Cork Oak Quercus suber L. Embryogenic Liquid Cultures

  • Mar Ruiz-GaleaEmail author
  • Dolores López-Vela
  • Jesús Jiménez
  • Nieves Alonso-Blázquez
  • Jesús Alegre
  • Cristina Celestino
  • Mariano Toribio
Part of the Forestry Sciences book series (FOSC, volume 84)


The cork oak is an evergreen tree species typical of Mediterranean forests. It grows in dense stands but also in low density, in the savanna-like system called “dehesa” in Spain and “montado” in Portugal. The most characteristic production of Quercus suber is cork, although acorn crops are also important for feeding pigs of the Iberian race. The products obtained from the species justify the accomplishment of genetic improvement programs. Current strategies of forest tree breeding emphasize on the use of vegetative propagation to rapidly capture all the potential of selected individuals and establish them in plantations, performing Multi-Varietal Forestry. Somatic embryogenesis is one of the enabling technologies to carry out that strategy. Our protocol for cloning adult cork oak trees by somatic embryogenesis is robust enough to capture any genotype, and currently it is adequate to produce the limited number of plants needed to establish clonal test. However for large-scale profitable clonal propagation, the scaling-up of plant production using culture in liquid medium has to be developed. Herein we describe step-wise protocols to perform the production of somatic embryos obtained from selected Quercus suber trees using culture systems based on liquid medium.



Funds were provided by The Spanish National R&D Program, projects AGL2010-22292-C03-01 and AGL2013-47400-C4-1-R.


  1. Alegre J, Alonso-Blázquez N, Jiménez J, Hernández I, Ruiz M, Celestino C, Toribio M (2011) Propagation of cork oak selected trees by somatic embryogenesis: from solid to liquid medium. In: Park YS, Bonga JM, Park SY, Moon, HK (eds) Proceedings 1st international conference of the IUFRO working party 2.09.02 “advances in somatic embryogenesis of trees and its application for the future forests and plantations”, 19–21 Aug 2010, Suwon, Republic of Korea. pp 44–49, ISBN 978-89-8176-819-5Google Scholar
  2. Álvarez JRG (2016) The image of a tamed landscape: dehesa through History in Spain. Cult Hist Digital J 5(1):e003. Scholar
  3. Aroso IM, Araújo AR, Fernandes JP, Santos T, Batista MT, Pires RA, Mano JF, Reis RL (2017) Hydroalcoholic extracts from the bark of Quercus suber L. (Cork): optimization of extraction conditions, chemical composition and antioxidant potential. Wood Sci Technol. Scholar
  4. Bejarano I, Godoy-Cancho B, Franco L, Martínez-Cañas MA, Tormo MA (2015) Quercus suber L. cork extracts induce apoptosis in human myeloid leukaemia HL-60 cells. Phytother Res 29:1180–1187. Scholar
  5. Ben Ali N, Lamarti A (2014) Macronutrients effect on secondary somatic embryogenesis of Moroccan cork oak (Quercus suber L.). Am J Plant Sci 5:1851–1861. Scholar
  6. Corredoira E, Toribio M, Vieitez AM (2014) Clonal propagation via somatic embryogenesis in Quercus spp. In: Ramawat KG, Mérillon J-M, Ahuja MR (eds) Tree biotechnology. CRC Press, Boca Raton, FL, pp 262–302. ISBN 978-1-4665-9714-3Google Scholar
  7. Costa A, Madeira M, Plieninger T (2014) Cork oak woodlands patchiness: a signature of imminent deforestation? Appl Geogr 54:18–26. Scholar
  8. Custódio L, Patarra J, Alberício F, da Rosa Neng N, Nogueira JMF, Romano A (2015) Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind Crops Prod 64:45–51. Scholar
  9. de Sampaio e Paiva Camilo-Alves C, da Clara MIE, de Almeida Ribeiro NMC (2013) Decline of Mediterranean oak trees and its association with Phytophthora cinnamomi: a review. Eur J For Res 132:411–432. Scholar
  10. Duarte AP, Bordado JC (2015) Cork–a renewable raw material: forecast of industrial potential and development priorities. Front Mater 2(2):1–8. Scholar
  11. Ducos JP, Labbe G, Lambot C, Pétiard V (2007) Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In Vitro Cell Develop Biol Plant 43:652–659. Scholar
  12. Etienne H, Bertrand B, Georget F, Lartaud M, Montes F, Dechamp E, Verdeil JL, Barry-Etienne D (2013) Development of coffee somatic and zygotic embryos to plants differs in the morphological, histochemical and hydration aspects. Tree Physiol 33:640–653. Scholar
  13. Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tiss Organ Cult 41:99–106. Scholar
  14. Gil L, Varela MC (2008) EUFORGEN technical guidelines for genetic conservation and use for cork oak (Quercus suber). Bioversity International, Rome, Italy, 6pGoogle Scholar
  15. Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170. Scholar
  16. Hernández I, Celestino C, Alegre J, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis. II. Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770. Scholar
  17. Hernández I, Cuenca B, Carneros E, Alonso-Blázquez N, Ruiz M, Celestino C, Ocaña L, Alegre J, Toribio M (2011) Application of plant regeneration of selected cork oak trees by somatic embryogenesis to implement multivarietal forestry for cork production. In: Nageswara-Rao M, Soneji JR (eds) Focus on tree micropropagation and tissue culture. Tree and forestry science and biotechnology 5 (Special Issue 1), pp 19–26. ISSN 1752–3753.
  18. Jiménez J (2013) Obtención de clones de alcornoque (Quercus suber L.) mediante embriogénesis somática: aplicación de medios líquidos y biorreactores en la sincronización de los procesos de desarrollo y maduración de los embriones. Ph.D. Thesis. Polytechnic University of Madrid, Spain.
  19. Jiménez JA, Alonso-Blázquez N, López-Vela D, Celestino C, Toribio M, Alegre J (2011) Influence of culture vessel characteristics and agitation rate on gaseous exchange, hydrodynamic stress, and growth of embryogenic cork oak (Quercus suber L.) cultures. In Vitro Cell Dev Biol Plant 47:578–588. Scholar
  20. Jiménez J, López-Vela D, Ruiz-Galea M, Celestino C, Toribio M, Alegre J (2013) Embryogenic suspensions of cork oak: the first step towards mass propagation. Trees 27:13–23. Scholar
  21. Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, Pâques LE (2013) Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet Genomes 9:883–899. Scholar
  22. Merkle SA, Parrott WA, Flinn BS (1995) Morphogenic aspects of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Current plant science and biotechnology in agriculture, vol 20. Kluwer, Dordrecht, pp 155–203. Scholar
  23. Moiteiro C, Marcelo Curto MJ, Mohamed N, Bailén M, Martínez-Díaz R, González-Coloma A (2006) Biovalorization of friedelane triterpenes derived from cork processing industry byproducts. J Agric Food Chem 54:3566–3571. Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. Scholar
  25. Niedz RP (2006) Regeneration of somatic embryos from sweet orange (C. sinensis) protoplasts using semi-permeable membranes. Plant Cell Tiss Organ Cult 84:353–357. Scholar
  26. Park Y-S, Beaulieu J, Bousquet J (2016) Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NiFos), Seoul, Korea, pp 302–322Google Scholar
  27. Pérez M, Bueno MA, Escalona M, Toorop P, Rodríguez R, Cañal MJ (2013) Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production. Trees 27:1277–1284. Scholar
  28. Pugliese C, Sirtori F (2012) Quality of meat and meat products produced from Southern European pig breeds. Meat Sci 90:511–518. Scholar
  29. Puigderrajols P, Fernández-Guijarro B, Toribio M, Molinas M (1996) Origin and early development of secondary embryos in Quercus suber L. Int J Plant Sci 157:674–684. Scholar
  30. Ruiz-Galea M, Alegre J, Celestino C, Toribio M (2011) Clonación y conservación de árboles singulares de la Comunidad de Madrid. Foresta 52:486–493. ISSN: 1575–2356.
  31. Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell culture. Can J Bot 50:199–204. Scholar
  32. Schirone B, Spada F, Simeone MC, Vessella F (2015) Quercus suber distribution revisited. In: Box EO, Kazue Fujiwara K (eds) Warm-temperate deciduous forests around the northern hemisphere. Springer International Publishing, Switzerland, pp 181–212. Scholar
  33. Toribio M, Celestino C, Molinas M (2005) Cork oak, Quercus suber L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants, vol 77. Forestry sciences. Springer, Dordrecht, The Netherlands, pp 445–457. Scholar
  34. Vinha AF, Barreira JCM, Costa ASG, Oliveira MBPP (2016) A New Age for Quercus spp. fruits: review on nutritional and phytochemical composition and related biological activities of acorns. Compr Rev Food Sci Food Saf 15:947–981. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mar Ruiz-Galea
    • 1
    Email author
  • Dolores López-Vela
    • 1
  • Jesús Jiménez
    • 1
  • Nieves Alonso-Blázquez
    • 1
  • Jesús Alegre
    • 1
  • Cristina Celestino
    • 1
  • Mariano Toribio
    • 1
  1. 1.Research Institute of Madrid for Food, Agriculture and Rural Development (IMIDRA)Alcalá de Henares (Madrid)Spain

Personalised recommendations