Advertisement

Oocarpa Pine (Pinus Oocarpa var. Oocarpa Schiede)

  • Alejandra Lara-Chavez
  • Ulrika Egertsdotter
  • Barry S. Flinn
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Pinus oocarpa var. oocarpa Schiede (Pinophyta, Pinales, Pinaceae subgenus Pinus) is an economically-important conifer of Mexico and Central America. Clonal propagation methods are required to capture the genetic gains obtained through traditional breeding, for the rapid production of elite stock, as well for the introduction of desirable genes via genetic engineering technologies. However, little attention has been paid to the development of tissue culture protocols for P. oocarpa. Here, we outline the clonal propagation process via somatic embryogenesis for this species.

References

  1. Alberto DM, Elvir JA (2008) Acumulación y fijación de carbono en biomasa aérea de Pinus oocarpa en bosques naturales en Honduras. Investigación Agraria: Sistemas y Recursos Forestales 17(1):67–78Google Scholar
  2. Alvarez JM, Ordás RJ (2013) Stable Agrobacterium-mediated transformation of maritime pine based on kanamycin selection. The Sci World J 2013; Article ID 681792Google Scholar
  3. Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J For Res 24(5):372–383CrossRefGoogle Scholar
  4. Attree S, Fowke L (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell, Tissue and Organ Cult 35(1):1–35CrossRefGoogle Scholar
  5. Carneros E, Celestino C, Klimaszewska K, Park YS, Toribio M, Bonga JM (2009) Plant regeneration in Stone pine (Pinus pinea L.) by somatic embryogenesis. Plant Cell, Tissue and Organ Cult 98(2):165–178CrossRefGoogle Scholar
  6. Colas F, Lamhamedi MS (2014) Production of a new generation of seeds through the use of somatic clones in controlled crosses of black spruce (Picea mariana). New For 45(1):1–20CrossRefGoogle Scholar
  7. Dvorak WS, Gutierrez EA, Osorio LF, Hodge GR, Brawner JT (2000) Pinus oocarpa. In: Dvorak WS, Hodge GR, Romero JL, Woodbridge WC (eds) Conservation and testing of tropical and subtropical forest tree species by the CAMCORE cooperative. College of Natural Resources, NCSU, Raleigh, NC, USA, pp 128–147Google Scholar
  8. Dvorak WS, Potter K, Hipkins V, Hodge G (2009) Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). Int J Plant Sci 170(5):609–626CrossRefGoogle Scholar
  9. Franco EO, Schwarz OJ (1985) Micropropagation of two tropical conifers: Pinus oocarpa Schiede and Cupressus lusitanica Miller. Plenum Press 195–213CrossRefGoogle Scholar
  10. Giri CC, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees-Struct Funct 18(2):115–135CrossRefGoogle Scholar
  11. Greaves A (1982) Pinus oocarpa. For Abstr 43(9):503–532Google Scholar
  12. Grossnickle SC, Major JE (1994) Interior spruce seedlings compared with emblings produced from somatic embryogenesis. III. Physiological response and morphological development on a reforestation site. Can J For Res 24(7):1397–1407CrossRefGoogle Scholar
  13. Gupta PK, Holmstrom D (2005) Double staining technology for distinguishing embryogenic cultures. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, vol 77. Springer, Berlin, pp 573–575Google Scholar
  14. Häggman H, Vuosku J, Sarjala T, Jokela A, Niemi K (2006) Somatic embryogenesis of pine species: from functional genomics to plantation forestry. In: Mujib A, Samaj J (eds) Somatic embryogenesis, vol 2. Springer, Berlin, pp 119–140Google Scholar
  15. Hall SE, Dvorak WS, Johnston JS, Price HJ, Williams CG (2000) Flow cytometric analysis of DNA content for tropical and temperate new world pines. Annals Bot 86(6):1081–1086CrossRefGoogle Scholar
  16. Klimaszewska K, Smith DR (1997) Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol Plant 100(4):949–957CrossRefGoogle Scholar
  17. Laine E, David H, David A (1988) Callus formation from cotyledon protoplasts of Pinus oocarpa and Pinus patula. Physiol Plant 72(2):374–378CrossRefGoogle Scholar
  18. Lara-Chavez A, Flinn BS, Egertsdotter U (2011) Initiation of somatic embryogenesis from immature zygotic embryos of Oocarpa Pine (Pinus oocarpa Schiede ex Schlectendal). Tree Physiol 31:539–554CrossRefPubMedGoogle Scholar
  19. Lara-Chavez A, Flinn BS, Egertsdotter U (2012) Comparison of gene expression markers during zygotic and somatic embryogenesis in pine. Vitro Cell Dev Biol-Plant 48(3):341–354CrossRefGoogle Scholar
  20. Le-Feuvre R, Triviño C, Sabja AM, Bernier-Cardou M, Moynihan MR, Klimaszewska K (2013) Organic nitrogen composition of the tissue culture medium influences Agrobacterium tumefaciens growth and the recovery of transformed Pinus radiata embryonal masses after cocultivation. Vitro Cell Dev Biol-Plant 49(1):30–40CrossRefGoogle Scholar
  21. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD, Martínez-García PJ (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59CrossRefPubMedPubMedCentralGoogle Scholar
  22. Osakabe Y, Sugano SS, Osakabe K (2016) Genome engineering of woody plants: past, present and future. J Wood Sci 62(3):217–225CrossRefGoogle Scholar
  23. Park YS, Lelu-Walter MA, Harvengt L, Trontin JF, MacEacheron I, Klimaszewska K, Bonga JM (2006) Initiation of somatic embryogenesis in Pinus banksiana, P. strobus, P. pinaster, and P. sylvestris at three laboratories in Canada and France. Plant Cell, Tissue and Organ Cult 86(1):87–101CrossRefGoogle Scholar
  24. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin in Plant Biol 36:1–8CrossRefGoogle Scholar
  25. Pullman GS, Zhang Y, Phan BH (2003) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22(2):96–104CrossRefPubMedGoogle Scholar
  26. Pullman GS, Chopra R, Chase K-M (2006) Loblolly pine (Pinus taeda L.) somatic embryogenesis: Improvements in embryogenic tissue initiation by supplementation of medium with organic acids. Vitamins B12 and E Plant Sci 170(3):648–658CrossRefGoogle Scholar
  27. Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68(5):1086–1090CrossRefGoogle Scholar
  28. Schwarz O, Beaty R, Franco E (1991) Egg-cone pine (Pinus oocarpa Schiede). Biotechnol Agric For 16:305–316Google Scholar
  29. Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, Paul R, Gonzalez-Ibeas D, Koriabine M, Holtz-Morris AE, Martínez-García PJ (2016) Sequence of the sugar pine megagenome. Genetics 204(4):1613–1626CrossRefPubMedPubMedCentralGoogle Scholar
  30. Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21(6):555–562PubMedGoogle Scholar
  31. Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213(6):981–989CrossRefPubMedGoogle Scholar
  32. Tang W, Xiao B, Fei Y (2014) Slash pine genetic transformation through embryo cocultivation with A. tumefaciens and transgenic plant regeneration. Vitro Cell Dev Biol-Plant 50(2):199–209CrossRefGoogle Scholar
  33. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018CrossRefPubMedGoogle Scholar
  34. Tsai C-J, Xue L-J (2015) CRISPRing into the woods. GM Crops and Food 6:206–215CrossRefPubMedGoogle Scholar
  35. Wakamiya I, Newton RJ, Johnston JS, Price HJ (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80(11):1235–1241CrossRefGoogle Scholar
  36. Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39(3):407–416CrossRefPubMedGoogle Scholar
  37. Zamora S (1981) Algunos aspectos sobre Pinus oocarpa en el estado de chiapas. Cien For 6(32):3–5Google Scholar
  38. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, de Jong PJ, Neale DB (2014) Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics 196(3):875–890CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alejandra Lara-Chavez
    • 1
  • Ulrika Egertsdotter
    • 2
  • Barry S. Flinn
    • 3
  1. 1.Department of Forest Resources and Environmental ConservationVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA
  3. 3.Advanced Plant Technology ProgramClemson UniversityClemsonUSA

Personalised recommendations