Advertisement

Pituitary and Other Hormonal Derangements in Severe Traumatic Brain Injury

  • Courtney Pendleton
  • Jack JalloEmail author
Chapter

Abstract

Traumatic brain injury (TBI) is a leading cause of death and disability in the United States. Hormone dysfunction is a common consequence of TBI, and the psychological and physical effects of these disorders may complicate management of these patients. Understanding the potential pitfalls and appropriate evaluation and management is critical to the comprehensive care of TBI patients in the short- and long-term clinical setting.

Keywords

TBI Pituitary Hormone dysfunction Growth hormone deficiency Hypogonadism Combat injury Pediatric trauma 

References

  1. 1.
    Ulfarsson T, Arnar Gudnason G, Rosén T, Blomstrand C, Sunnerhagen KS, Lundgren-Nilsson A, et al. Pituitary function and functional outcome in adults after severe traumatic brain injury: the long-term perspective. J Neurotrauma. 2013;30(4):271–80.CrossRefGoogle Scholar
  2. 2.
    Tanriverdi F, Schneider HJ, Aimaretti G, Masel BE, Casanueva FF, Kelestimur F. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr Rev. 2015;36(3):305–42.CrossRefGoogle Scholar
  3. 3.
    Agha A, Rogers B, Sherlock M, O’Kelly P, Tormey W, Phillips J, et al. Anterior pituitary dysfunction in survivors of traumatic brain injury. J Clin Endocrinol Metab. 2004;89(10):4929–36.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Casanueva FF, Leal A, Koltowska-Häggström M, Jonsson P, Góth MI. Traumatic brain injury as a relevant cause of growth hormone deficiency in adults: a KIMS-based study. Arch Phys Med Rehabil. 2005;86(3):463–8.CrossRefGoogle Scholar
  5. 5.
    Leal-Cerro A, Flores JM, Rincon M, Murillo F, Pujol M, Garcia-Pesquera F, et al. Prevalence of hypopituitarism and growth hormone deficiency in adults long-term after severe traumatic brain injury. Clin Endocrinol (Oxf). 2005;62(5):525–32.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Popovic V, Aimaretti G, Casanueva FF, Ghigo E. Hypopituitarism following traumatic brain injury. Front Horm Res. 2005;33:33–44.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Popovic V, Aimaretti G, Casanueva FF, Ghigo E. Hypopituitarism following traumatic brain injury (TBI): call for attention. J Endocrinol Invest. 2005;28(5 Suppl):61–4.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Tanriverdi F, Senyurek H, Unluhizarci K, Selcuklu A, Casanueva FF, Kelestimur F. High risk of hypopituitarism after traumatic brain injury: a prospective investigation of anterior pituitary function in the acute phase and 12 months after trauma. J Clin Endocrinol Metab. 2006;91(6):2105–11.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Ioachimescu AG, Hampstead BM, Moore A, Burgess E, Phillips LS. Growth hormone deficiency after mild combat-related traumatic brain injury. Pituitary. 2015;18(4):535–41.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kelly DF, Chaloner C, Evans D, Mathews A, Cohan P, Wang C, et al. Prevalence of pituitary hormone dysfunction, metabolic syndrome, and impaired quality of life in retired professional football players: a prospective study. J Neurotrauma. 2014;31(13):1161–71.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Baxter D, Sharp DJ, Feeney C, Papadopoulou D, Ham TE, Jilka S, et al. Pituitary dysfunction after blast traumatic brain injury: the UK BIOSAP study. Ann Neurol. 2013;74(4):527–36.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Benzinger TL, Brody D, Cardin S, Curley KC, Mintun MA, Mun SK, et al. Blast-related brain injury: imaging for clinical and research applications: report of the 2008 St. Louis workshop. J Neurotrauma. 2009;26(12):2127–44.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Acerini CL, Tasker RC. Neuroendocrine consequences of traumatic brain injury. J Pediatr Endocrinol Metab. 2008;21(7):611–9.CrossRefGoogle Scholar
  14. 14.
    Wagner AK, Brett CA, McCullough EH, Niyonkuru C, Loucks TL, Dixon CE, et al. Persistent hypogonadism influences estradiol synthesis, cognition and outcome in males after severe TBI. Brain Inj. 2012;26(10):1226–42.CrossRefGoogle Scholar
  15. 15.
    Agha A, Thompson CJ. High risk of hypogonadism after traumatic brain injury: clinical implications. Pituitary. 2005;8(3–4):245–9.CrossRefGoogle Scholar
  16. 16.
    Richmond E, Rogol AD. Traumatic brain injury: endocrine consequences in children and adults. Endocrine. 2014;45(1):3–8.CrossRefGoogle Scholar
  17. 17.
    Skolnick BE, Maas AI, Narayan RK, van der Hoop RG, MacAllister T, Ward JD, et al. A clinical trial of progesterone for severe traumatic brain injury. N Engl J Med. 2014;371(26):2467–76.CrossRefGoogle Scholar
  18. 18.
    Wright DW, Yeatts S, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, Goldstein FC, Caveney AF, Howlett-Smith H, Bengelink EM, Manley GT, Merck LH, Janis LS, Barsan WG, Investigators NETT. Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 2014;371(26):2457–66.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bavisetty S, McArthur DL, Dusick JR, Wang C, Cohan P, Boscardin WJ, et al. Chronic hypopituitarism after traumatic brain injury: risk assessment and relationship to outcome. Neurosurgery. 2008;62(5):1080–93; discussion 1093–84.CrossRefGoogle Scholar
  20. 20.
    Lieberman SA, Oberoi AL, Gilkison CR, Masel BE, Urban RJ. Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J Clin Endocrinol Metab. 2001;86(6):2752–6.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Aimaretti G, Ambrosio MR, Di Somma C, Gasperi M, Cannavò S, Scaroni C, et al. Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab. 2005;90(11):6085–92.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    van Liempt S, Vermetten E, Lentjes E, Arends J, Westenberg H. Decreased nocturnal growth hormone secretion and sleep fragmentation in combat-related posttraumatic stress disorder; potential predictors of impaired memory consolidation. Psychoneuroendocrinology. 2011;36(9):1361–9.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Toogood A, Brabant G, Maiter D, Jonsson B, Feldt-Rasmussen U, Koltowska-Haggstrom M, et al. Similar clinical features among patients with severe adult growth hormone deficiency diagnosed with insulin tolerance test or arginine or glucagon stimulation tests. Endocr Pract. 2012;18(3):325–34.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bondanelli M, Ambrosio M, Zatelli MC, De Marinis L, degli Uberti EC. Hypopituitarism after traumatic brain injury. Eur J Endocrinol. 2005;152(5):679–91.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Benvenga S, Campenní A, Ruggeri RM, Trimarchi F. Clinical review 113: hypopituitarism secondary to head trauma. J Clin Endocrinol Metab. 2000;85(4):1353–61.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Matsuura H, Nakazawa S, Wakabayashi I. Thyrotropin-releasing hormone provocative release of prolactin and thyrotropin in acute head injury. Neurosurgery. 1985;16(6):791–5.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Penfield W. Diencephalic autonomic epilepsy. Arch Neurol Psychiatry. 1929;22:358–74.CrossRefGoogle Scholar
  28. 28.
    Lemke DM. Riding out the storm: sympathetic storming after traumatic brain injury. J Neurosci Nurs. 2004;36(1):4–9.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Scott JS, Ockey RR, Holmes GE, Varghese G. Autonomic dysfunction associated with locked-in syndrome in a child. Am J Phys Med Rehabil. 1997;76(3):200–3.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Russo RN, O’Flaherty S. Bromocriptine for the management of autonomic dysfunction after severe traumatic brain injury. J Paediatr Child Health. 2000;36(3):283–5.CrossRefGoogle Scholar
  31. 31.
    Baguley IJ, Cameron ID, Green AM, Slewa-Younan S, Marosszeky JE, Gurka JA. Pharmacological management of dysautonomia following traumatic brain injury. Brain Inj. 2004;18(5):409–17.CrossRefGoogle Scholar
  32. 32.
    Blackman JA, Patrick PD, Buck ML, Rust RS. Paroxysmal autonomic instability with dystonia after brain injury. Arch Neurol. 2004;61(3):321–8.CrossRefGoogle Scholar
  33. 33.
    Leonard J, Garrett RE, Salottolo K, Slone DS, Mains CW, Carrick MM, et al. Cerebral salt wasting after traumatic brain injury: a review of the literature. Scand J Trauma Resusc Emerg Med. 2015;23:98.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Moro N, Katayama Y, Igarashi T, Mori T, Kawamata T, Kojima J. Hyponatremia in patients with traumatic brain injury: incidence, mechanism, and response to sodium supplementation or retention therapy with hydrocortisone. Surg Neurol. 2007;68(4):387–93.CrossRefGoogle Scholar
  35. 35.
    Lohani S, Devkota UP. Hyponatremia in patients with traumatic brain injury: etiology, incidence, and severity correlation. World Neurosurg. 2011;76(3–4):355–60.CrossRefGoogle Scholar
  36. 36.
    Agha A, Sherlock M, Phillips J, Tormey W, Thompson CJ. The natural history of post-traumatic neurohypophysial dysfunction. Eur J Endocrinol. 2005;152(3):371–7.CrossRefGoogle Scholar
  37. 37.
    Agha A, Thornton E, O’Kelly P, Tormey W, Phillips J, Thompson CJ. Posterior pituitary dysfunction after traumatic brain injury. J Clin Endocrinol Metab. 2004;89(12):5987–92.CrossRefGoogle Scholar
  38. 38.
    Diamandis T, Gonzales-Portillo C, Gonzales-Portillo GS, Staples M, Borlongan MC, Hernandez D, et al. Diabetes insipidus contributes to traumatic brain injury pathology via cd36 neuroinflammation. Med Hypotheses. 2013;81(5):936–9.CrossRefGoogle Scholar
  39. 39.
    Popovic V, Pekic S, Pavlovic D, Maric N, Jasovic-Gasic M, Djurovic B, et al. Hypopituitarism as a consequence of traumatic brain injury (TBI) and its possible relation with cognitive disabilities and mental distress. J Endocrinol Invest. 2004;27(11):1048–54.CrossRefGoogle Scholar
  40. 40.
    Nourollahi S, Wille J, Weiß V, Wedekind C, Lippert-Grüner M. Quality-of-life in patients with post-traumatic hypopituitarism. Brain Inj. 2014;28(11):1425–9.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Herrmann BL, Rehder J, Kahlke S, Wiedemayer H, Doerfler A, Ischebeck W, et al. Hypopituitarism following severe traumatic brain injury. Exp Clin Endocrinol Diabetes. 2006;114(6):316–21.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kleindienst A, Brabant G, Bock C, Maser-Gluth C, Buchfelder M. Neuroendocrine function following traumatic brain injury and subsequent intensive care treatment: a prospective longitudinal evaluation. J Neurotrauma. 2009;26(9):1435–46.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Acerini CL. Head-injury-induced pituitary dysfunction. An old curiosity rediscovered. Arch Dis Child. 2008;93(5):364–5.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bellone S, Einaudi S, Caputo M, Prodam F, Busti A, Belcastro S, et al. Measurement of height velocity is an useful marker for monitoring pituitary function in patients who had traumatic brain injury. Pituitary. 2013;16(4):499–506.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurological SurgeryThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations