B. T., & Kahn, C. R. (2016). Differential roles of insulin and IGF-1 receptors in adipose tissue development and function. Diabetes, 65(8), 2201–2213. https://doi.org/10.2337/db16-0212.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bredella, M. A., Lin, E., Brick, D. J., Gerweck, A. V., Harrington, L. M., Torriani, M., Thomas, B. J., Schoenfeld, D. A., Breggia, A., Rosen, C. J., Hemphill, L. C., Wu, Z., Rifai, N., Utz, A. L., & Miller, K. K. (2012). Effects of GH in women with abdominal adiposity: A 6-month randomized, double-blind, placebo-controlled trial. European Journal of Endocrinology, 166(4), 601–611. https://doi.org/10.1530/EJE-11-1068. EJE-11-1068 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brooks, A. J., Dai, W., O’Mara, M. L., Abankwa, D., Chhabra, Y., Pelekanos, R. A., Gardon, O., Tunny, K. A., Blucher, K. M., Morton, C. J., Parker, M. W., Sierecki, E., Gambin, Y., Gomez, G. A., Alexandrov, K., Wilson, I. A., Doxastakis, M., Mark, A. E., & Waters, M. J. (2014). Mechanism of activation of protein kinase JAK2 by the growth hormone receptor. Science, 344(6185), 1249783. https://doi.org/10.1126/science.1249783. 1249783 [pii]. science.1249783 [pii].PubMedCrossRefGoogle Scholar
  30. Brooks, N. L., Trent C. M., Raetzsch C. F., Flurkey K., Boysen G., et al. (2007). Low utilization of circulating glucose after food withdrawal in Snell dwarf mice. The Journal of Biological Chemistry, 282(48), 35069–35077.PubMedCrossRefGoogle Scholar
  31. Brooks, A. J., & Waters, M. J. (2010). The growth hormone receptor: Mechanism of activation and clinical implications. Nature Reviews Endocrinology, 6(9), 515–525. https://doi.org/10.1038/nrendo.2010.123.PubMedCrossRefGoogle Scholar
  32. Brown-Borg, H. M., Rakoczy, S. G., Sharma, S., & Bartke, A. (2009). Long-living growth hormone receptor knockout mice: Potential mechanisms of altered stress resistance. Experimental Gerontology, 44(1–2), 10–19.PubMedCrossRefGoogle Scholar
  33. Brown, R. J., Adams, J. J., Pelekanos, R. A., Wan, Y., McKinstry, W. J., Palethorpe, K., Seeber, R. M., Monks, T. A., Eidne, K. A., Parker, M. W., & Waters, M. J. (2005). Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nature Structural & Molecular Biology, 12(9), 814–821.CrossRefGoogle Scholar
  34. Chellakooty, M., Vangsgaard, K., Larsen, T., Scheike, T., Falck-Larsen, J., Legarth, J., Andersson, A. M., Main, K. M., Skakkebaek, N. E., & Juul, A. (2004). A longitudinal study of intrauterine growth and the placental growth hormone (GH)-insulin-like growth factor I axis in maternal circulation: Association between placental GH and fetal growth. The Journal of Clinical Endocrinology and Metabolism, 89(1), 384–391. https://doi.org/10.1210/jc.2003-030282.PubMedCrossRefGoogle Scholar
  35. Chen, W. Y., Wight, D. C., Mehta, B. V., Wagner, T. E., & Kopchick, J. J. (1991). Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Molecular Endocrinology, 5(12), 1845–1852.PubMedCrossRefGoogle Scholar
  36. Chihara, K., Fujieda, K., Shimatsu, A., Miki, T., & Tachibana, K. (2010). Dose-dependent changes in body composition during growth hormone (GH) treatment in Japanese patients with adult GH deficiency: A randomized, placebo-controlled trial. Growth Hormone & IGF Research, 20(3), 205–211.CrossRefGoogle Scholar
  37. Christ, E. R., Cummings, M. H., Albany, E., Umpleby, A. M., Lumb, P. J., Wierzbicki, A. S., Naoumova, R. P., Boroujerdi, M. A., Sonksen, P. H., & Russell-Jones, D. L. (1999). Effects of growth hormone (GH) replacement therapy on very low density lipoprotein apolipoprotein B100 kinetics in patients with adult GH deficiency: A stable isotope study. The Journal of Clinical Endocrinology and Metabolism, 84(1), 307–316. https://doi.org/10.1210/jcem.84.1.5365.PubMedCrossRefGoogle Scholar
  38. Ciresi, A., Amato, M. C., Pizzolanti, G., & Giordano, C. (2015). Serum visfatin levels in acromegaly: Correlation with disease activity and metabolic alterations. Growth Hormone & IGF Research : Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 25(5), 240–246. https://doi.org/10.1016/j.ghir.2015.07.002.CrossRefGoogle Scholar
  39. Ciresi, A., Pizzolanti, G., Leotta, M., Guarnotta, V., Teresi, G., & Giordano, C. (2016). Resistin, visfatin, leptin and omentin are differently related to hormonal and metabolic parameters in growth hormone-deficient children. Journal of Endocrinological Investigation. https://doi.org/10.1007/s40618-016-0475-z.
  40. Clemmons, D. R., Snyder, D. K., Williams, R., & Underwood, L. E. (1987). Growth hormone administration conserves lean body mass during dietary restriction in obese subjects. The Journal of Clinical Endocrinology and Metabolism, 64(5), 878–883.PubMedCrossRefGoogle Scholar
  41. Colao, A., Ferone, D., Marzullo, P., & Lombardi, G. (2004). Systemic complications of acromegaly: Epidemiology, pathogenesis, and management. Endocrine Reviews, 25(1), 102–152.PubMedCrossRefGoogle Scholar
  42. Combs, T. P., Berg, A. H., Rajala, M. W., Klebanov, S., Iyengar, P., Jimenez-Chillaron, J. C., Patti, M. E., Klein, S. L., Weinstein, R. S., & Scherer, P. E. (2003). Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes, 52(2), 268–276.PubMedCrossRefGoogle Scholar
  43. Cordoba-Chacon, J., Majumdar, N., List, E. O., Diaz-Ruiz, A., Frank, S. J., Manzano, A., Bartrons, R., Puchowicz, M., Kopchick, J. J., & Kineman, R. D. (2015). Growth hormone inhibits hepatic De novo Lipogenesis in adult mice. Diabetes, 64(9), 3093–3103. https://doi.org/10.2337/db15-0370.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Coschigano, K. T., Holland, A. N., Riders, M. E., List, E. O., Flyvbjerg, A., & Kopchick, J. J. (2003). Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin and IGF-1 levels and increased lifespan. Endocrinology, 144(9), 3799–3810.PubMedCrossRefGoogle Scholar
  45. Cui, Y., Hosui, A., Sun, R., Shen, K., Gavrilova, O., Chen, W., Cam, M. C., Gao, B., Robinson, G. W., & Hennighausen, L. (2007). Loss of signal transducer and activator of transcription 5 leads to hepatosteatosis and impaired liver regeneration. Hepatology, 46(2), 504–513. https://doi.org/10.1002/hep.21713.PubMedCrossRefGoogle Scholar
  46. De Boer, H., Blok, G. J., Voerman, H. J., De Vries, P. M., & van der Veen, E. A. (1992). Body composition in adult growth hormone-deficient men, assessed by anthropometry and bioimpedance analysis. The Journal of Clinical Endocrinology and Metabolism, 75(3), 833–837.PubMedGoogle Scholar
  47. del Rincon, J. P., Iida, K., Gaylinn, B. D., McCurdy, C. E., Leitner, J. W., Barbour, L. A., Kopchick, J. J., Friedman, J. E., Draznin, B., & Thorner, M. O. (2007). Growth hormone regulation of p85alpha expression and phosphoinositide 3-kinase activity in adipose tissue: Mechanism for growth hormone-mediated insulin resistance. Diabetes, 56(6), 1638–1646. doi:db06-0299 [pii]. https://doi.org/10.2337/db06-0299.PubMedCrossRefGoogle Scholar
  48. Diniz, R. D., Souza, R. M., Salvatori, R., Franca, A., Gomes-Santos, E., Ferrao TO, Oliveira, C. R., Santana, J. A., Pereira, F. A., Barbosa, R. A., Souza, A. H., Pereira, R. M., Oliveira-Santos, A. A., Silva, A. M., Santana-Junior, F. J., Valenca, E. H., Campos, V. C., & Aguiar-Oliveira, M. H. (2014). Liver status in congenital, untreated, isolated GH deficiency. Endocrine Connections, 3(3), 132–137. https://doi.org/10.1530/EC-14-0078.PubMedPubMedCentralCrossRefGoogle Scholar
  49. dos Santos, M. C., Nascimento, G. C., Nascimento, A. G., Carvalho, V. C., Lopes, M. H., Montenegro, R., Montenegro, R., Jr., Vilar, L., Albano, M. F., Alves, A. R., Parente, C. V., & dos Santos Faria, M. (2013). Thyroid cancer in patients with acromegaly: A case-control study. Pituitary, 16(1), 109–114. https://doi.org/10.1007/s11102-012-0383-y.PubMedCrossRefGoogle Scholar
  50. Egecioglu, E., Bjursell, M., Ljungberg, A., Dickson, S. L., Kopchick, J. J., Bergstrom, G., Svensson, L., Oscarsson, J., Tornell, J., & Bohlooly, Y. M. (2006). Growth hormone receptor deficiency results in blunted ghrelin feeding response, obesity, and hypolipidemia in mice. American Journal of Physiology. Endocrinology and Metabolism, 290(2), E317–E325.PubMedCrossRefGoogle Scholar
  51. Ehrenborg, E., & Krook, A. (2009). Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev, 61(3), 373–393. https://doi.org/10.1124/pr.109.001560.PubMedCrossRefGoogle Scholar
  52. Fan, Y., Fang, X., Tajima, A., Geng, X., Ranganathan, S., Dong, H., Trucco, M., & Sperling, M. A. (2014). Evolution of hepatic steatosis to fibrosis and adenoma formation in liver-specific growth hormone receptor knockout mice. Front Endocrinol (Lausanne), 5, 218. https://doi.org/10.3389/fendo.2014.00218.CrossRefGoogle Scholar
  53. Fan, Y., Menon, R. K., Cohen, P., Hwang, D., Clemens, T., DiGirolamo, D. J., Kopchick, J. J., Le Roith, D., Trucco, M., & Sperling, M. A. (2009a). Liver-specific deletion of the growth hormone receptor reveals essential role of growth hormone signaling in hepatic lipid metabolism. The Journal of Biological Chemistry, 284(30), 19937–19944. https://doi.org/10.1074/jbc.M109.014308.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fathallah, N., Slim, R., Larif, S., Hmouda, H., & Ben Salem, C. (2015). Drug-induced Hyperglycaemia and diabetes. Drug Safety, 38(12), 1153–1168. https://doi.org/10.1007/s40264-015-0339-z.PubMedCrossRefGoogle Scholar
  55. Fineberg, S. E., & Merimee, T. J. (1974). Acute metabolic effects of human growth hormone. Diabetes, 23(6), 499–504.PubMedCrossRefGoogle Scholar
  56. Flint, D. J., Binart, N., Boumard, S., Kopchick, J. J., & Kelly, P. (2006). Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: Site-specific effects upon proliferation, differentiation and hormone sensitivity. The Journal of Endocrinology, 191(1), 101–111.PubMedCrossRefGoogle Scholar
  57. Florini, J. R., Ewton, D. Z., & Coolican, S. A. (1996). Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Reviews, 17(5), 481–517.PubMedGoogle Scholar
  58. Flurkey, K., Papaconstantinou, J., Miller, R. A., & Harrison, D. E. (2001). Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proceedings of the National Academy of Sciences of the United States of America, 98(12), 6736–6741.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Franco, C., Brandberg, J., Lonn, L., Andersson, B., Bengtsson, B. A., & Johannsson, G. (2005). Growth hormone treatment reduces abdominal visceral fat in postmenopausal women with abdominal obesity: A 12-month placebo-controlled trial. The Journal of Clinical Endocrinology and Metabolism, 90(3), 1466–1474.PubMedCrossRefGoogle Scholar
  60. Freda, P. U., Shen, W., Heymsfield, S. B., Reyes-Vidal, C. M., Geer, E. B., Bruce, J. N., & Gallagher, D. (2008). Lower Visceral and Subcutaneous but Higher Intermuscular Adipose Tissue Depots in Patients with Growth Hormone and Insulin-Like Growth Factor I Excess Due to Acromegaly. The Journal of Clinical Endocrinology and Metabolism, 93(6), 2334–2343. http://doi.org/10.1210/jc.2007-2780.CrossRefGoogle Scholar
  61. Ghanaat, F., & Tayek, J. A. (2005). Growth hormone administration increases glucose production by preventing the expected decrease in glycogenolysis seen with fasting in healthy volunteers. Metabolism, 54(5), 604–609. https://doi.org/10.1016/j.metabol.2004.12.003.PubMedCrossRefGoogle Scholar
  62. Gibney, J., Wolthers, T., Burt, M. G., Leung, K. C., Umpleby, A. M., & Ho, K. K. (2007). Protein metabolism in acromegaly: Differential effects of short- and long-term treatment. The Journal of Clinical Endocrinology and Metabolism, 92(4), 1479–1484. https://doi.org/10.1210/jc.2006-0664.PubMedCrossRefGoogle Scholar
  63. Grimberg, A., DiVall, S. A., Polychronakos, C., Allen, D. B., Cohen, L. E., Quintos, J. B., Rossi, W. C., Feudtner, C., & Murad, M. H. (2016). Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: Growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-I deficiency. Hormone Research in Pædiatrics, 86(6), 361–397. https://doi.org/10.1159/000452150.PubMedCrossRefGoogle Scholar
  64. Guevara-Aguirre, J., Balasubramanian, P., Guevara-Aguirre, M., Wei, M., Madia, F., Cheng, C. W., Hwang, D., Martin-Montalvo, A., Saavedra, J., Ingles, S., de Cabo, R., Cohen, P., & Longo, V. D. (2011). Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Science Translational Medicine, 3(70), 70ra13.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Guevara-Aguirre, J., Rosenbloom, A. L., Balasubramanian, P., Teran, E., Guevara-Aguirre, M., Guevara, C., Procel, P., Alfaras, I., De Cabo, R., Di Biase, S., Narvaez, L., Saavedra, J., & Longo, V. D. (2015). GH receptor deficiency in Ecuadorian adults is associated with obesity and enhanced insulin sensitivity. The Journal of Clinical Endocrinology and Metabolism, 100(7), 2589–2596. https://doi.org/10.1210/jc.2015-1678.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Heiman, M. L., Tinsley, F. C., Mattison, J. A., Hauck, S., & Bartke, A. (2003). Body composition of prolactin-, growth hormone, and thyrotropin-deficient Ames dwarf mice. Endocrine, 20(1–2), 149–154.PubMedCrossRefGoogle Scholar
  67. Herrington, J., Smit, L. S., Schwartz, J., & Carter-Su, C. (2000). The role of STAT proteins in growth hormone signaling. Oncogene, 19(21), 2585–2597. https://doi.org/10.1038/sj.onc.1203526.PubMedCrossRefGoogle Scholar
  68. Hill, C. M., Fang, Y., Miquet, J. G., Sun, L. Y., Masternak, M. M., & Bartke, A. (2016). Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure. Aging Cell, 15(3), 509–521. https://doi.org/10.1111/acel.12467.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Hjortebjerg, R., Berryman, D., Comisford, R., Frank, S., List, E., Bjerre, M., Frystyk, J., & Kopchick, J. (2017). Insulin, IGF-1, and GH receptors are altered in an adipose tissue depot-specific manner in male mice with modified GH action. Endocrinology, 158, 1406.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hoybye, C., Chandramouli, V., Efendic, S., Hulting, A. L., Landau, B. R., Schumann, W. C., & Wajngot, A. (2008). Contribution of gluconeogenesis and glycogenolysis to hepatic glucose production in acromegaly before and after pituitary microsurgery. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et Metabolisme, 40(7), 498–501. https://doi.org/10.1055/s-2008-1065322.PubMedCrossRefGoogle Scholar
  71. Ikeno, Y., Hubbard, G. B., Lee, S., Cortez, L. A., Lew, C. M., Webb, C. R., Berryman, D. E., List, E. O., Kopchick, J. J., & Bartke, A. (2009). Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64(5), 522–529.PubMedCrossRefGoogle Scholar
  72. Ikkos, D., Luft, R., & Gemzell, C. A. (1959). The effect of human growth hormone in man. Acta Endocrinologica, 32, 341–361.PubMedCrossRefGoogle Scholar
  73. Jenkins, P. J. (2006). Cancers associated with acromegaly. Neuroendocrinology, 83(3–4), 218–223. https://doi.org/10.1159/000095531.PubMedCrossRefGoogle Scholar
  74. Johannsson, G., Marin, P., Lonn, L., Ottosson, M., Stenlof, K., Bjorntorp, P., Sjostrom, L., & Bengtsson, B. A. (1997). Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure. The Journal of Clinical Endocrinology and Metabolism, 82(3), 727–734.PubMedGoogle Scholar
  75. Jorgensen, J. O., Moller, N., Lauritzen, T., Alberti, K. G., Orskov, H., & Christiansen, J. S. (1990). Evening versus morning injections of growth hormone (GH) in GH-deficient patients: Effects on 24-hour patterns of circulating hormones and metabolites. The Journal of Clinical Endocrinology and Metabolism, 70(1), 207–214. https://doi.org/10.1210/jcem-70-1-207.PubMedCrossRefGoogle Scholar
  76. Junnila, R. K., Duran-Ortiz, S., Suer, O., Sustarsic, E. G., Berryman, D. E., List, E. O., & Kopchick, J. J. (2016). Disruption of the GH receptor gene in adult mice increases maximal lifespan in females. Endocrinology, 157(12), 4502–4513. https://doi.org/10.1210/en.2016-1649.PubMedCrossRefGoogle Scholar
  77. Junnila, R. K., List, E. O., Berryman, D. E., Murrey, J. W., & Kopchick, J. J. (2013). The GH/IGF-1 axis in ageing and longevity. Nature Reviews. Endocrinology, 9(6), 366–376. https://doi.org/10.1038/nrendo.2013.67. nrendo.2013.67 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  78. Karastergiou, K., Bredella, M. A., Lee, M. J., Smith, S. R., Fried, S. K., & Miller, K. K. (2016). Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. Obesity, 24(5), 1090–1096. https://doi.org/10.1002/oby.21460.PubMedCrossRefGoogle Scholar
  79. Katznelson, L., Atkinson, J. L., Cook, D. M., Ezzat, S. Z., Hamrahian, A. H., & Miller, K. K. (2011). American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for the diagnosis and treatment of acromegaly--2011 update: Executive summary. Endocrine Practice, 17(4), 636–646.PubMedCrossRefGoogle Scholar
  80. Katznelson, L., Laws, E. R., Jr., Melmed, S., Molitch, M. E., Murad, M. H., Utz, A., & Wass, J. A. (2014). Acromegaly: An endocrine society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism, 99(11), 3933–3951. https://doi.org/10.1210/jc.2014-2700.PubMedCrossRefGoogle Scholar
  81. Kelder, B., Berryman, D. E., Clark, R., Li, A., List, E. O., & Kopchick, J. J. (2007). CIDE-A gene expression is decreased in white adipose tissue of growth hormone receptor/binding protein gene disrupted mice and with high-fat feeding of normal mice. Growth Hormone & IGF Research, 17(4), 346–351.CrossRefGoogle Scholar
  82. Khalfallah, Y., Sassolas, G., Borson-Chazot, F., Vega, N., & Vidal, H. (2001). Expression of insulin target genes in skeletal muscle and adipose tissue in adult patients with growth hormone deficiency: Effect of one year recombinant human growth hormone therapy. The Journal of Endocrinology, 171(2), 285–292.PubMedCrossRefGoogle Scholar
  83. Kim, D. S., Itoh, E., Iida, K., & Thorner, M. O. (2009). Growth hormone increases mRNA levels of PPARdelta and Foxo1 in skeletal muscle of growth hormone deficient lit/lit mice. Endocrine Journal, 56(1), 141–147.PubMedCrossRefGoogle Scholar
  84. Kim, K. R., Nam, S. Y., Song, Y. D., Lim, S. K., Lee, H. C., & Huh, K. B. (1999). Low-dose growth hormone treatment with diet restriction accelerates body fat loss, exerts anabolic effect and improves growth hormone secretory dysfunction in obese adults. Hormone Research, 51(2), 78–84.PubMedCrossRefGoogle Scholar
  85. Kopchick, J. J., & Andry, J. M. (2000). Growth hormone (GH), GH receptor, and signal transduction. Molecular Genetics and Metabolism, 71(1–2), 293–314.PubMedCrossRefGoogle Scholar
  86. Kopchick, J. J., & Laron, Z. (1999). Is the Laron mouse an accurate model of Laron syndrome? Molecular Genetics and Metabolism, 68, 232–236.PubMedCrossRefGoogle Scholar
  87. Kopchick, J. J., & Laron, Z. (Eds.). (2011). Laron syndrome - from man to mouse. Berlin: Springer.Google Scholar
  88. Kopchick, J. J., List, E. O., Kelder, B., Gosney, E. S., & Berryman, D. E. (2014). Evaluation of growth hormone (GH) action in mice: Discovery of GH receptor antagonists and clinical indications. Molecular and Cellular Endocrinology, 386(1–2), 34–45. https://doi.org/10.1016/j.mce.2013.09.004. S0303-7207(13)00366-3 [pii].PubMedCrossRefGoogle Scholar
  89. Kredel, L. I., & Siegmund, B. (2014). Adipose-tissue and intestinal inflammation - visceral obesity and creeping fat. Frontiers in Immunology, 5, 462. https://doi.org/10.3389/fimmu.2014.00462.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lam, K. S., Xu, A., Tan, K. C., Wong, L. C., Tiu, S. C., & Tam, S. (2004). Serum adiponectin is reduced in acromegaly and normalized after correction of growth hormone excess. The Journal of Clinical Endocrinology and Metabolism, 89(11), 5448–5453.PubMedCrossRefGoogle Scholar
  91. Laron, Z. (2015). Lessons from 50 years of study of Laron syndrome. Endocrine Practice, 21(12), 1395–1402. https://doi.org/10.4158/EP15939.RA.PubMedCrossRefGoogle Scholar
  92. Laron, Z., Ginsberg, S., Lilos, P., Arbiv, M., & Vaisman, N. (2006). Body composition in untreated adult patients with Laron syndrome (primary GH insensitivity). Clinical Endocrinology, 65(1), 114–117. doi:CEN2558 [pii]. https://doi.org/10.1111/j.1365-2265.2006.02558.x.PubMedCrossRefGoogle Scholar
  93. Laron, Z., & Kauli, R. (2016). Fifty seven years of follow-up of the Israeli cohort of Laron syndrome patients-from discovery to treatment. Growth Hormone & IGF Research : Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 28, 53–56. https://doi.org/10.1016/j.ghir.2015.08.004.CrossRefGoogle Scholar
  94. Laron, Z., Pertzelan, A., & Karp, M. (1968). Pituitary dwarfism with high serum levels of growth hormone. Israel Journal of Medical Sciences, 4(4), 883–894.PubMedGoogle Scholar
  95. Li, Y., Knapp, J. R., & Kopchick, J. J. (2003). Enlargement of interscapular brown adipose tissue in growth hormone antagonist transgenic and in growth hormone receptor gene-disrupted dwarf mice. Experimental Biology and Medicine (Maywood, N.J.), 228(2), 207–215.CrossRefGoogle Scholar
  96. Lindberg-Larsen, R., Moller, N., Schmitz, O., Nielsen, S., Andersen, M., Orskov, H., & Jorgensen, J. O. (2007). The impact of pegvisomant treatment on substrate metabolism and insulin sensitivity in patients with acromegaly. The Journal of Clinical Endocrinology and Metabolism, 92(5), 1724–1728.PubMedCrossRefGoogle Scholar
  97. List, E. O., Berryman, D. E., Funk, K., Gosney, E. S., Jara, A., Kelder, B., Wang, X., Kutz, L., Troike, K., Lozier, N., Mikula, V., Lubbers, E. R., Zhang, H., Vesel, C., Junnila, R. K., Frank, S. J., Masternak, M. M., Bartke, A., & Kopchick, J. J. (2013). The role of GH in adipose tissue: Lessons from adipose-specific GH receptor gene-disrupted mice. Molecular Endocrinology, 27(3), 524–535. https://doi.org/10.1210/me.2012-1330. me.2012-1330 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  98. List, E. O., Berryman, D. E., Funk, K., Jara, A., Kelder, B., Wang, F., Stout, M. B., Zhi, X., Sun, L., White, T. A., LeBrasseur, N. K., Pirtskhalava, T., Tchkonia, T., Jensen, E. A., Zhang, W., Masternak, M. M., Kirkland, J. L., Miller, R. A., Bartke, A., & Kopchick, J. J. (2014). Liver-specific GH receptor gene-disrupted (LiGHRKO) mice have decreased endocrine IGF-I, increased local IGF-I, and altered body size, body composition, and adipokine profiles. Endocrinology, 155(5), 1793–1805. https://doi.org/10.1210/en.2013-2086.PubMedPubMedCentralCrossRefGoogle Scholar
  99. List, E. O., Berryman, D. E., Ikeno, Y., Hubbard, G. B., Funk, K., Comisford, R., Young, J. A., Stout, M. B., Tchkonia, T., Masternak, M. M., Bartke, A., Kirkland, J. L., Miller, R. A., & Kopchick, J. J. (2015). Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHR−/− mice. Aging (Albany NY), 7(7), 500–512.CrossRefGoogle Scholar
  100. List, E. O., Palmer, A. J., Berryman, D. E., Bower, B., Kelder, B., & Kopchick, J. J. (2009). Growth hormone improves body composition, fasting blood glucose, glucose tolerance and liver triacylglycerol in a mouse model of diet-induced obesity and type 2 diabetes. Diabetologia, 52(8), 1647–1655.PubMedCrossRefGoogle Scholar
  101. Lu, C., Kumar, P. A., Sun, J., Aggarwal, A., Fan, Y., Sperling, M. A., Lumeng, C. N., & Menon, R. K. (2013). Targeted deletion of growth hormone (GH) receptor in macrophage reveals novel Osteopontin-mediated effects of GH on glucose homeostasis and insulin sensitivity in diet-induced obesity. The Journal of Biological Chemistry, 288(22), 15725–15735. https://doi.org/10.1074/jbc.M113.460212. M113.460212 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lubbers, E. R., List, E. O., Jara, A., Sackmann-Sala, L., Cordoba-Chacon, J., Gahete, M., Kineman, R. D., Boparai, R., Bartke, A., Kopchick, J., & Berryman, D. E. (2012). Adiponectin in mice with altered growth hormone action: Links to insulin sensitivity and longevity? The Journal of Endocrinology. https://doi.org/10.1530/JOE-12-0505.
  103. Lubbers, E. R., List, E. O., Jara, A., Sackman-Sala, L., Cordoba-Chacon, J., Gahete, M. D., Kineman, R. D., Boparai, R., Bartke, A., Kopchick, J. J., & Berryman, D. E. (2013). Adiponectin in mice with altered GH action: Links to insulin sensitivity and longevity? The Journal of Endocrinology, 216(3), 363–374. https://doi.org/10.1530/JOE-12-0505. JOE-12-0505 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  104. Luque, R. M., Lin, Q., Cordoba-Chacon, J., Subbaiah, P. V., Buch, T., Waisman, A., Vankelecom, H., & Kineman, R. D. (2011). Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD) due to destruction of pituitary Somatotropes. PLoS One, 6(1), e15767.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Masternak, M. M., Al-Regaiey, K. A., Del Rosario Lim, M. M., Jimenez-Ortega, V., Panici, J. A., Bonkowski, M. S., Kopchick, J. J., Wang, Z., & Bartke, A. (2006). Caloric restriction and growth hormone receptor knockout: Effects on expression of genes involved in insulin action in the heart. Experimental Gerontology, 41(4), 417–429.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mavalli, M. D., DiGirolamo, D. J., Fan, Y., Riddle, R. C., Campbell, K. S., van Groen, T., Frank, S. J., Sperling, M. A., Esser, K. A., Bamman, M. M., & Clemens, T. L. (2010). Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. The Journal of Clinical Investigation, 120(11), 4007–4020.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Meazza, C., Elsedfy, H. H., Pagani, S., Bozzola, E., El Kholy, M., & Bozzola, M. (2014). Metabolic parameters and adipokine profile in growth hormone deficient (GHD) children before and after 12-month GH treatment. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et Metabolisme, 46(3), 219–223. https://doi.org/10.1055/s-0033-1358730.PubMedCrossRefGoogle Scholar
  108. Mekala, K. C., & Tritos, N. A. (2008). Effects of recombinant human growth hormone therapy in obesity in adults - a meta-analysis. The Journal of Clinical Endocrinology and Metabolism.Google Scholar
  109. Melmed, S. (2009). Acromegaly pathogenesis and treatment. The Journal of Clinical Investigation, 119(11), 3189–3202. https://doi.org/10.1172/JCI39375.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Melmed, S. (2011). Pathogenesis of pituitary tumors. Nature Reviews Endocrinology, 7(5), 257–266. https://doi.org/10.1038/nrendo.2011.40.PubMedCrossRefGoogle Scholar
  111. Melmed, S., Kleinberg, D. L., Bonert, V., & Fleseriu, M. (2014). Acromegaly: Assessing the disorder and navigating therapeutic options for treatment. Endocrine Practice, 20(Suppl 1), 7–17. quiz 18–20. https://doi.org/10.4158/EP14430.RA.PubMedCrossRefGoogle Scholar
  112. Miquet, J. G., Freund, T., Martinez, C. S., Gonzalez, L., Diaz, M. E., Micucci, G. P., Zotta, E., Boparai, R. K., Bartke, A., Turyn, D., & Sotelo, A. I. (2013). Hepatocellular alterations and dysregulation of oncogenic pathways in the liver of transgenic mice overexpressing growth hormone. Cell Cycle, 12(7), 1042–1057. https://doi.org/10.4161/cc.24026. 24026 [pii].PubMedPubMedCentralCrossRefGoogle Scholar
  113. Molitch, M. E., Clemmons, D. R., Malozowski, S., Merriam, G. R., & Vance, M. L. (2011). Evaluation and treatment of adult growth hormone deficiency: An Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism, 96(6), 1587–1609. https://doi.org/10.1210/jc.2011-0179.PubMedCrossRefGoogle Scholar
  114. Moller, N., & Jorgensen, J. O. (2009). Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrine Reviews, 30(2), 152–177.PubMedCrossRefGoogle Scholar
  115. Moller, N., Vendelbo, M. H., Kampmann, U., Christensen, B., Madsen, M., Norrelund, H., & Jorgensen, J. O. (2009). Growth hormone and protein metabolism. Clinical Nutrition, 28(6), 597–603. https://doi.org/10.1016/j.clnu.2009.08.015S0261-5614(09)00177-0. [pii].PubMedCrossRefGoogle Scholar
  116. Muller, E. E. (1990). Clinical implications of growth hormone feedback mechanisms. Hormone Research, 33(Suppl 4), 90–96.PubMedGoogle Scholar
  117. Muller, E. E., Locatelli, V., & Cocchi, D. (1999). Neuroendocrine control of growth hormone secretion. Physiological Reviews, 79(2), 511–607.PubMedCrossRefGoogle Scholar
  118. Mulligan, K., Tai, V. W., & Schambelan, M. (1998). Effects of chronic growth hormone treatment on energy intake and resting energy metabolism in patients with human immunodeficiency virus-associated wasting--a clinical research center study. The Journal of Clinical Endocrinology and Metabolism, 83(5), 1542–1547. https://doi.org/10.1210/jcem.83.5.4772.PubMedCrossRefGoogle Scholar
  119. Mullis, P. E. (2007). Genetics of growth hormone deficiency. Endocrinology and Metabolism Clinics of North America, 36(1), 17–36. https://doi.org/10.1016/j.ecl.2006.11.010.PubMedCrossRefGoogle Scholar
  120. Murase, T., Yamada, N., Ohsawa, N., Kosaka, K., Morita, S., & Yoshida, S. (1980). Decline of postheparin plasma lipoprotein lipase in acromegalic patients. Metabolism, 29(7), 666–672.PubMedCrossRefGoogle Scholar
  121. Nam, S. Y., Kim, K. R., Cha, B. S., Song, Y. D., Lim, S. K., Lee, H. C., & Huh, K. B. (2001). Low-dose growth hormone treatment combined with diet restriction decreases insulin resistance by reducing visceral fat and increasing muscle mass in obese type 2 diabetic patients. International Journal of Obesity and Related Metabolic Disorders, 25(8), 1101–1107.PubMedCrossRefGoogle Scholar
  122. Nishizawa, H., Iguchi, G., Murawaki, A., Fukuoka, H., Hayashi, Y., Kaji, H., Yamamoto, M., Suda, K., Takahashi, M., Seo, Y., Yano, Y., Kitazawa, R., Kitazawa, S., Koga, M., Okimura, Y., Chihara, K., & Takahashi, Y. (2012). Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy. European Journal of Endocrinology, 167(1), 67–74. https://doi.org/10.1530/EJE-12-0252.PubMedCrossRefGoogle Scholar
  123. Olarescu, N. C., Berryman, D. E., Householder, L. A., Lubbers, E. R., List, E. O., Benencia, F., Kopchick, J. J., & Bollerslev, J. (2015a). GH action influences adipogenesis of mouse adipose tissue-derived mesenchymal stem cells. The Journal of Endocrinology, 226(1), 13–23. https://doi.org/10.1530/JOE-15-0012.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Olarescu, N. C., Heck, A., Godang, K., Ueland, T., & Bollerslev, J. (2015b). The metabolic risk in newly diagnosed patients with acromegaly is related to fat distribution and circulating Adipokines and improves after treatment. Neuroendocrinology. https://doi.org/10.1159/000371818.
  125. Olsson, B., Bohlooly, Y. M., Fitzgerald, S. M., Frick, F., Ljungberg, A., Ahren, B., Tornell, J., Bergstrom, G., & Oscarsson, J. (2005). Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet. Endocrinology, 146(2), 920–930.PubMedCrossRefGoogle Scholar
  126. Oscarsson, J., Ottosson, M., Vikman-Adolfsson, K., Frick, F., Enerback, S., Lithell, H., & Eden, S. (1999). GH but not IGF-I or insulin increases lipoprotein lipase activity in muscle tissues of hypophysectomised rats. The Journal of Endocrinology, 160(2), 247–255.PubMedCrossRefGoogle Scholar
  127. Palmer, A. J., Chung, M. Y., List, E. O., Walker, J., Okada, S., Kopchick, J. J., & Berryman, D. E. (2009). Age-related changes in body composition of bovine growth hormone transgenic mice. Endocrinology, 150(3), 1353–1360.PubMedCrossRefGoogle Scholar
  128. Raben, M. S., & Hollenberg, C. H. (1959). Effect of growth hormone on plasma fatty acids. The Journal of Clinical Investigation, 38(3), 484–488. https://doi.org/10.1172/JCI103824.PubMedPubMedCentralCrossRefGoogle Scholar
  129. Rabinowitz, D., Klassen, G. A., & Zierler, K. L. (1965). Effect of human growth hormone on muscle and adipose tissue metabolism in the forearm of man. The Journal of Clinical Investigation, 44, 51–61.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rabinowitz, D., & Zierler, K. L. (1963). A metabolic regulating device based on the actions of human growth hormone and of insulin, singly and together, on the human forearm. Nature, 199, 913–915.PubMedCrossRefGoogle Scholar
  131. Rasmussen, M. H. (2010). Obesity, growth hormone and weight loss. Molecular and Cellular Endocrinology, 316(2), 147–153. https://doi.org/10.1016/j.mce.2009.08.017.PubMedCrossRefGoogle Scholar
  132. Rasmussen, M. H., Hvidberg, A., Juul, A., Main, K. M., Gotfredsen, A., Skakkebaek, N. E., Hilsted, J., & Skakkebae, N. E. (1995). Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. The Journal of Clinical Endocrinology and Metabolism, 80(4), 1407–1415. https://doi.org/10.1210/jcem.80.4.7536210.PubMedCrossRefGoogle Scholar
  133. Reed, M. L., Merriam, G. R., & Kargi, A. Y. (2013). Adult growth hormone deficiency - benefits, side effects, and risks of growth hormone replacement. Front Endocrinol (Lausanne), 4, 64. https://doi.org/10.3389/fendo.2013.00064.CrossRefGoogle Scholar
  134. Reyes-Vidal, C., Fernandez, J. C., Bruce, J. N., Crisman, C., Conwell, I. M., Kostadinov, J., Geer, E. B., Post, K. D., & Freda, P. U. (2014). Prospective study of surgical treatment of acromegaly: Effects on ghrelin, weight, adiposity, and markers of CV risk. The Journal of Clinical Endocrinology and Metabolism, 99(11), 4124–4132. https://doi.org/10.1210/jc.2014-2259.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Richelsen, B., Pedersen, S. B., Borglum, J. D., Moller-Pedersen, T., Jorgensen, J., & Jorgensen, J. O. (1994). Growth hormone treatment of obese women for 5 wk: Effect on body composition and adipose tissue LPL activity. The American Journal of Physiology, 266(2 Pt 1), E211–E216.PubMedGoogle Scholar
  136. Richelsen, B., Pedersen, S. B., Kristensen, K., Borglum, J. D., Norrelund, H., Christiansen, J. S., & Jorgensen, J. O. (2000). Regulation of lipoprotein lipase and hormone-sensitive lipase activity and gene expression in adipose and muscle tissue by growth hormone treatment during weight loss in obese patients. Metabolism, 49(7), 906–911.PubMedCrossRefGoogle Scholar
  137. Robertson, K., Kopchick, J. J., & Liu, J. L. (2006). Growth hormone receptor gene deficiency causes delayed insulin responsiveness in skeletal muscles without affecting compensatory islet cell overgrowth in obese mice. American Journal of Physiology. Endocrinology and Metabolism, 291(3), E491–E498.PubMedCrossRefGoogle Scholar
  138. Rodriguez-Arnao, J., Jabbar, A., Fulcher, K., Besser, G. M., & Ross, R. J. (1999). Effects of growth hormone replacement on physical performance and body composition in GH deficient adults. Clinical Endocrinology, 51(1), 53–60.PubMedCrossRefGoogle Scholar
  139. Rogozinski, A., Furioso, A., Glikman, P., Junco, M., Laudi, R., Reyes, A., & Lowenstein, A. (2012). Thyroid nodules in acromegaly. Arquivos Brasileiros de Endocrinologia e Metabologia, 56(5), 300–304.PubMedCrossRefGoogle Scholar
  140. Rokkas, T., Pistiolas, D., Sechopoulos, P., Margantinis, G., & Koukoulis, G. (2008). Risk of colorectal neoplasm in patients with acromegaly: A meta-analysis. World Journal of Gastroenterology, 14(22), 3484–3489.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Romero, C. J., Ng, Y., Luque, R. M., Kineman, R. D., Koch, L., Bruning, J. C., & Radovick, S. (2010). Targeted deletion of somatotroph insulin-like growth factor-I signaling in a cell-specific knockout mouse model. Molecular Endocrinology, 24(5), 1077–1089. https://doi.org/10.1210/me.2009-0393.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sackmann-Sala, L., Berryman, D. E., Lubbers, E. R., Zhang, H., Vesel, C. B., Troike, K. M., Gosney, E. S., List, E. O., & Kopchick, J. J. (2013). Age-related and depot-specific changes in white adipose tissue of growth hormone receptor-null mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. https://doi.org/10.1093/gerona/glt110.CrossRefGoogle Scholar
  143. Sakharova, A. A., Horowitz, J. F., Surya, S., Goldenberg, N., Harber, M. P., Symons, K., & Barkan, A. (2008). Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. The Journal of Clinical Endocrinology and Metabolism, 93(7), 2755–2759. doi:jc.2008-0079. [pii]. https://doi.org/10.1210/jc.2008-0079.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Shadid, S., & Jensen, M. D. (2003). Effects of growth hormone administration in human obesity. Obesity Research, 11(2), 170–175.PubMedCrossRefGoogle Scholar
  145. Shevah, O., & Laron, Z. (2007). Patients with congenital deficiency of IGF-I seem protected from the development of malignancies: A preliminary report. Growth Hormone & IGF Research, 17(1), 54–57.CrossRefGoogle Scholar
  146. Shin-Hye Kim, Mi-Jung Park, (2017) Effects of growth hormone on glucose metabolism and insulin resistance in human. Annals of Pediatric Endocrinology & Metabolism 22(3):145–152.CrossRefGoogle Scholar
  147. Silha, J. V., Krsek, M., Hana, V., Marek, J., Jezkova, J., Weiss, V., & Murphy, L. J. (2003). Perturbations in adiponectin, leptin and resistin levels in acromegaly: Lack of correlation with insulin resistance. Clinical Endocrinology, 58(6), 736–742.PubMedCrossRefGoogle Scholar
  148. Skaggs, S. R., & Crist, D. M. (1991). Exogenous human growth hormone reduces body fat in obese women. Hormone Research, 35(1), 19–24.PubMedCrossRefGoogle Scholar
  149. Smuel, K., Kauli, R., Lilos, P., & Laron, Z. (2015). Growth, development, puberty and adult height before and during treatment in children with congenital isolated growth hormone deficiency. Growth Hormone & IGF Research : Official Journal of the Growth Hormone Research Society and the International IGF Research Society, 25(4), 182–188. https://doi.org/10.1016/j.ghir.2015.05.001.CrossRefGoogle Scholar
  150. Snyder, D. K., Clemmons, D. R., & Underwood, L. E. (1988). Treatment of obese, diet-restricted subjects with growth hormone for 11 weeks: Effects on anabolism, lipolysis, and body composition. The Journal of Clinical Endocrinology and Metabolism, 67(1), 54–61.PubMedCrossRefGoogle Scholar
  151. Snyder, D. K., Underwood, L. E., & Clemmons, D. R. (1990). Anabolic effects of growth hormone in obese diet-restricted subjects are dose dependent. The American Journal of Clinical Nutrition, 52(3), 431–437.PubMedCrossRefGoogle Scholar
  152. Snyder, D. K., Underwood, L. E., & Clemmons, D. R. (1995). Persistent lipolytic effect of exogenous growth hormone during caloric restriction. The American Journal of Medicine, 98(2), 129–134.PubMedCrossRefGoogle Scholar
  153. Sornson, M. W., Wu, W., Dasen, J. S., Flynn, S. E., Norman, D. J., O’Connell, S. M., Gukovsky, I., Carriere, C., Ryan, A. K., Miller, A. P., Zuo, L., Gleiberman, A. S., Andersen, B., Beamer, W. G., & Rosenfeld, M. G. (1996). Pituitary lineage determination by the prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature, 384(6607), 327–333. https://doi.org/10.1038/384327a0.PubMedCrossRefGoogle Scholar
  154. Stenholm, S., Metter, E. J., Roth, G. S., Ingram, D. K., Mattison, J. A., Taub, D. D., & Ferrucci, L. (2011). Relationship between plasma ghrelin, insulin, leptin, interleukin 6, adiponectin, testosterone and longevity in the Baltimore longitudinal study of aging. Aging Clinical and Experimental Research, 23(2), 153–158.PubMedPubMedCentralCrossRefGoogle Scholar
  155. Steuerman, R., Shevah, O., & Laron, Z. (2011). Congenital IGF1 deficiency tends to confer protection against post-natal development of malignancies. European Journal of Endocrinology, 164(4), 485–489. https://doi.org/10.1530/EJE-10-0859.PubMedCrossRefGoogle Scholar
  156. Stout, M. B., Swindell, W. R., Zhi, X., Rohde, K., List, E. O., Berryman, D. E., Kopchick, J. J., Gesing, A., Fang, Y., & Masternak, M. M. (2015). Transcriptome profiling reveals divergent expression shifts in brown and white adipose tissue from long-lived GHRKO mice. Oncotarget, 6(29), 26702–26715. https://doi.org/10.18632/oncotarget.5760.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Stout, M. B., Tchkonia, T., Pirtskhalava, T., Palmer, A. K., List, E. O., Berryman, D. E., Lubbers, E. R., Escande, C., Spong, A., Masternak, M. M., Oberg, A. L., LeBrasseur, N. K., Miller, R. A., Kopchick, J. J., Bartke, A., & Kirkland, J. L. (2014). Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY), 6(7), 575–586.CrossRefGoogle Scholar
  158. Sucunza, N., Barahona, M. J., Resmini, E., Fernandez-Real, J. M., Ricart, W., Farrerons, J., Rodriguez Espinosa, J., Marin, A. M., Puig, T., & Webb, S. M. (2009). A link between bone mineral density and serum adiponectin and visfatin levels in acromegaly. The Journal of Clinical Endocrinology and Metabolism, 94(10), 3889–3896.PubMedCrossRefGoogle Scholar
  159. Tagliaferri, M., Scacchi, M., Pincelli, A. I., Berselli, M. E., Silvestri, P., Montesano, A., Ortolani, S., Dubini, A., & Cavagnini, F. (1998). Metabolic effects of biosynthetic growth hormone treatment in severely energy-restricted obese women. International Journal of Obesity and Related Metabolic Disorders, 22(9), 836–841.PubMedCrossRefGoogle Scholar
  160. Troike, K. M., Henry, B. E., Jensen, E. A., Young, J. A., List, E. O., Kopchick, J. J., & Berryman, D. E. (2017). Impact of Growth Hormone on Regulation of Adipose Tissue. Comprehensive Physiology, 7(3), 819–840. https://doi.org/10.1002/cphy.c160027.
  161. van Vught, A. J., Nieuwenhuizen, A. G., Brummer, R. J., & Westerterp-Plantenga, M. S. (2008). Effects of oral ingestion of amino acids and proteins on the somatotropic axis. The Journal of Clinical Endocrinology and Metabolism, 93(2), 584–590. https://doi.org/10.1210/jc.2007-1784.PubMedCrossRefGoogle Scholar
  162. Vikman, K., Carlsson, B., Billig, H., & Eden, S. (1991). Expression and regulation of growth hormone (GH) receptor messenger ribonucleic acid (mRNA) in rat adipose tissue, adipocytes, and adipocyte precursor cells: GH regulation of GH receptor mRNA. Endocrinology, 129(3), 1155–1161.PubMedCrossRefGoogle Scholar
  163. Wang, Z., Al-Regaiey, K. A., Masternak, M. M., & Bartke, A. (2006). Adipocytokines and lipid levels in Ames dwarf and calorie-restricted mice. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(4), 323–331.PubMedCrossRefGoogle Scholar
  164. Wang, Z., Masternak, M. M., Al-Regaiey, K. A., & Bartke, A. (2007). Adipocytokines and the regulation of lipid metabolism in growth hormone transgenic and calorie-restricted mice. Endocrinology, 148(6), 2845–2853. https://doi.org/10.1210/en.2006-1313.PubMedCrossRefGoogle Scholar
  165. Wells, J. A. (1996). Binding in the growth hormone receptor complex. Proceedings of the National Academy of Sciences, 93(1), 1–6.CrossRefGoogle Scholar
  166. Wu, Y., Liu, C., Sun, H., Vijayakumar, A., Giglou, P. R., Qiao, R., Oppenheimer, J., Yakar, S., & LeRoith, D. (2011). Growth hormone receptor regulates beta cell hyperplasia and glucose-stimulated insulin secretion in obese mice. The Journal of Clinical Investigation, 121(6), 2422–2426. https://doi.org/10.1172/JCI45027.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yakar, S., Setser, J., Zhao, H., Stannard, B., Haluzik, M., Glatt, V., Bouxsein, M. L., Kopchick, J. J., & LeRoith, D. (2004). Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. The Journal of Clinical Investigation, 113(1), 96–105.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yang, S., Mulder, H., Holm, C., & Eden, S. (2004). Effects of growth hormone on the function of beta-adrenoceptor subtypes in rat adipocytes. Obesity Research, 12(2), 330–339. https://doi.org/10.1038/oby.2004.41.PubMedCrossRefGoogle Scholar
  169. Yang, T., Householder, L. A., Lubbers, E. R., List, E. O., Troike, K., Vesel, C., Duran-Ortiz, S., Kopchick, J. J., & Berryman, D. E. (2015). Growth hormone receptor antagonist transgenic mice are protected from hyperinsulinemia and glucose intolerance despite obesity when placed on a HF diet. Endocrinology, 156(2), 555–564. https://doi.org/10.1210/en.2014-1617.PubMedCrossRefGoogle Scholar
  170. Yip, R. G., & Goodman, H. M. (1999). Growth hormone and dexamethasone stimulate lipolysis and activate adenylyl cyclase in rat adipocytes by selectively shifting Gi alpha2 to lower density membrane fractions. Endocrinology, 140(3), 1219–1227. https://doi.org/10.1210/endo.140.3.6580.PubMedCrossRefGoogle Scholar
  171. Zhang, Q., Kohler, M., Yang, S. N., Zhang, F., Larsson, O., & Berggren, P. O. (2004). Growth hormone promotes ca(2+)-induced Ca2+ release in insulin-secreting cells by ryanodine receptor tyrosine phosphorylation. Molecular Endocrinology, 18(7), 1658–1669. https://doi.org/10.1210/me.2004-0044.PubMedCrossRefGoogle Scholar
  172. Zhou, Y., Xu, B. C., Maheshwari, H. G., He, L., Reed, M., Lozykowski, M., Okada, S., Cataldo, L., Coschigamo, K., Wagner, T. E., Baumann, G., & Kopchick, J. J. (1997). A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse). Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13215–13220.PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zou, L., Menon, R. K., & Sperling, M. A. (1997). Induction of mRNAs for the growth hormone receptor gene during mouse 3T3-L1 preadipocyte differentiation. Metabolism, 46(1), 114–118.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Brooke Henry
    • 1
    • 2
  • Elizabeth A. Jensen
    • 2
    • 3
  • Edward O. List
    • 1
    • 2
  • Darlene E. Berryman
    • 1
    • 2
    • 4
  1. 1.The Diabetes Institute, Konneker Research LabsOhio UniversityAthensUSA
  2. 2.Edison Biotechnology Institute, Konneker Research LabsOhio UniversityAthensUSA
  3. 3.Translational Biomedical Sciences, Graduate CollegeOhio UniversityAthensUSA
  4. 4.Department of Biomedical Sciences, Heritage College of Osteopathic MedicineOhio UniversityAthensUSA

Personalised recommendations