The Thyroid Hormone Axis: Its Roles in Body Weight Regulation, Obesity, and Weight Loss

  • Kristen Rachel VellaEmail author


In humans and other vertebrates, thyroid hormone is essential to the development and function of every tissue in the body. During adulthood, thyroid hormone is critical to mediating changes in metabolism as it is key to the regulation of resting energy expenditure, body temperature, and hepatic lipid metabolism, to name a few. The hypothalamic-pituitary-thyroid (HPT) axis functions as a negative feedback loop where thyrotropin-releasing hormone (TRH) is released from neurons in the paraventricular nucleus of the hypothalamus and stimulates the secretion of thyroid-stimulating hormone (TSH) from the pituitary. TSH signals the release of thyroid hormones, both the prohormone thyroxine (T4) and the active hormone triiodothyronine (T3) from the thyroid. Through central actions, TRH and TSH are negatively regulated by T3 at several levels including gene transcription and prohormone processing. The HPT axis is a dynamic system that responds to environment including food availability, environmental temperature, weight loss, and illness normally through central mechanisms. The following chapter will focus on the regulation of thyroid hormone, its role in body weight, and how weight loss can affect thyroid hormone levels. Currently, thyroid hormone is a poor therapeutic to treat obesity and to elevate energy expenditure because it has detrimental effects such as atrial fibrillation, osteoporosis, and muscle wasting. Researchers are focusing on thyroid hormone analogs as therapeutics for weight loss to eliminate the negative side effects. As detailed below, thyroid hormone action in peripheral tissues can be just as important to energy expenditure as the central regulation of thyroid hormone.


  1. Abel, E. D., Ahima, R. S., Boers, M. E., Elmquist, J. K., & Wondisford, F. E. (2001). Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. The Journal of Clinical Investigation, 107, 1017–1023.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahima, R. S., Prabakaran, D., Mantzoros, C., Qu, D., Lowell, B., Maratos-Flier, E., & Flier, J. S. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382, 250–252.CrossRefPubMedGoogle Scholar
  3. Alland, L., Muhle, R., Hou, H., Jr., Potes, J., Chin, L., Schreiber-Agus, N., & DePinho, R. A. (1997). Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature, 387, 49–55.CrossRefPubMedGoogle Scholar
  4. Antonelli, A., Fallahi, P., Ferrari, S. M., Di Domenicantonio, A., Moreno, M., Lanni, A., & Goglia, F. (2011). 3,5-diiodo-L-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. Journal of Biological Regulators and Homeostatic Agents, 25, 655–660.PubMedGoogle Scholar
  5. Astapova, I., Lee, L. J., Morales, C., Tauber, S., Bilban, M., & Hollenberg, A. N. (2008). The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105, 19544–19549.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Astapova, I., et al. (2011). The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis. Molecular Endocrinology (Baltimore, MD), 25, 212–224.CrossRefGoogle Scholar
  7. Barker, S. B. (1951). Mechanism of action of the thyroid hormone. Physiological Reviews, 31, 205–243.CrossRefPubMedGoogle Scholar
  8. Baxter, J. D., & Webb, P. (2009). Thyroid hormone mimetics: Potential applications in atherosclerosis, obesity and type 2 diabetes. Nature Reviews. Drug Discovery, 8, 308–320. Scholar
  9. Beck-Peccoz, P., Amr, S., Menezes-Ferreira, M. M., Faglia, G., & Weintraub, B. D. (1985). Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. The New England Journal of Medicine, 312, 1085–1090. Scholar
  10. Benvenga, S., Cahnmann, H. J., Rader, D., Kindt, M., Facchiano, A., & Robbins, J. (1994). Thyroid hormone binding to isolated human apolipoproteins A-II, C-I, C-II, and C-III: Homology in thyroxine binding sites. Thyroid, 4, 261–267. Scholar
  11. Bjorbaek, C., & Hollenberg, A. N. (2002). Leptin and melanocortin signaling in the hypothalamus. Vitamins and Hormones, 65, 281–311.CrossRefPubMedGoogle Scholar
  12. Blake, N. G., Eckland, D. J., Foster, O. J., & Lightman, S. L. (1991). Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology, 129, 2714–2718.CrossRefPubMedGoogle Scholar
  13. Blake, N. G., Johnson, M. R., Eckland, D. J., Foster, O. J., & Lightman, S. L. (1992). Effect of food deprivation and altered thyroid status on the hypothalamic-pituitary-thyroid axis in the rat. The Journal of Endocrinology, 133, 183–188.CrossRefPubMedGoogle Scholar
  14. Bobek, S., Sechman, A., Niezgoda, J., & Jacek, T. (2002). Reverse 3,3′,5′-triiodothyronine suppresses increase in free fatty acids in chickens elicited by dexamethasone or adrenaline. Journal of Veterinary Medicine. A, Physiology, Pathology, Clinical Medicine, 49, 121–124.CrossRefPubMedGoogle Scholar
  15. Bochukova, E., et al. (2012). A mutation in the thyroid hormone receptor alpha gene. The New England Journal of Medicine, 366, 243–249. Scholar
  16. Bowers, C. R., Redding, T. W., & Schally, A. V. (1965). Effect of thyrotropin releasing factor (TRF) of ovine, bovine, porcine and human origin on thyrotropin release in vitro and in vivo. Endocrinology, 77, 609–616. Scholar
  17. Brent, G. A. (2012). Mechanisms of thyroid hormone action. The Journal of Clinical Investigation, 122, 3035–3043. Scholar
  18. Burch, H. B., & Wartofsky, L. (1993). Life-threatening thyrotoxicosis. Thyroid storm Endocrinol Metab Clin North Am, 22, 263–277.PubMedCrossRefGoogle Scholar
  19. Cable, E. E., et al. (2009). Reduction of hepatic steatosis in rats and mice after treatment with a liver-targeted thyroid hormone receptor agonist. Hepatology, 49, 407–417. Scholar
  20. Celi, F. S., et al. (2011). Metabolic effects of liothyronine therapy in hypothyroidism: A randomized, double-blind, crossover trial of liothyronine versus levothyroxine. The Journal of Clinical Endocrinology and Metabolism, 96, 3466–3474. Scholar
  21. Chiamolera, M. I., & Wondisford, F. E. (2009). Minireview: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology, 150, 1091–1096.CrossRefPubMedGoogle Scholar
  22. Connors, J. M., DeVito, W. J., & Hedge, G. A. (1985). Effects of food deprivation on the feedback regulation of the hypothalamic-pituitary-thyroid axis of the rat. Endocrinology, 117, 900–906.CrossRefPubMedGoogle Scholar
  23. Costa-e-Sousa, R. H., & Hollenberg, A. N. (2012). Minireview: The neural regulation of the hypothalamic-pituitary-thyroid axis. Endocrinology, 153, 4128–4135.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cypess, A. M., et al. (2009). Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine, 360, 1509–1517. Scholar
  25. Du Bois, E. F. (1936). Basal metabolism in health and disease (3rd ed.). Philadelphia: Lea & Febiger.Google Scholar
  26. Erion, M. D., et al. (2007). Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proceedings of the National Academy of Sciences of the United States of America, 104, 15490–15495. Scholar
  27. Farwell, A. P., Lynch, R. M., Okulicz, W. C., Comi, A. M., & Leonard, J. L. (1990). The actin cytoskeleton mediates the hormonally regulated translocation of type II iodothyronine 5′-deiodinase in astrocytes. The Journal of Biological Chemistry, 265, 18546–18553.PubMedGoogle Scholar
  28. Fekete, C., et al. (2001). Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology, 142, 2606–2613.CrossRefPubMedGoogle Scholar
  29. Fekete, C., et al. (2000). alpha-Melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. The Journal of Neuroscience, 20, 1550–1558.CrossRefPubMedGoogle Scholar
  30. Fekete, C., Sarkar, S., Rand, W. M., Harney, J. W., Emerson, C. H., Bianco, A. C., & Lechan, R. M. (2002). Agouti-related protein (AGRP) has a central inhibitory action on the hypothalamic-pituitary-thyroid (HPT) axis; comparisons between the effect of AGRP and neuropeptide Y on energy homeostasis and the HPT axis. Endocrinology, 143, 3846–3853.CrossRefPubMedGoogle Scholar
  31. Flores-Morales, A., Gullberg, H., Fernandez, L., Stahlberg, N., Lee, N. H., Vennstrom, B., & Norstedt, G. (2002). Patterns of liver gene expression governed by TRbeta. Molecular Endocrinology (Baltimore, MD), 16, 1257–1268. Scholar
  32. Forrest, D., Erway, L. C., Ng, L., Altschuler, R., & Curran, T. (1996). Thyroid hormone receptor beta is essential for development of auditory function. Nature Genetics, 13, 354–357. Scholar
  33. Forrest, D., & Vennstrom, B. (2000). Functions of thyroid hormone receptors in mice. Thyroid, 10, 41–52. Scholar
  34. Friesema, E. C., Jansen, J., & Visser, T. J. (2005). Thyroid hormone transporters. Biochemical Society Transactions, 33, 228–232. Scholar
  35. Friesema, E. C., Visser, W. E., & Visser, T. J. (2010). Genetics and phenomics of thyroid hormone transport by MCT8. Molecular and Cellular Endocrinology, 322, 107–113. Scholar
  36. Geras, E. J., & Gershengorn, M. C. (1982). Evidence that TRH stimulates secretion of TSH by two calcium-mediated mechanisms. The American Journal of Physiology, 242, E109–E114.CrossRefPubMedGoogle Scholar
  37. Gereben, B., McAninch, E. A., Ribeiro, M. O., & Bianco, A. C. (2015). Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nature Reviews. Endocrinology, 11, 642–652. Scholar
  38. Giudetti, A. M., Leo, M., Siculella, L., & Gnoni, G. V. (2006). Hypothyroidism down-regulates mitochondrial citrate carrier activity and expression in rat liver. Biochimica et Biophysica Acta, 1761, 484–491. Scholar
  39. Goldstein, J. L., DeBose-Boyd, R. A., & Brown, M. S. (2006). Protein sensors for membrane sterols. Cell, 124, 35–46. Scholar
  40. Grant, N. (2007). The role of triiodothyronine-induced substrate cycles in the hepatic response to overnutrition: Thyroid hormone as an antioxidant. Medical Hypotheses, 68, 641–649. Scholar
  41. Grasselli, E., Canesi, L., Voci, A., De Matteis, R., Demori, I., Fugassa, E., & Vergani, L. (2008). Effects of 3,5-diiodo-L-thyronine administration on the liver of high fat diet-fed rats. Experimental Biology and Medicine (Maywood, N.J.), 233, 549–557. Scholar
  42. Greer, M. A. (1951). Evidence of hypothalamic control of the pituitary release of thyrotropin. Proceedings of the Society for Experimental Biology and Medicine, 77, 603–608.CrossRefPubMedGoogle Scholar
  43. Guillemin, R., Sakiz, E., & Ward, D. N. (1965). Further purification of Tsh-releasing factor (Trf) from sheep hypothalamic tissues, with observations on the amino acid composition. Proceedings of the Society for Experimental Biology and Medicine, 118, 1132–1137.CrossRefPubMedGoogle Scholar
  44. Guillemin, R., Yamazaki, E., Gard, D. A., Jutisz, M., & Sakiz, E. (1963). In vitro secretion of thyrotropin (Tsh): Stimulation by a hypothalamic peptide (Trf). Endocrinology, 73, 564–572. Scholar
  45. Gullberg, H., Rudling, M., Forrest, D., Angelin, B., & Vennstrom, B. (2000). Thyroid hormone receptor beta-deficient mice show complete loss of the normal cholesterol 7alpha-hydroxylase (CYP7A) response to thyroid hormone but display enhanced resistance to dietary cholesterol. Molecular Endocrinology (Baltimore, MD), 14, 1739–1749. Scholar
  46. Gullberg, H., Rudling, M., Salto, C., Forrest, D., Angelin, B., & Vennstrom, B. (2002). Requirement for thyroid hormone receptor beta in T3 regulation of cholesterol metabolism in mice. Molecular Endocrinology (Baltimore, MD), 16, 1767–1777. Scholar
  47. Haber, R. S., Ismail-Beigi, F., & Loeb, J. N. (1988). Time course of na,k transport and other metabolic responses to thyroid hormone in clone 9 cells. Endocrinology, 123, 238–247. Scholar
  48. Halachmi, S., Marden, E., Martin, G., MacKay, H., Abbondanza, C., & Brown, M. (1994). Estrogen receptor-associated proteins: Possible mediators of hormone-induced transcription. Science (New York, NY), 264, 1455–1458.CrossRefGoogle Scholar
  49. Heijlen, M., et al. (2014). Knockdown of type 3 iodothyronine deiodinase severely perturbs both embryonic and early larval development in zebrafish. Endocrinology, 155, 1547–1559. Scholar
  50. Heinzel, T., et al. (1997). A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature, 387, 43–48.CrossRefPubMedGoogle Scholar
  51. Hu, X., & Lazar, M. A. (1999). The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature, 402, 93–96. Scholar
  52. Jackson-Hayes, L., et al. (2003). A thyroid hormone response unit formed between the promoter and first intron of the carnitine palmitoyltransferase-Ialpha gene mediates the liver-specific induction by thyroid hormone. The Journal of Biological Chemistry, 278, 7964–7972. Scholar
  53. Jepsen, K., Gleiberman, A. S., Shi, C., Simon, D. I., & Rosenfeld, M. G. (2008). Cooperative regulation in development by SMRT and FOXP1. Genes & Development, 22, 740–745. Scholar
  54. Jepsen, K., et al. (2000). Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell, 102, 753–763.CrossRefPubMedGoogle Scholar
  55. Kaneshige, M., et al. (2001). A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 15095–15100. Scholar
  56. Katzeff, H. L., Yang, M. U., Presta, E., Leibel, R. L., Hirsch, J., & Van Itallie, T. B. (1990). Calorie restriction and iopanoic acid effects on thyroid hormone metabolism. The American Journal of Clinical Nutrition, 52, 263–266.CrossRefPubMedGoogle Scholar
  57. Klein, I., & Danzi, S. (2007). Thyroid disease and the heart. Circulation, 116, 1725–1735. Scholar
  58. Klieverik, L. P., et al. (2009). Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proceedings of the National Academy of Sciences of the United States of America, 106, 5966–5971. Scholar
  59. Klieverik, L. P., Sauerwein, H. P., Ackermans, M. T., Boelen, A., Kalsbeek, A., & Fliers, E. (2008). Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. American Journal of Physiology, 294, E513–E520. Scholar
  60. Kopp, P. (2005). Thyroid hormone synthesis: Thyroid iodine metabolism. In L. U. R. Braverman (Ed.), Wegner and Ingbar's the thyroid: A fundamental and clinical text (pp. 52–76). USA: Lippincott Williams & Wilkins.Google Scholar
  61. Lanni, A., et al. (2005). 3,5-diiodo-L-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. The FASEB Journal, 19, 1552–1554. Scholar
  62. Lazar, M. A. (1993). Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocrine Reviews, 14, 184–193.PubMedGoogle Scholar
  63. Le, T. N., Celi, F. S., & Wickham, E. P., 3rd. (2016). Thyrotropin levels are associated with cardiometabolic risk factors in euthyroid adolescents. Thyroid, 26, 1441–1449. Scholar
  64. Lechan, R. M., & Hollenberg, A. N. (2003). Thyrotropin-releasing hormone (TRH). In H. L. Henry & A. W. Norman (Eds.), Encyclopedia of hormones (pp. 510–524). New York: Elsevier Science.CrossRefGoogle Scholar
  65. Lechan, R. M., Wu, P., Jackson, I. M., Wolf, H., Cooperman, S., Mandel, G., & Goodman, R. H. (1986). Thyrotropin-releasing hormone precursor: Characterization in rat brain. Science (New York, NY), 231, 159–161.CrossRefGoogle Scholar
  66. Legradi, G., Emerson, C. H., Ahima, R. S., Flier, J. S., & Lechan, R. M. (1997). Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology, 138, 2569–2576.CrossRefPubMedGoogle Scholar
  67. Legradi, G., & Lechan, R. M. (1998). The arcuate nucleus is the major source for neuropeptide Y-innervation of thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology, 139, 3262–3270.CrossRefPubMedGoogle Scholar
  68. Lombardi, A., Lanni, A., Moreno, M., Brand, M. D., & Goglia, F. (1998). Effect of 3,5-di-iodo-L-thyronine on the mitochondrial energy-transduction apparatus. The Biochemical Journal, 330(Pt 1), 521–526.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Lonard, D. M., & O'Malley, B. W. (2007). Nuclear receptor coregulators: Judges, juries, and executioners of cellular regulation. Molecular Cell, 27, 691–700. Scholar
  70. Lopez, D., Abisambra Socarras, J. F., Bedi, M., & Ness, G. C. (2007). Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochimica et Biophysica Acta, 1771, 1216–1225. Scholar
  71. Maglich, J. M., Watson, J., McMillen, P. J., Goodwin, B., Willson, T. M., & Moore, J. T. (2004). The nuclear receptor CAR is a regulator of thyroid hormone metabolism during caloric restriction. The Journal of Biological Chemistry, 279, 19832–19838.CrossRefPubMedGoogle Scholar
  72. Mangus-Levy, A. (1895). Uber den respiratorischen Gaswechsel unter dem Einfluss der Thyroiden sowie unter verschiedenen physiologischen. Zustanden Berlin klinische Wochenschrift, 32, 650–652.Google Scholar
  73. Martin, J. B., Boshans, R., & Reichlin, S. (1970). Feedback regulation of TSH secretion in rats with hypothalamic lesions. Endocrinology, 87, 1032–1040. Scholar
  74. Menezes-Ferreira, M. M., Petrick, P. A., & Weintraub, B. D. (1986). Regulation of thyrotropin (TSH) bioactivity by TSH-releasing hormone and thyroid hormone. Endocrinology, 118, 2125–2130. Scholar
  75. Mittag, J., et al. (2013). Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. The Journal of Clinical Investigation, 123, 509–516. Scholar
  76. Mol, J. A., & Visser, T. J. (1985). Rapid and selective inner ring deiodination of thyroxine sulfate by rat liver deiodinase. Endocrinology, 117, 8–12.CrossRefPubMedGoogle Scholar
  77. Mollica, M. P., et al. (2009). 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. Journal of Hepatology, 51, 363–370. Scholar
  78. Moreno, M., Lanni, A., Lombardi, A., & Goglia, F. (1997). How the thyroid controls metabolism in the rat: Different roles for triiodothyronine and diiodothyronines. The Journal of Physiology, 505(Pt 2), 529–538.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Moreno, M., et al. (2011). 3,5-Diiodo-L-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. The FASEB Journal, 25, 3312–3324. Scholar
  80. Mullur, R., Liu, Y. Y., & Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiological Reviews, 94, 355–382. Scholar
  81. Nagy, L., et al. (1997). Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell, 89, 373–380.CrossRefPubMedGoogle Scholar
  82. Nagy, L., et al. (1999). Mechanism of corepressor binding and release from nuclear hormone receptors. Genes & Development, 13, 3209–3216.CrossRefGoogle Scholar
  83. Ng, L., Cordas, E., Wu, X., Vella, K. R., Hollenberg, A. N., & Forrest, D. (2015). Age-related hearing loss and degeneration of Cochlear hair cells in mice lacking thyroid hormone receptor beta1. Endocrinology, 156, 3853–3865. Scholar
  84. Ng, L., et al. (2004). Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proceedings of the National Academy of Sciences of the United States of America, 101, 3474–3479. Scholar
  85. Ng, L., et al. (2009). A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology, 150, 1952–1960. Scholar
  86. Ng, L., et al. (2001). A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nature Genetics, 27, 94–98. Scholar
  87. Nikrodhanond, A. A., et al. (2006). Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. The Journal of Biological Chemistry, 281, 5000–5007.CrossRefPubMedGoogle Scholar
  88. Onate, S. A., Tsai, S. Y., Tsai, M. J., & O'Malley, B. W. (1995). Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science (New York, NY), 270, 1354–1357.CrossRefGoogle Scholar
  89. Paradies, G., & Ruggiero, F. M. (1990). Enhanced activity of the tricarboxylate carrier and modification of lipids in hepatic mitochondria from hyperthyroid rats. Archives of Biochemistry and Biophysics, 278, 425–430.CrossRefPubMedGoogle Scholar
  90. Paradies, G., Ruggiero, F. M., Petrosillo, G., & Quagliariello, E. (1996). Stimulation of carnitine acylcarnitine translocase activity in heart mitochondria from hyperthyroid rats. FEBS Letters, 397, 260–262.CrossRefPubMedGoogle Scholar
  91. Paradies, G., Ruggiero, F. M., Petrosillo, G., & Quagliariello, E. (1997). Alterations in carnitine-acylcarnitine translocase activity and in phospholipid composition in heart mitochondria from hypothyroid rats. Biochimica et Biophysica Acta, 1362, 193–200.CrossRefPubMedGoogle Scholar
  92. Park, E. A., Song, S., Vinson, C., & Roesler, W. J. (1999). Role of CCAAT enhancer-binding protein beta in the thyroid hormone and cAMP induction of phosphoenolpyruvate carboxykinase gene transcription. The Journal of Biological Chemistry, 274, 211–217.CrossRefPubMedGoogle Scholar
  93. Perello, M., Friedman, T., Paez-Espinosa, V., Shen, X., Stuart, R. C., & Nillni, E. A. (2006). Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology, 147, 2705–2716.CrossRefPubMedGoogle Scholar
  94. Perello, M., & Nillni, E. A. (2007). The biosynthesis and processing of neuropeptides: Lessons from prothyrotropin releasing hormone (proTRH). Frontiers in Bioscience, 12, 3554–3565.CrossRefPubMedGoogle Scholar
  95. Perissi, V., et al. (1999). Molecular determinants of nuclear receptor-corepressor interaction. Genes & Development, 13, 3198–3208.CrossRefGoogle Scholar
  96. Perra, A., et al. (2008). Thyroid hormone (T3) and TRbeta agonist GC-1 inhibit/reverse nonalcoholic fatty liver in rats. The FASEB Journal, 22, 2981–2989. Scholar
  97. Piehl, S., Hoefig, C. S., Scanlan, T. S., & Kohrle, J. (2011). Thyronamines--past, present, and future. Endocrine Reviews, 32, 64–80. Scholar
  98. Psarra, A. M., Solakidi, S., & Sekeris, C. E. (2006). The mitochondrion as a primary site of action of steroid and thyroid hormones: Presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Molecular and Cellular Endocrinology, 246, 21–33. Scholar
  99. Qatanani, M., Zhang, J., & Moore, D. D. (2005). Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology, 146, 995–1002.CrossRefPubMedGoogle Scholar
  100. Refetoff, S., Weiss, R. E., & Usala, S. J. (1993). The syndromes of resistance to thyroid hormone. Endocrine Reviews, 14, 348–399.PubMedGoogle Scholar
  101. Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Letters, 582, 46–53. Scholar
  102. Rosenbaum, M., et al. (2005). Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. The Journal of Clinical Investigation, 115, 3579–3586.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Rosenbaum, M., Murphy, E. M., Heymsfield, S. B., Matthews, D. E., & Leibel, R. L. (2002). Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. The Journal of Clinical Endocrinology and Metabolism, 87, 2391–2394.CrossRefPubMedGoogle Scholar
  104. Santillo, A., Burrone, L., Falvo, S., Senese, R., Lanni, A., & Chieffi Baccari, G. (2013). Triiodothyronine induces lipid oxidation and mitochondrial biogenesis in rat Harderian gland. The Journal of Endocrinology, 219, 69–78. Scholar
  105. Schally, A. V., Redding, T. W., Bowers, C. Y., & Barrett, J. F. (1969). Isolation and properties of porcine thyrotropin-releasing hormone. The Journal of Biological Chemistry, 244, 4077–4088.PubMedGoogle Scholar
  106. Schaner, P., Todd, R. B., Seidah, N. G., & Nillni, E. A. (1997). Processing of prothyrotropin-releasing hormone by the family of prohormone convertases. The Journal of Biological Chemistry, 272, 19958–19968.CrossRefPubMedGoogle Scholar
  107. Segerson, T. P., Kauer, J., Wolfe, H. C., Mobtaker, H., Wu, P., Jackson, I. M., & Lechan, R. M. (1987). Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science (New York, NY), 238, 78–80.CrossRefGoogle Scholar
  108. Shin, D. J., & Osborne, T. F. (2003). Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding Protein-2 (SREBP-2). The Journal of Biological Chemistry, 278, 34114–34118. Scholar
  109. Shupnik, M. A., Weck, J., & Hinkle, P. M. (1996). Thyrotropin (TSH)-releasing hormone stimulates TSH beta promoter activity by two distinct mechanisms involving calcium influx through L type Ca2+ channels and protein kinase C. Molecular Endocrinology (Baltimore, MD), 10, 90–99. Scholar
  110. Siegrist-Kaiser, C. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M., & Leonard, J. L. (1990). Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. The Journal of Biological Chemistry, 265, 5296–5302.PubMedGoogle Scholar
  111. Silva, J. E. (2006). Thermogenic mechanisms and their hormonal regulation. Physiological Reviews, 86, 435–464.CrossRefPubMedGoogle Scholar
  112. Spencer, C. A., Lum, S. M., Wilber, J. F., Kaptein, E. M., & Nicoloff, J. T. (1983). Dynamics of serum thyrotropin and thyroid hormone changes in fasting. The Journal of Clinical Endocrinology and Metabolism, 56, 883–888.CrossRefPubMedGoogle Scholar
  113. St Germain, D. L., Galton, V. A., & Hernandez, A. (2009). Minireview: Defining the roles of the iodothyronine deiodinases: Current concepts and challenges. Endocrinology, 150, 1097–1107. Scholar
  114. Sugrue, M. L., Vella, K. R., Morales, C., Lopez, M. E., & Hollenberg, A. N. (2010). The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology, 151, 793–801.CrossRefPubMedGoogle Scholar
  115. Taylor, T., Gesundheit, N., & Weintraub, B. D. (1986). Effects of in vivo bolus versus continuous TRH administration on TSH secretion, biosynthesis, and glycosylation in normal and hypothyroid rats. Molecular and Cellular Endocrinology, 46, 253–261.CrossRefPubMedGoogle Scholar
  116. Thijssen-Timmer, D. C., Schiphorst, M. P., Kwakkel, J., Emter, R., Kralli, A., Wiersinga, W. M., & Bakker, O. (2006). PGC-1alpha regulates the isoform mRNA ratio of the alternatively spliced thyroid hormone receptor alpha transcript. Journal of Molecular Endocrinology, 37, 251–257. Scholar
  117. Thompson, G. R., Soutar, A. K., Spengel, F. A., Jadhav, A., Gavigan, S. J., & Myant, N. B. (1981). Defects of receptor-mediated low density lipoprotein catabolism in homozygous familial hypercholesterolemia and hypothyroidism in vivo. Proceedings of the National Academy of Sciences of the United States of America, 78, 2591–2595.CrossRefPubMedPubMedCentralGoogle Scholar
  118. Trost, S. U., et al. (2000). The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology, 141, 3057–3064. Scholar
  119. Vaitkus, J. A., Farrar, J. S., & Celi, F. S. (2015). Thyroid hormone mediated modulation of energy expenditure. International Journal of Molecular Sciences, 16, 16158–16175. Scholar
  120. van Marken Lichtenbelt, W. D., et al. (2009). Cold-activated brown adipose tissue in healthy men. The New England Journal of Medicine, 360, 1500–1508. Scholar
  121. Vansell, N. R., & Klaassen, C. D. (2001). Increased biliary excretion of thyroxine by microsomal enzyme inducers. Toxicology and Applied Pharmacology, 176, 187–194.CrossRefPubMedGoogle Scholar
  122. Vansell, N. R., & Klaassen, C. D. (2002). Increase in rat liver UDP-glucuronosyltransferase mRNA by microsomal enzyme inducers that enhance thyroid hormone glucuronidation. Drug Metabolism and Disposition, 30, 240–246.CrossRefPubMedGoogle Scholar
  123. Vella, K. R., & Hollenberg, A. N. (2009). The ups and downs of thyrotropin-releasing hormone. Endocrinology, 150, 2021–2023.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Vella, K. R., et al. (2014). Thyroid hormone signaling in vivo requires a balance between coactivators and corepressors. Molecular and Cellular Biology, 34, 1564–1575. Scholar
  125. Vella, K. R. et al. (2011) NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways Cell Metabolism 14:780-790 doi:S1550–4131(11)00403–7 [pii]
  126. Villicev, C. M., et al. (2007). Thyroid hormone receptor beta-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. The Journal of Endocrinology, 193, 21–29. Scholar
  127. Visser, T. J. (1996). Pathways of thyroid hormone metabolism. Acta Medica Austriaca, 23, 10–16.PubMedGoogle Scholar
  128. Weiss, R. E., Gehin, M., Xu, J., Sadow, P. M., O'Malley, B. W., Chambon, P., & Refetoff, S. (2002). Thyroid function in mice with compound heterozygous and homozygous disruptions of SRC-1 and TIF-2 coactivators: Evidence for haploinsufficiency. Endocrinology, 143, 1554–1557.CrossRefPubMedGoogle Scholar
  129. Weiss, R. E., Xu, J., Ning, G., Pohlenz, J., O'Malley, B. W., & Refetoff, S. (1999). Mice deficient in the steroid receptor co-activator 1 (SRC-1) are resistant to thyroid hormone. The EMBO Journal, 18, 1900–1904.CrossRefPubMedPubMedCentralGoogle Scholar
  130. Wrutniak, C., et al. (1995). A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. The Journal of Biological Chemistry, 270, 16347–16354.CrossRefPubMedGoogle Scholar
  131. Wulf, A., Harneit, A., Kroger, M., Kebenko, M., Wetzel, M. G., & Weitzel, J. M. (2008). T3-mediated expression of PGC-1alpha via a far upstream located thyroid hormone response element. Molecular and Cellular Endocrinology, 287, 90–95. Scholar
  132. Yamada, M., et al. (1995). Activation of the thyrotropin-releasing hormone (TRH) receptor by a direct precursor of TRH, TRH-Gly. Neuroscience Letters, 196, 109–112.CrossRefPubMedGoogle Scholar
  133. Yamada, M., et al. (1997). Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proceedings of the National Academy of Sciences of the United States of America, 94, 10862–10867.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Yang, Z., & Privalsky, M. L. (2001). Isoform-specific transcriptional regulation by thyroid hormone receptors: Hormone-independent activation operates through a steroid receptor mode of co-activator interaction. Molecular Endocrinology (Baltimore, MD), 15, 1170–1185. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations