Somatic Embryogenesis of Greek Fir (Abies cephalonica Loud.)

  • Jana KrajňákováEmail author
  • Hely Häggman
Part of the Forestry Sciences book series (FOSC, volume 84)


Euro-Mediterranean firs (the genus Abies Mill.) belong to ecologically and commercially most important tree genera in Europe. Fir forests represent a major component of Central European, Alpine and Mediterranean mountain forests. Their distribution ranges from 6°W to 44°E in longitude, from 35°N to 52°N in latitude and from 135 to 2900 m in altitude.



The authors are grateful for the working facilities provided by University of Oulu, Department of Biology.


  1. Alizoti PG, Fady B, Prada MA, Vendramin GG (2011) EUFORGEN Technical guidelines for genetic conservation and use of Mediterranean firs (Abies spp.). Bioversity International, Rome, 6pGoogle Scholar
  2. Aronen TS, Krajňáková J, Häggman HM, Ryynanen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172CrossRefGoogle Scholar
  3. Aussenac G (2002) Ecology and ecophysiology of circum-mediterranean firs in the context of climate change. Ann For Sci 59:823–832CrossRefGoogle Scholar
  4. Bank of Greece (2011) The environmental, economic and social impacts of climate change in Greece. Climate Change Impacts Study Committee, Bank of Greece Printing Works, 470ppGoogle Scholar
  5. Chrysopolitou V, Apostolakis A, Avtzis D, Avtzis N, Diamandis S, Kemitzoglou D, Papadimos D, Perlerou C, Tsiaoussi V, Dafis S (2013) Studies on forest health and vegetation changes in Greece under the effects of climate changes. Biodivers Conserv 22:1133–1150CrossRefGoogle Scholar
  6. Erdelský K, Barančok P (1986a) Cultivating embryos of the silver fir (Abies alba Mill.) in vitro. Acta F. R. N. Univ Comen Physiol Plant XXIII:25–29Google Scholar
  7. Erdelský K, Barančok P (1986b) Growth induction of callus and organ cultures of the fir (Abies alba Mill.). Acta F. R. N. Univ Comen Physiol Plant XXII:41–49Google Scholar
  8. Find JI (2016) Towards industrial production of tree varieties through somatic embryogenesis and other vegetative propagation technologies: Nordmann fir (Abies nordmanniana (Steven) Spach)—from research laboratory to production. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFoS), Seoul, Korea, pp 528–537Google Scholar
  9. Kobliha J, Stejskal J, Lstibůrek M, Typta J, Tomášková I, Jakubův P (2013) Testing of hybrid progenies and various species of genus Abies for forestry, decorating horticulture and christmas tree production. Acta Scientarium Polonorum Hortorum Cultus 12(4):85–94Google Scholar
  10. Kormuťák A, Vooková B (2001) Early growth characteristics of some Abies hybrids. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Forestry Sciences, vol 70. Kluwer, Drodrecht, pp 331–338CrossRefGoogle Scholar
  11. Krajňáková J, Häggman H (2016) Somatic Embryogenesis of Abies cephalonica Loud. Methods Mol Biol (Clifton, N.J.) 1359:417–430.
  12. Krajňáková J, Gömöry D, Häggman H (2008) Somatic embryogenesis in Greek fir. Can J For Res 38:760–769CrossRefGoogle Scholar
  13. Krajňáková J, Häggman H, Gömöry D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tissue Organ Cult 96:251–262CrossRefGoogle Scholar
  14. Krajňáková J, Sutela S, Aronen T, Gömöry D, Vianello A, Häggman H (2011a) Long-term cryopreservation of Greek fir embryogenic cell lines: Recovery, maturation and genetic fidelity. Cryobiology 63:17–25CrossRefPubMedGoogle Scholar
  15. Krajňáková J, Sutela S, Gömöry D, Vianello A, Häggman H (2011b) Bioenergetic parameters during cryopreservation of two Abies cephalonica embryogenic cell lines. In: Grapin A, Keller ERJ, Lynch PT, Panis B, Bahillo AR, Engelmann F (eds) Cryopreservation of crop species in Europe. In: Proceedings of the final meeting Agrocampus Ouest INHP, Angres, France, pp 44–47, 8–11 Feb 2011Google Scholar
  16. Krajňáková J, Niemi K, Gömöry D, Häggman H (2012) Effects of different ectomycorrhizal fungi on somatic embryogenesis of Abies cephalonica Loud. Plant Cell Tissue Organ Cult 109:353–361CrossRefGoogle Scholar
  17. Krajňáková J, Bertolini A, Gömöry D, Vianello A, Häggman H (2013) Initiation, long-term cryopreservation, and recovery of Abies alba Mill. embryogenic cell lines. In Vitro Cell Develop Biol Plants 49:560–571CrossRefGoogle Scholar
  18. Krajňáková J, Gömöry D, Häggman H (2014) Biotechnology tools for conservation of the biodiversity of European and Mediterranean Abies species. In: Ahuja MR, Ramawat KG (eds) Biotechnology and biodiversity. Sustainable development and biodiversity, vol 14. Springer International Publishing, Switzerland, pp 287–310Google Scholar
  19. Misson JP, Druart P, Panis B, Watillon B (2006) Contribution to the study of the maintenance of somatic embryos of Abies nordmanniana Lk: culture media and cryopreservation method. Propag Ornamental Plants 6:17–23Google Scholar
  20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:493–497CrossRefGoogle Scholar
  21. Muscolo A, Settineri G, Bagnato S, Mercurio R, Sidari M (2017) Use of canopy gap openings to restore coniferous stands in Mediterranean environment. Iforest-Biogeosci For 10:322–327. Scholar
  22. Nørgaard JV, Krogstrup P (1995) Somatic embryogenesis in Abies spp. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 3, gymnosperms. Kluwer Academic Publishers, Dordrecht, pp 341–355CrossRefGoogle Scholar
  23. Nørgaard JV, Baldursson S, Krogstrup P (1993) Genotypic differences in the ability of embryogenic Abies nordmanniana cultures to survive cryopreservation. Silvae Genetica 42:93–97Google Scholar
  24. Papadopoulos A (2016) Tree-ring patterns and climate response of Mediterranean fir populations in Central Greece. Dendrochronologia 40:17–25. Scholar
  25. Raftoyannis Y, Spanos I, Radoglou K (2008) The decline of Greek fir (Abies cephalonica Loudon): relationships with root condition. Plant Biosyst 142:386–390CrossRefGoogle Scholar
  26. Salaj T, Salaj J (2003) Somatic embryo formation on mature Abies alba × Abies cephalonica zygotic embryo explants. Biol Plant 47:7–11CrossRefGoogle Scholar
  27. Salaj T, Matušíková I, Panis B, Swennen R, Salaj J (2010) Recovery and characterisation of hybrid firs (Abies alba × A. cephalonica, Abies alba × A. numidica) embryogenic tissues after cryopreservation. Cryoletters 31:206–217PubMedGoogle Scholar
  28. Salajová T, Salaj J (2001) Somatic embryogenesis and plantlet regeneration from cotyledon explants isolated from emblings and seedlings of hybrid firs. J Plant Physiol 158:747–755CrossRefGoogle Scholar
  29. Salajová T, Jásik J, Kormuťák A, Salaj J, Hakman I (1996) Embryogenic culture initiation and somatic embryo development in hybrid firs (Abies alba × Abies cephalonica, and Abies alba × Abies numidica). Plant Cell Rep 15:527–530PubMedGoogle Scholar
  30. Vooková B, Kormuťák A (2007) Abies biotechnology—Research and development of tissue culture techniques for vegetative propagation. In: Tree and forestry science and biotechnology, vol I. Global Science Books, pp 39–46Google Scholar
  31. Vooková B, Kormuťák A (2014) Study of Abies somatic embryogenesis and its application. Dendrobiology 71:149–157Google Scholar
  32. Zancani M, Bertolini A, Petrussa E, Krajňáková J, Piccolo A, Spaccini R, Vianello A (2011) Fulvic acid affects proliferation and maturation phases in Abies cephalonica embryogenic cells. J Plant Physiol 168:1226–1233CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department Ecology and GeneticsUniversity of OuluOuluFinland
  2. 2.New Zealand Forest Research Institute - Trading as ScionRotoruaNew Zealand

Personalised recommendations