Solving Discrete Logarithm Problem in an Interval Using Periodic Iterates

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10631)

Abstract

The Pollard’s kangaroos method can solve the discrete logarithm problem in an interval. We present an improvement of the classic algorithm, which reduces the cost of kangaroos’ jumps by using the sine function to implement periodic iterates and giving some pre-computation. Our experiments show that this improvement is worthy of attention.

Keywords

Discrete logarithm problem Pollard’s kangaroos method Pollard’s rho method 

Notes

Acknowledgements

This work is partially supported by National Key R&D Program of China (2017YFB0802502) and NSF (No. 61272039).

References

  1. 1.
    McCurley, K.: The discrete logarithm problem. In: Proceedings of the Symposium in Applied Mathematics, pp. 49–74. AMS (1990)Google Scholar
  2. 2.
    Gennaro, R.: An improved pseudo-random generator based on discrete log. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 469–481. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_29CrossRefGoogle Scholar
  3. 3.
    Patel, S., Sundaram, G.S.: An efficient discrete log pseudo random generator. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055737CrossRefGoogle Scholar
  4. 4.
    van Oorschot, P.C., Wiener, M.J.: On Diffie-Hellman key agreement with short exponents. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 332–343. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68339-9_29CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30576-7_18CrossRefGoogle Scholar
  6. 6.
    Gaudry, P., Schost, É.: A low-memory parallel version of Matsuo, Chao, and Tsujii’s Algorithm. In: Buell, D. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 208–222. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24847-7_15CrossRefGoogle Scholar
  7. 7.
    Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_1CrossRefGoogle Scholar
  8. 8.
    Gopalakrishnan, K., Thériault, N., Yao, C.Z.: Solving discrete logarithms from partial knowledge of the key. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 224–237. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77026-8_17CrossRefGoogle Scholar
  9. 9.
    Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a prime order subgroup. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 249–263. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052240CrossRefGoogle Scholar
  10. 10.
    Galbraith, S.D., Pollard, J.M., Ruprai, R.S.: Computing discrete logarithm in an interval. Math. Comput. 82(282), 1181–1195 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cheon, J.H., Hong, J., Kim, M.: Speeding up the Pollard rho method on prime fields. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 471–488. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_29CrossRefGoogle Scholar
  12. 12.
    Quisquater, J.-J., Delescaille, J.-P.: How easy is collision search? Application to DES. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 429–434. Springer, Heidelberg (1990).  https://doi.org/10.1007/3-540-46885-4_43CrossRefGoogle Scholar
  13. 13.
    Pollard, J.M.: Kangaroos, Monopoly and Discrete Logarithms. J. Cryptol. 4, 437–447 (2000)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations