Advertisement

Protocol for Somatic Embryogenesis in Japanese Black Pine (Pinus thunbergii Parl.) and Japanese Red Pine (Pinus densiflora Sieb. et Zucc.)

  • Tsuyoshi E. Maruyama
  • Yoshihisa Hosoi
Chapter
Part of the Forestry Sciences book series (FOSC, volume 84)

Abstract

Japanese black pine (Pinus thunbergii Parl.) and Japanese red pine (P. densiflora Zieb. et Zucc.) locally named “kuromatsu” and “akamatsu”, respectively, are two important forest tree species widely used for reforestation and landscaping in Japan. In addition, P. thunbergii is also planted along coastal areas to prevent sand movement, erosion, and damage by salt spray, and P. densiflora is also important as host species of the very expensive “matsutake” mushroom, Tricholoma matsutake.

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Number JP16K14949.

References

  1. Akiba M, Nakamura K (2005) Susceptibility of adult trees of the endangered species Pinus armandii var amamiana to pine wilt disease in the field. J For Res 10:3–7CrossRefGoogle Scholar
  2. Bonga JM (2016) Conifer clonal propagation in tree improvement programs. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. NIFOS, Seoul, Korea, pp 3–31Google Scholar
  3. Hay EI, Charest PJ (1999) Somatic embryo germination and desiccation tolerance in conifers. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, pp 61–96CrossRefGoogle Scholar
  4. Hosoi Y, Ishii K (2001) Somatic embryogenesis and plantlet regeneration in Pinus armandii var. amamiana. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science, Amsterdam, pp 313–318Google Scholar
  5. Hosoi Y, Maruyama TE (2012) Plant regeneration from embryogenic tissue of Pinus luchuensis Mayr, an endemic species in Ryukyu Island, Japan. Plant Biotech 29:401–406CrossRefGoogle Scholar
  6. Hosoi Y, Maruyama TE (2016) Somatic embryogenesis in sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.). In: Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer, India, pp 41–53CrossRefGoogle Scholar
  7. Igasaki T, Sato T, Akashi N, Mohri T, Maruyama E, Kinoshita I, Walter C, Shinohara K (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep 22:239–243CrossRefPubMedGoogle Scholar
  8. Ishii K, Maruyama E, Hosoi Y (2001) Somatic embryogenesis of Japanese conifers. In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science, Amsterdam, pp 297–304Google Scholar
  9. Kanetani S, Akiba M, Nakamura K, Gyokusen K, Saito A (2001) The process of decline of an endangered tree species, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, on the southern slope of Mt. Hasa-dake in Yaku-shima Island. J For Res 6:307–310CrossRefGoogle Scholar
  10. Kanzaki N, Aikawa T, Maehara N, Ichihara Y (2011) An inoculation experiment of Japanese Bursaphelenchus nematodes on Japanese black and red pine, Pinus thunbergii and P. densiflora. J For Res 16:325–330CrossRefGoogle Scholar
  11. Kim YW, Moon HK (2014) Enhancement of somatic embryogenesis and plant regeneration in Japanese red pine. Plant Biotechnol Rep 8:259–266CrossRefGoogle Scholar
  12. Klimaszewska K, Cyr DR (2002) Conifer somatic embryogenesis: I. Development. Dendrobiology 48:31–39Google Scholar
  13. Klimaszewska K, Trontin JF, Becwar MR, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotech 1:11–25Google Scholar
  14. Kosaka H, Aikawa T, Ogura N, Tabata K, Kiyohara T (2001) Pine wilt disease caused by the pine wood nematode: the induced resistance of pine trees by the avirulent isolates of nematode. Eur J Plant Pathol 107:667–675CrossRefGoogle Scholar
  15. Kuroda K (2004) Inhibiting factors of symptom development in several Japanese red pine (Pinus densiflora) families selected as resistant to pine wilt. J For Res 9:217–224CrossRefGoogle Scholar
  16. Maruyama TE, Hosoi Y (2012a) Somatic embryogenesis and efficient plant regeneration in Japanese cypresses. In: Sato K (ed) Embryogenesis. In Tech, Rijeka, Croatia, pp 387–402Google Scholar
  17. Maruyama TE, Hosoi Y (2012b) Post-maturation treatments improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tissue Organ Cult 110:45–52CrossRefGoogle Scholar
  18. Maruyama TE, Hosoi Y (2014) Plant production in Japanese pines via somatic embryogenesis. In: Ramawat KG, Merillon JM, Ahuja MR (eds) Tree biotechnology. CRC Press, Florida, pp 251–261Google Scholar
  19. Maruyama TE, Hosoi Y (2016a) Somatic embryogenesis and plant propagation in Japanese black pine (Pinus thunbergii Parl.) and Japanese red pine (Pinus densiflora Zieb. et Zucc.). In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. Korea, NIFOS, Seoul, pp 623–638Google Scholar
  20. Maruyama TE, Hosoi Y (2016b) Somatic embryogenesis in Japanese black pine (Pinus thunbergii Parl). In: Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer, India, pp 27–39CrossRefGoogle Scholar
  21. Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotech 17:281–296CrossRefGoogle Scholar
  22. Maruyama E, Hosoi Y, Ishii K (2002) Somatic embryogenesis in sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.) for stable and efficient plant regeneration, propagation and protoplast culture. J For Res 7:23–34CrossRefGoogle Scholar
  23. Maruyama E, Hosoi Y, Ishii K (2005a) Somatic embryo production and plant regeneration of Japanese black pine (Pinus thunbergii). J For Res 10:403–407CrossRefGoogle Scholar
  24. Maruyama E, Hosoi Y, Ishii K (2005b) Propagation of Japanese red pine (Pinus densiflora Zieb. et Zucc.). Prop Ornam Plants 4:199–204Google Scholar
  25. Maruyama E, Ishii K, Hosoi Y (2005c) Efficient plant regeneration of hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.) via somatic embryogenesis. J For Res 10:73–77CrossRefGoogle Scholar
  26. Maruyama E, Hosoi Y, Ishii K (2007) Somatic embryogenesis and plant regeration in yakutanegoyou, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima, an endemic and endangered species in Japan. In Vitro Cell Dev Biol-Plant 43:28–34CrossRefGoogle Scholar
  27. Mota MM, Braasch H, Bravo MA, Penas AC, Burgermeister W, Metge K, Sousa E (1999) First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1:727–734CrossRefGoogle Scholar
  28. Nakagawa R, Kurushima M, Matsui M, Nakamura R, Kubo T, Funada R (2011) Polyamines promote the development of embryonal-suspensor masses and the formation of somatic embryos in Picea glehnii. In Vitro Cell Dev Bio-Plant 47:480–487CrossRefGoogle Scholar
  29. Ogita S, Ishikawa H, Kubo T, Sasamoto H (1999) Somatic embryogenesis from immature and mature zygotic embryos of Cryptomeria japonica I: embryogenic cell induction and its morphological characteristics. J Wood Sci 45:87–91CrossRefGoogle Scholar
  30. Park YS (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656CrossRefGoogle Scholar
  31. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol-Plant 34:231–239CrossRefGoogle Scholar
  32. Roberts DR, Sutton BCS, Flinn BS (1990) Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can J Bot 68:1086–1090CrossRefGoogle Scholar
  33. Roberts DR, Lazaroff WR, Webster FB (1991) Interaction between maturation and high relative humidity treatments and their effects on germination of Sitka spruce somatic embryos. J Plant Physiol 138:1–6CrossRefGoogle Scholar
  34. Shoji M, Sato H, Nakagawa R, Funada R, Kubo T, Ogita S (2006) Influence of osmotic pressure on somatic embryo maturation in Pinus densiflora. J For Res 11:449–453CrossRefGoogle Scholar
  35. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35CrossRefGoogle Scholar
  36. Taniguchi T (2001) Plant regeneration from somatic embryos in Pinus thunbergii (Japanese black pine) and Pinus densiflora (Japanese red pine). In: Morohoshi N, Komamine A (eds) Molecular breeding of woody plants. Elsevier Science, Amsterdam, pp 319–324Google Scholar
  37. Taniguchi T, Kondo T (2000) Difference in the ability of initiation and maintenance of embryogenic cultures among Sugi (Cryptomeria japonica D. Don) seed families. Plant Biotech 17:159–162CrossRefGoogle Scholar
  38. Taniguchi T, Kurita M, Itahana N, Kondo T (2004) Somatic embryogenesis and plant regeneration from immature zygotic embryos of hinoki cypress (Chamaecyparis obtusa Sieb et Zucc.). Plant Cell Rep 23:26–31CrossRefPubMedGoogle Scholar
  39. Texeira da Silva JA, Malabadi RB (2012) Factors affecting somatic embryogenesis in conifers. J For Res 23:503–515CrossRefGoogle Scholar
  40. Togashi K, Shigesada N (2006) Spread of the pinewood nematode vectored by the Japanese pine sawyer: modeling and analytical approaches. Popul Ecol 48:271–283CrossRefGoogle Scholar
  41. Trontin JF, Hargraves C, Montalban IA, Moncalean P, Reeves C, Quoniou S, Lelu-Walter MA, Klimaszewska K (2016) International effort to induce somatic embryogenesis in adult pine trees. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. NIFOS, Seoul, Korea, pp 211–260Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Forest Molecular Genetics and BiotechnologyForestry and Forest Products Research InstituteTsukubaJapan

Personalised recommendations