Advertisement

Management to Optimal Parameters: Euboxia?

  • Kyle Mueller
  • Anthony Conte
  • Rocky Felbaum
  • Randy Bell
  • Shelly D. Timmons
  • Rocco Armonda
Chapter

Abstract

The critical care management of patients with traumatic brain injury (TBI) has undergone major advancements over the last several decades. Improved evidence-based research has allowed us a greater understanding of the pathophysiology and parameters that impact outcomes. Despite this, much uncertainty still remains, and further studies should be performed to identify ways to optimize parameters to achieve the best outcomes for TBI patients.

Keywords

Traumatic brain injury Anemia Transfusion Hypertonic solution Monitoring parameters Cortical spreading depression Nutrition Temperature control Outcomes Energy Glucose 

References

  1. 1.
    Hartl R, Medary MB, Ruge M, Arfors KE, Ghajar J. Early white blood cell dynamics after traumatic brain injury: effects on the cerebral microcirculation. J Cereb Blood Flow Metab. 1997;17(11):1210–20.PubMedCrossRefGoogle Scholar
  2. 2.
    Rovlias A, Kotsou S. The blood leukocyte count and its prognostic significance in severe head injury. Surg Neurol. 2001;55(4):190–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, et al. CRASH trial collaborators. Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet. 2004;364(9442):1321–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, et al. CRASH trial collaborators. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365(9475):1957–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Kourbeti IS, Vakis AF, Papadakis JA, Karabetsos DA, Bertsias G, Fillipou M, et al. Infections in traumatic brain injury patients. Clin Microbiol Infect. 2012;18(4):359–64.PubMedCrossRefGoogle Scholar
  6. 6.
    Salim A, Hadjizacharia P, DuBose J, Brown C, Inaba K, Chan L, et al. Role of anemia in traumatic brain injury. J Am Coll Surg. 2008;207(3):398–406.PubMedCrossRefGoogle Scholar
  7. 7.
    Zygun DA, Nortje J, Hutchinson PJ, Timofeev I, Menon DK, Gupta AK. The effect of red blood cell transfusion on cerebral oxygenation and metabolism after severe traumatic brain injury. Crit Care Med. 2009;37(3):1074–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Spiotta AM, Stiefel MF, Gracias VH, Garuffe AM, Kofke WA, Maloney-Wilensky E, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113(3):571–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009;111(4):672–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Hebert PC, Wells G, Blajchman MA, Marshall J, Martin C, Pagliarello G, et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999;340(6):409–17.PubMedCrossRefGoogle Scholar
  11. 11.
    Corwin HL, Gettinger A, Pearl RG, Fink MP, Levy MM, Abraham E, et al. The CRIT Study: anemia and blood transfusion in the critically ill—current clinical practice in the United States. Crit Care Med. 2004;32(1):39–52.PubMedCrossRefGoogle Scholar
  12. 12.
    McIntyre LA, Fergusson DA, Hutchison JS, Pagliarello G, Marshall JC, Yetisir E, et al. Effect of a liberal versus restrictive transfusion strategy on mortality in patients with moderate to severe head injury. Neurocrit Care. 2006;5(1):4–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Boutin A, Chassé M, Shemilt M, Lauzier F, Moore L, Zarychanski R, et al. Red blood cell transfusion in patients with traumatic brain injury: a systematic review protocol. Syst Rev. 2014;3:66.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Sena MJ, Rivers RM, Muizelaar JP, Battistella FD, Utter GH. Transfusion practices for acute traumatic brain injury: a survey of physicians at US trauma centers. Intensive Care Med. 2009;35(3):480–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Desjardins P, Turgeon AF, Tremblay MH, Lauzier F, Zarychanski R, Boutin A, et al. Hemoglobin levels and transfusions in neurocritically ill patients: a systematic review of comparative studies. Crit Care. 2012;16(2):R54.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Utter GH, Shahlaie K, Zwienenberg-Lee M, Muizelaar JP. Anemia in the setting of traumatic brain injury: the arguments for and against liberal transfusion. J Neurotrauma. 2011;28(1):155–65.PubMedCrossRefGoogle Scholar
  17. 17.
    Warner MA, O’Keeffe T, Bhavsar P, Shringer R, Moore C, Harper C, et al. Transfusions and long-term functional outcomes in traumatic brain injury. J Neurosurg. 2010;113(3):539–46.PubMedCrossRefGoogle Scholar
  18. 18.
    Lelubre C, Bouzat P, Crippa IA, Taccone FS. Anemia management after acute brain injury. Crit Care. 2016;20:152.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Oddo M, Levine JM, Kumar M, Iglesias K, Frangos S, Maloney-Wilensky E, et al. Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med. 2012;38(9):1497–504.PubMedCrossRefGoogle Scholar
  20. 20.
    Schnuriger B, Inaba K, Abdelsayed GA, Lustenberger T, Eberle BM, Barmparas G, et al. The impact of platelets on the progression of traumatic intracranial hemorrhage. J Trauma. 2010;68(4):881–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Donahue DL, Beck J, Fritz B, Davis P, Sandoval-Cooper MJ, Thomas SG, et al. Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans. J Neurotrauma. 2014;31(4):404–10.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Halpern CH, Reilly PM, Turtz AR, Stein SC. Traumatic coagulopathy: the effect of brain injury. J Neurotrauma. 2008;25:997–1001.PubMedCrossRefGoogle Scholar
  23. 23.
    Allard CB, Scarpelini S, Rhind SG, Baker AJ, Shek PN, Tien H, et al. Abnormal coagulation tests are associated with progression of traumatic intracranial hemorrhage. J Trauma. 2009;67(5):959–67.PubMedCrossRefGoogle Scholar
  24. 24.
    Johansson PI, Sørensen AM, Larsen CF, Windeløv NA, Stensballe J, Perner A, et al. Low hemorrhage-related mortality in trauma patients in a Level I trauma center employing transfusion packages and early thromboelastography-directed hemostatic resuscitation with plasma and platelets. Transfusion. 2013;53(12):3088–99.PubMedCrossRefGoogle Scholar
  25. 25.
    Holcomb JB, Minei KM, Scerbo ML, Radwan ZA, Wade CE, Kozar RA, et al. Admission rapid thrombelastography can replace conventional coagulation tests in the emergency department: experience with 1974 consecutive trauma patients. Ann Surg. 2012;256(3):476–86.PubMedCrossRefGoogle Scholar
  26. 26.
    Walsh M, Fritz S, Hake D, Son M, Greve S, Jbara M, et al. Targeted thromboelastographic (TEG) blood component and pharmacologic hemostatic therapy in traumatic and acquired coagulopathy. Curr Drug Targets. 2016;17(8):954–70.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Horn P, Münch E, Vajkoczy P, Herrmann P, Quintel M, Schilling L, et al. Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999;21(8):758–64.PubMedCrossRefGoogle Scholar
  28. 28.
    Oddo M, Levine JM, Frangos S, Carrera E, Maloney-Wilensky E, Pascual JL, et al. Effect of mannitol and hypertonic saline on cerebral oxygenation in patients with severe traumatic brain injury and refractory intracranial hypertension. J Neurol Neurosurg Psychiatry. 2009;80(8):916–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT, Quickel RR. Hypertonic saline and its effect on intracranial pressure, cerebral perfusion pressure, and brain tissue oxygen. Neurosurgery. 2009;65(6):1035–41; discussion 1041–2.PubMedCrossRefGoogle Scholar
  30. 30.
    Timmons SD. Current trends in neurotrauma care. Crit Care Med. 2010;38(9 Suppl):S431–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Kerwin AJ, Schinco MA, Tepas JJ 3rd, Renfro WH, Vitarbo EA, Muehlberger M. The use of 23.4% hypertonic saline for the management of elevated intracranial pressure in patients with severe traumatic brain injury: a pilot study. J Trauma. 2009;67(2):277–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Ropper AH. Hyperosmolar therapy for raised intracranial pressure. N Engl J Med. 2012;367:746–52.PubMedCrossRefGoogle Scholar
  33. 33.
    Doyle JA, Davis DP, Hoyt DB. The use of hypertonic saline in the treatment of traumatic brain injury. J Trauma. 2001;50(2):367–83.PubMedCrossRefGoogle Scholar
  34. 34.
    van den Heuvel C, Vink R. The role of magnesium in traumatic brain injury. Clin Calcium. 2004;14:9–14.PubMedGoogle Scholar
  35. 35.
    Garfinkel L, Garfinkel D. Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium. 1985;4:60–72.PubMedGoogle Scholar
  36. 36.
    Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P, et al. Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab. 2003;23:219–31.PubMedCrossRefGoogle Scholar
  37. 37.
    Memon ZI, Altura BT, Benjamin JL, Cracco RQ, Altura BM. Predictive value of serum ionized but not total magnesium levels in head injuries. Scand J Clin Lab Invest. 1995;55:671–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Temkin NR, Anderson GD, Winn HR, Ellenbogen RG, Britz GW, Schuster J, et al. Magnesium sulfate for neuroprotection after traumatic brain injury: a randomised controlled trial. Lancet Neurol. 2007;6:29–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Dhandapani SS, Gupta A, Vivekanandhan S, Sharma BS, Mahapatra AK. Randomized controlled trial of magnesium sulphate in severe closed traumatic brain injury. Indian J Neurotrauma. 2008;5:27–33.CrossRefGoogle Scholar
  40. 40.
    Sen AP, Gulati A. Use of magnesium in traumatic brain injury. Neurotherapeutics. 2010;7(1):91–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wu X, Lu X, Lu X, Yu J, Sun Y, Du Z, et al. Prevalence of severe hypokalemia in patients with traumatic brain injury. Injury. 2015;46(1):35–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Langham J, Goldfrad C, Teasdale G, Shaw D, Rowan K. Calcium channel blockers for acute traumatic brain injury. Cochrane Database Syst Rev. 2003;(4):CD000565.Google Scholar
  43. 43.
    Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:359–90.CrossRefGoogle Scholar
  44. 44.
    Leao AAP. Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol. 1947;10:409–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, et al. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;129:778–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Hartings JA, Strong AJ, Fabricius M, Manning A, Bhatia R, Dreier JP, et al. Co-Operative Study of Brain Injury Depolarizations. Spreading depolarizations and late secondary insults after traumatic brain injury. J Neurotrauma. 2009;26:1857–66.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus RI, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008;63(6):720–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;31:17–35.PubMedCrossRefGoogle Scholar
  49. 49.
    Hartings JA, Watanabe T, Bullock MR, Okonkwo DO, Fabricius M, Woitzik J, et al. Co-Operative Study on Brain Injury Depolarizations. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain. 2011;134(pt 5):1529–40.CrossRefGoogle Scholar
  50. 50.
    Hartings JA, Wilson JA, Hinzman JM, Pollandt S, Dreier JP, DiNapoli V, et al. Spreading depression in continuous electroencephalography of brain trauma. Ann Neurol. 2014;76(5):681–94.PubMedCrossRefGoogle Scholar
  51. 51.
    Hartings JA, Bullock MR, Okonkwo DO, Murray LS, Murray GD, Fabricius M, et al. Co-Operative Study on Brain Injury Depolarisations. Spreading depolarisations and outcome after traumatic brain injury: a prospective observational study. Lancet Neurol. 2011;10:1058–64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Wilson RF, Tyburski JG. Metabolic responses and nutritional therapy in patients with severe head injuries. J Head Trauma Rehabil. 1998;13:11–27.PubMedCrossRefGoogle Scholar
  53. 53.
    Osuka A, Uno T, Nakanishi J, Hinokiyama H. Energy expenditure in patients with severe head injury: controlled normothermia with sedation and neuromuscular blockade. J Crit Care. 2013;28(2):218.e9–13.CrossRefGoogle Scholar
  54. 54.
    Costello L, Lithander F, Gruen R, Williams L. Nutrition therapy in the optimization of health outcomes in adult patients with moderate to severe traumatic brain injury: findings from a scoping review. Injury. 2014;45:1834–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Marik P, Zaloga G. Early enteric nutrition in critically ill patients: a systemic review. Crit Care Med. 2001;29(12):2264–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Hartl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg. 2008;109(1):50–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Timmons SD. How soon should patients receive nutrition? How much, which formulation, and by which route? In: Valadka AB, Andrews BT, editors. Neurotrauma: evidence based answers to common questions. New York, Stuttgart: Thieme; 2005.Google Scholar
  58. 58.
    Chiang Y, Chao D, Chu S, Lin H, Huang S, Yeh Y, et al. Early enteral nutrition and clinical outcomes of severe traumatic brain injury patients in acute stage: a multi-center cohort study. J Neurotrauma. 2012;29(1):75–80.PubMedCrossRefGoogle Scholar
  59. 59.
    Chourdakis M, Kraus M, Tzellos T, Sardeli C, Peftoulidou M, Vassilakos D, et al. Effect of early compared with delayed enteral nutrition on endocrine function in patients with traumatic brain injury: an open-labeled randomized trial. J Parenter Enteral Nutr. 2012;36(1):108–16.CrossRefGoogle Scholar
  60. 60.
    Tan M, Zhu JC, Du J, Zhang LM, Yin HH. Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit Care. 2011;15(6):R290–300.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Cope EC, Morris DR, Levenson CW. Improving treatments and outcomes: an emerging role for zinc in traumatic brain injury. Nutr Rev. 2012;70(7):410–3.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Vizzini A, Aranda-Michel J. Nutritional support in head injury. Nutrition. 2011;27(2):129–32.PubMedCrossRefGoogle Scholar
  63. 63.
    Razmkon A, Sadidi A, Sherafat-Kazemzadeh E, Mehrafshan A, Jamali M, Malekpour B, et al. Administration of vitamin C and vitamin E in severe head injury: a randomized double-blind controlled trial. Clin Neurosurg. 2011;58:133–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Stippler M, Fischer MR, Puccio AM, Wisniewski SR, Carson-Walter EB, Dixon CE, et al. Serum and cerebrospinal fluid magnesium in severe traumatic brain injury outcome. J Neurotrauma. 2007;24(8):1347–54.PubMedCrossRefGoogle Scholar
  65. 65.
    Rovlias A, Kotsou S. The influence of hyperglycemia on neurological outcome in patients with severe head injury. Neurosurgery. 2000;46(2):335–42; discussion 342–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Cochran A, Scaife ER, Hansen KW, Downey EC. Hyperglycemia and outcomes from pediatric traumatic brain injury. J Trauma Inj Infect Crit Care. 2003;55:1035–8.CrossRefGoogle Scholar
  67. 67.
    Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D, Baranowska-Bosiacka I. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci. 2015;16:25959–81.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27:1766–91.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101(6):569–74.PubMedCrossRefGoogle Scholar
  70. 70.
    Bavisetty S, McArthur D. Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery. 2008;62:1080–94.PubMedCrossRefGoogle Scholar
  71. 71.
    Sorensen L, Siddall PJ, Trenell MI, Yue DK. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care. 2008;31:980–1.PubMedCrossRefGoogle Scholar
  72. 72.
    Muizelaar JP, Ward JD, Marmarou A, Newlon PG, Wachi A. Cerebral blood flow and metabolism in severely head-injured children. J Neurosurg. 1989;71:72–6.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim GS, Jung JE, Narasimhan P, Sakata H, Chan PH. Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol Dis. 2012;46:440–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. Ratio. 2005;58:47–50.Google Scholar
  75. 75.
    Salim A, Hadjizacharia P, Dubose J, Brown C, Inaba K, Chan LS, et al. Persistent hyperglycemia in severe traumatic brain injury: an independent predictor of outcome. Am Surg. 2009;75:25–9.PubMedGoogle Scholar
  76. 76.
    Chong SL, Harjanto S, Testoni D, Ng ZM, Low CYD, Lee KP, et al. Early hyperglycemia in pediatric traumatic brain injury predicts for mortality, prolonged duration of mechanical ventilation, and intensive care stay. Int J Endocrinol. 2015;2015:719476.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Seyed Saadat SM, Bidabadi E, Seyed Saadat SN, Mashouf M, Salamat F, Yousefzadeh S. Association of persistent hyperglycemia with outcome of severe traumatic brain injury in pediatric population. Childs Nerv Syst. 2012;28:1773–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Alexiou GA, Lianos G, Fotakopoulos G, Michos E, Pachatouridis D, Voulgaris S. Admission glucose and coagulopathy occurrence in patients with traumatic brain injury. Brain Inj. 2014;28:438–41.PubMedCrossRefGoogle Scholar
  79. 79.
    Meier R, Béchir M, Ludwig S, Sommerfeld J, Keel M, Steiger P, et al. Differential temporal profile of lowered blood glucose levels (3.5 to 6.5 mmol/l versus 5 to 8 mmol/l) in patients with severe traumatic brain injury. Crit Care. 2008;12:R98.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.PubMedCrossRefGoogle Scholar
  81. 81.
    Rapp RP, Young B, Twyman D, Bivins BA, Haack D, Tibbs PA, et al. The favorable effect of early parenteral feeding on survival in head-injured patients. J Neurosurg. 1983;58:906–12.PubMedCrossRefGoogle Scholar
  82. 82.
    Finfer S, Chittock DR, Su SY-S, Blair D, Foster D, Dhingra V, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97.PubMedCrossRefGoogle Scholar
  83. 83.
    Bilotta F, Rosa G. Glycemia management in critical care patients. World J Diabetes. 2012;3:130–4.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Muizelaar JP, van der Poel H, Li Z, Kontos H, Levasseur J. Pial arterial vessel diameter and CO2 reactivity during prolonged hyperventilation in the rabbit. J Neurosurg. 1988;63:923–7.CrossRefGoogle Scholar
  86. 86.
    Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Brain Trauma Foundation. Guidelines for the management of severe traumatic brain injury. 4th ed. 2016. https://braintrauma.org/uploads/03/12/Guidelines_for_Management_of_Severe_TBI_4th_Edition.pdf. Accessed 1 Mar 2018.
  87. 87.
    Robertson CS. Desaturation episodes after severe head injury: influence on outcome. Acta Neurochir Suppl (Wien). 1993;59:98–101.Google Scholar
  88. 88.
    Winchel RJ, Hoyt DB. Endotracheal intubation in the field improves survival in patients with severe head injury. Arch Surg. 1997;132:592–7.CrossRefGoogle Scholar
  89. 89.
    Stochetti N, Furlan A, Volta F. Hypoxemia and arterial hypotension at the accident scene in head injury. J Trauma. 1996;40:764–7.CrossRefGoogle Scholar
  90. 90.
    Moppett I. Traumatic brain injury: assessment, resuscitation, and early management. Br J Anaesth. 2007;99(1):18–31.PubMedCrossRefGoogle Scholar
  91. 91.
    Chesnut RM, Marshall LF, Klauber MR. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34:216–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Davis DP, Meade W, Sise MJ, Kennedy F, Simon F, Tominaga G, et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009;26(12):2217–23.PubMedCrossRefGoogle Scholar
  93. 93.
    Rahimi S, Bidabadi E, Mashouf M, Saadat S. Prognostic value of arterial blood gas disturbances for in-hospital mortality in pediatric patients with severe traumatic brain injury. Acta Neurochir. 2014;156:187–92.PubMedCrossRefGoogle Scholar
  94. 94.
    Zehtabchi S, Sinert R, Soghoian S, Liu Y, Carmody K, Shah L, et al. Identifying traumatic brain injury in patients with isolated head trauma: are arterial lactate and base deficit as helpful as in polytrauma. Emerg Med J. 2007;24:333–5.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Clausen T, Khaldi A, Zauner A, Reinert M, Doppenberg E, Menzel M, et al. Cerebral acid-base homeostasis after severe traumatic brain injury. J Neurosurg. 2005;103:597–607.PubMedCrossRefGoogle Scholar
  96. 96.
    Shallwani H, Waqas M, Waheed S, Siddiqui M, Froz A, Bari ME. Does base deficit predict mortality in patients with severe traumatic brain injury. Int J Surg. 2015;22:125–30.PubMedCrossRefGoogle Scholar
  97. 97.
    Rincon F, Hunter K, Schorr C, Dellinger RP, Zanotti-Cavazzoni S. The epidemiology of spontaneous fever and hypothermia on admission of brain injury patients to intensive care units: a multicenter cohort study. J Neurosurg. 2014;121:950–60.PubMedCrossRefGoogle Scholar
  98. 98.
    Thompson HJ, Pinto-Martin J, Bullock MR. Neurogenic fever after traumatic brain injury: an epidemiological study. J Neurol Neurosurg Psychiatry. 2003;74:614–9.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Bao L, Chen D, Ding L, Ling W, Xu F. Fever burden is an independent predictor for prognosis of traumatic brain injury. PLoS One. 2014;9(3):e90956.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Dietrich WD. Therapeutic hypothermia for spinal cord injury. Crit Care Med. 2009;37:S238–42.PubMedCrossRefGoogle Scholar
  101. 101.
    Dietrich WD, Bramlett HM. Hyperthermia and central nervous system injury. Prog Brain Res. 2007;162:201–17.PubMedCrossRefGoogle Scholar
  102. 102.
    Gaither JB, Chikani V, Spaite DW, Smith JJ, Curry M, Mhayamaguru M, et al. Association between elevated initial trauma center body temperature and non-mortality outcomes following major traumatic brain injury. Circulation. 2015;132(Suppl 3):A16144.Google Scholar
  103. 103.
    Natale JE, Joseph JG, Helfaer MA, Shaffner DH. Early hyperthermia after traumatic brain injury in children: risk factors, influence on length of stay, and effect on short-term neurologic status. Crit Care Med. 2000;28:2608–15.PubMedCrossRefGoogle Scholar
  104. 104.
    Sakuma J, Suzuki K, Sasaki T, Matsumoto M, Oinuma M, Kawakami M, et al. Monitoring and preventing blood flow insufficiency due to clip rotation after the treatment of internal carotid artery aneurysms. J Neurosurg. 2004;100:960–2.PubMedCrossRefGoogle Scholar
  105. 105.
    Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med. 2001;344:556–63.PubMedCrossRefGoogle Scholar
  106. 106.
    Clifton GL, Valadka A, Zygun D, Coffey CS, Drever P, Fourwinds S, et al. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): a randomised trial. Lancet Neurol. 2011;10:131–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Hutchison JS, Ward RE, Lacroix J, Hébert PC, Barnes MA, Bohn DJ, et al. Hypothermia therapy after traumatic brain injury in children. N Engl J Med. 2008;358:2447–56.PubMedCrossRefGoogle Scholar
  108. 108.
    Hifumi T, Kuroda Y, Kawakita K, Yamashita S, Oda Y, Dohi K, et al. Fever control management is preferable to mild therapeutic hypothermia in traumatic brain injury patients with abbreviated injury scale 3-4: a multicenter, randomized controlled trial. J Neurotrauma. 2016;33(11):1047–53.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management in traumatic brain injury: clinical challenges for successful translation. Brain Res. 2016;1640:94–103.PubMedCrossRefGoogle Scholar
  110. 110.
    Beca J, McSharry B, Erickson S, Yung M, Schibler A, Slater A, et al. Hypothermia for traumatic brain injury in children-a phase II randomized controlled trial. Crit Care Med. 2015;43:1458–66.PubMedCrossRefGoogle Scholar
  111. 111.
    Adelson PD, Ragheb J, Muizelaar JP, Kanev P, Brockmeyer D, Beers SR, et al. Phase II clinical trial of moderate hypothermia after severe traumatic brain injury in children. Neurosurgery. 2005;56:740–53.PubMedCrossRefGoogle Scholar
  112. 112.
    Polderman KH. Induced hypothermia and fever control for prevention and treatment of neurological injuries. Lancet. 2008;371:1955–69.PubMedCrossRefGoogle Scholar
  113. 113.
    Suehiro E, Koizumi H, Kunitsugu I, Fujisawa H, Suzuki M. Survey of brain temperature management in patients with traumatic brain injury in the Japan neurotrauma data bank. J Neurotrauma. 2014;31:315–20.PubMedCrossRefGoogle Scholar
  114. 114.
    Maekawa T, Yamashita S, Nagao S, Hayashi N, Ohashi Y. Prolonged mild therapeutic hypothermia versus fever control with tight hemodynamic monitoring and slow rewarming in patients with severe traumatic brain injury: a randomized controlled trial. J Neurotrauma. 2015;32:422–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Marion DW, Regasa LE. Revisiting therapeutic hypothermia for severe traumatic brain injury... again. Crit Care. 2014;18:160.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Andrews PJ, Sinclair HL, Battison CG, Polderman KH, Citerio G, Mascia L, et al. Eurotherm3235Trial collaborators. European society of intensive care medicine study of therapeutic hypothermia (32-35 °C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials. 2011;12:8.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Madden LK, DeVon HA. A systematic review of the effects of body temperature on outcome after adult traumatic brain injury. J Neurosci Nurs. 2015;47:190–203.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rumana CS, Gopinath SP, Uzura M, Valadka AB, Robertson CS. Brain temperature exceeds systemic temperature in head-injured patients. Crit Care Med. 1998;26:562–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kyle Mueller
    • 1
  • Anthony Conte
    • 1
  • Rocky Felbaum
    • 1
  • Randy Bell
    • 2
  • Shelly D. Timmons
    • 3
  • Rocco Armonda
    • 4
  1. 1.Department of NeurosurgeryGeorgetown University HospitalWashington, DCUSA
  2. 2.Department of NeurosurgeryWalter Reed National Military Medical CenterBethesdaUSA
  3. 3.Department of NeurosurgeryPenn State University Milton S. Hershey Medical CenterHersheyUSA
  4. 4.Department of NeurosurgeryGeorgetown University Hospital, Washington Hospital CenterWashington, DCUSA

Personalised recommendations