Advertisement

Integration of Fission-Track Thermochronology with Other Geochronologic Methods on Single Crystals

Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

Fission-track (FT) thermochronology can be integrated with the U–Pb and (U–Th)/He dating methods. All three radiometric dating methods can be applied to single crystals (hereafter referred to as “triple-dating”), allowing more complete and more precise thermal histories to be constrained from single grains. Such an approach is useful across a myriad of geological applications. Triple-dating has been successfully applied to zircon and apatite. However, other U-bearing minerals such as titanite and monazite, which are routinely dated by single methods, are also candidates for this approach. Several analytical procedures can be used to generate U–Pb—FT—(U–Th)/He age triples on single grains. The procedure introduced here combines FT dating by LA-ICPMS and in situ (U–Th)/He dating approach, whereby the U–Pb age is obtained as a by-product of U–Th analysis by LA-ICPMS. In this case, U–Pb, trace element and REE data can be collected simultaneously and used as annealing kinetics parameter or as provenance and petrogenetic indicators. This novel procedure avoids time-consuming irradiation in a nuclear reactor, reduces multiple sample handling steps and allows high sample throughput (predictably on the order of 100 triple-dated crystals in 2 weeks). These attributes and the increasing number of facilities capable of conducting triple-dating indicate that this approach may become more routine in the near future.

Notes

Acknowledgements

This work was supported by the AuScope NCRIS2 program and Australian Scientific Instruments Pty Ltd. I would like to thank M. G. Malusà and P. G. Fitzgerald for editorial handling and help in conceiving Fig. 5.5, I. Dunkl for introducing me into FT world, N. Evans for training me in U–Th analysis, improvement of the manuscript, provision of apatite U–Pb data and constructive comments, D. Patterson for training me in Helium analysis and troubleshooting, C. Kirkland for stimulating discussions and processing of apatite U–Pb data, B. McDonald for development of RESOchron methods and help with LA-ICPMS analysis, T. Becker for help with AFM work, and C. May and C. Scadding from TSW Analytical for access to the solution ICPMS laboratory. I am grateful for the support of B. McInnes, M. Shelley, B. Godfrey, D. Gibbs, C. Gabay, A. Norris, P. Lanc and M. Hamel throughout the development of the RESOchron instrumentation. Constructive reviews by M. Zattin, B. Carrapa and the editors are acknowledged with thanks.

References

  1. Barbarand J, Carter A, Wood I, Hurford T (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198(1):107–137CrossRefGoogle Scholar
  2. Belton D, Brown R, Kohn B, Fink D, Farley K (2004) Quantitative resolution of the debate over antiquity of the central Australian landscape: implications for the tectonic and geomorphic stability of cratonic interiors. Earth Planet Sci Lett 219(1):21–34CrossRefGoogle Scholar
  3. Bernet M (2018) Chapter 15: Exhumation studies of mountain belts based on detrital fission-track analysis on sand and sandstones. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  4. Bernet M, Spiegel C (2004) Introduction: detrital thermochronology. Geol S Am S 378:1–6Google Scholar
  5. Bernet M, Garver JI (2005) Fission-track analysis of detrital zircon. Rev Mineral Geochem 58(1):205–237CrossRefGoogle Scholar
  6. Bernet M, van der Beek P, Pik R, Huyghe P, Mugnier JL, Labrin E, Szulc A (2006) Miocene to recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res 18(4):393–412CrossRefGoogle Scholar
  7. Boyce J, Hodges K, Olszewski W, Jercinovic M (2005) He diffusion in monazite: Implications for (U‐Th)/He thermochronometry. Geochem Geophys Geosys 6(12)CrossRefGoogle Scholar
  8. Boyce J, Hodges K, Olszewski W, Jercinovic M, Carpenter B, Reiners PW (2006) Laser microprobe (U–Th)/He geochronology. Geochim Cosmochim Ac 70(12):3031–3039CrossRefGoogle Scholar
  9. Boyce J, Hodges K, King D, Crowley JL, Jercinovic M, Chatterjee N, Bowring S, Searle M (2009) Improved confidence in (U‐Th)/He thermochronology using the laser microprobe: an example from a Pleistocene leucogranite, Nanga Parbat, Pakistan. Geochem Geophys Geosys 10(9)CrossRefGoogle Scholar
  10. Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110(8):985–1009CrossRefGoogle Scholar
  11. Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull 78(10):1613–1636Google Scholar
  12. Campbell IH, Reiners PW, Allen CM, Nicolescu S, Upadhyay R (2005) He–Pb double dating of detrital zircons from the Ganges and Indus Rivers: implication for quantifying sediment recycling and provenance studies. Earth Planet Sci Lett 237(3):402–432CrossRefGoogle Scholar
  13. Carrapa B (2010) Resolving tectonic problems by dating detrital minerals. Geology 38(2):191–192CrossRefGoogle Scholar
  14. Carrapa B, DeCelles PG, Reiners PW, Gehrels GE, Sudo M (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the Central Andes: a multiphase tectonothermal history. Geology 37(5):407–410CrossRefGoogle Scholar
  15. Carter A (2018) Chapter 14: Thermochronology on sand and sandstones for stratigraphic and provenance studies. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  16. Carter A, Moss SJ (1999) Combined detrital-zircon fission-track and U–Pb dating: a new approach to understanding hinterland evolution. Geology 27(3):235–238CrossRefGoogle Scholar
  17. Carter A, Bristow C (2000) Detrital zircon geochronology: enhancing the quality of sedimentary source information through improved methodology and combined U–Pb and fission-track techniques. Basin Res 12(1):47–57CrossRefGoogle Scholar
  18. Carter A, Bristow C (2003) Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau Basin, eastern Thailand. Basin Res 15(2):271–285CrossRefGoogle Scholar
  19. Chamberlain KR, Bowring SA (2001) Apatite–feldspar U–Pb thermochronometer: a reliable, mid-range (∼450 °C), diffusion-controlled system. Chem Geol 172(1):173–200CrossRefGoogle Scholar
  20. Cherniak D (1993) Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport. Chem Geol 110(1–3):177–194CrossRefGoogle Scholar
  21. Cherniak DJ (2010) Diffusion in accessory minerals: zircon, titanite, apatite, monazite and xenotime. Rev Mineral Geochem 72(1):827–869CrossRefGoogle Scholar
  22. Cherniak D, Watson E (2001) Pb diffusion in zircon. Chem Geol 172(1):5–24CrossRefGoogle Scholar
  23. Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Mineral Geochem 53(1):113–143CrossRefGoogle Scholar
  24. Cherniak D, Lanford W, Ryerson F (1991) Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochim Cosmochim Ac 55(6):1663–1673CrossRefGoogle Scholar
  25. Cherniak D, Watson EB, Grove M, Harrison TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Ac 68(4):829–840CrossRefGoogle Scholar
  26. Chew DM, Donelick RA (2012) Combined apatite fission track and U–Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Quant Miner Microanal Sediments Sed Rocks: Minerall Ass Can Short Course 42:219–247Google Scholar
  27. Chew DM, Sylvester PJ, Tubrett MN (2011) U–Pb and Th-Pb dating of apatite by LA-ICPMS. Chem Geol 280(1):200–216CrossRefGoogle Scholar
  28. Cochrane R, Spikings RA, Chew D, Wotzlaw J-F, Chiaradia M, Tyrrell S, Schaltegger U, Van der Lelij R (2014) High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim Cosmochim Ac 127:39–56CrossRefGoogle Scholar
  29. Cox R, Košler J, Sylvester P, Hodych J Apatite fission-track (FT) dating by LAM-ICP-MS analysis. J Conf Abstr, 2000. p 322Google Scholar
  30. Coyle D, Wagner G (1998) Positioning the titanite fission-track partial annealing zone. Chem Geol 149(1):117–125CrossRefGoogle Scholar
  31. Danišík M, Kuhlemann J, Dunkl I, Székely B, Frisch W (2007) Burial and exhumation of Corsica (France) in the light of fission track data. Tectonics 26(1)CrossRefGoogle Scholar
  32. Danišík M, Sachsenhofer RF, Privalov VA, Panova EA, Frisch W, Spiegel C (2008) Low-temperature thermal evolution of the Azov Massif (Ukrainian Shield—Ukraine)—Implications for interpreting (U–Th)/He and fission track ages from cratons. Tectonophysics 456(3):171–179CrossRefGoogle Scholar
  33. Danišík M, Pfaff K, Evans NJ, Manoloukos C, Staude S, McDonald BJ, Markl G (2010a) Tectonothermal history of the Schwarzwald ore district (Germany): an apatite triple dating approach. Chem Geol 278(1):58–69CrossRefGoogle Scholar
  34. Danišík M, Sachsenhofer R, Frisch W, Privalov V, Panova E, Spiegel C (2010b) Thermotectonic evolution of the Ukrainian Donbas Foldbelt revisited: new constraints from zircon and apatite fission track data. Basin Res 22(5):681–698CrossRefGoogle Scholar
  35. Danišík M, Kuhlemann J, Dunkl I, Evans NJ, Székely B, Frisch W (2012) Survival of ancient landforms in a collisional setting as revealed by combined fission track and (U–Th)/He thermochronometry: a case study from Corsica (France). J Geol 120(2):155–173CrossRefGoogle Scholar
  36. Danišík M, Fodor L, Dunkl I, Gerdes A, Csizmeg J, Hámor-Vidó M, Evans NJ (2015) A multi-system geochronology in the Ad-3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by low-temperature thermochronology and for interpretation of (U–Th)/He data. Terra Nova 27(4):258–269CrossRefGoogle Scholar
  37. Danišík M, McInnes BI, Kirkland CL, McDonald BJ, Evans NJ, Becker T (2017) Seeing is believing: visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals. Science Advances 3(2):e1601121CrossRefGoogle Scholar
  38. Djimbi DM, Gautheron C, Roques J, Tassan-Got L, Gerin C, Simoni E (2015) Impact of apatite chemical composition on (U–Th)/He thermochronometry: An atomistic point of view. Geochim Cosmochim Ac 167:162–176CrossRefGoogle Scholar
  39. Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petr 40(3):259–274CrossRefGoogle Scholar
  40. Donelick RA, Miller DS (1991) Enhanced TINT fission track densities in low spontaneous track density apatites using 252Cf-derived fission fragment tracks: a model and experimental observations. Int J Rad Appl Instr Part D Nuclear Tracks Rad Meas 18(3):301–307CrossRefGoogle Scholar
  41. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. Am Mineral 84(9):1224–1234CrossRefGoogle Scholar
  42. Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission-track analysis. Rev Mineral Geochem 58(1):49–94CrossRefGoogle Scholar
  43. Donelick R, O’Sullivan P, Ketcham R, Hendriks B, Redfield T (2006) Relative U and Th concentrations from LA-ICP-MS for apatite fission-track grain-age dating. Geochim Cosmochim Ac 70(18):A143CrossRefGoogle Scholar
  44. Ehlers TA, Farley KA (2003) Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett 206(1):1–14CrossRefGoogle Scholar
  45. Emmel B, Jacobs J, Crowhurst P, Daszinnies M (2007) Combined apatite fission-track and single grain apatite (U–Th)/He ages from basement rocks of central Dronning Maud Land (East Antarctica)—Possible identification of thermally overprinted crustal segments? Earth Planet Sci Lett 264(1):72–88CrossRefGoogle Scholar
  46. Enkelmann E, Jonckheere R, Wauschkuhn B (2005) Independent fission-track ages (ϕ-ages) of proposed and accepted apatite age standards and a comparison of ϕ-, Z-, ζ-and ζ 0-ages: implications for method calibration. Chem Geol 222(3):232–248CrossRefGoogle Scholar
  47. Evans NJ, McInnes BI, McDonald B, Danišík M, Jourdan F, Mayers C, Thern E, Corbett D (2013) Emplacement age and thermal footprint of the diamondiferous Ellendale E9 lamproite pipe, Western Australia. Mineralium Deposita 48(3):413–421CrossRefGoogle Scholar
  48. Evans N, McInnes B, McDonald B, Danišík M, Becker T, Vermeesch P, Shelley M, Marillo-Sialer E, Patterson D (2015) An in situ technique for (U–Th–Sm)/He and U–Pb double dating. J Analyt Atom Spect 30(7):1636–1645CrossRefGoogle Scholar
  49. Farley K (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res B 105(B2):2903–2914CrossRefGoogle Scholar
  50. Farley KA (2002) (U–Th)/He dating: Techniques, calibrations, and applications. Rev Mineral Geochem 47(1):819–844CrossRefGoogle Scholar
  51. Farley K, Wolf R, Silver L (1996) The effects of long alpha-stopping distances on (U–Th)/He ages. Geochim Cosmochim Ac 60(21):4223–4229CrossRefGoogle Scholar
  52. Fayon A (2011) Fission track dating of monazite: etching efficiencies as a function of U content. Paper presented at GSA Annual Meeting in Minneapolis, 9–12 October 2011Google Scholar
  53. Fitzgerald P, Baldwin SL, Webb L, O’Sullivan PB (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225(1):91–120CrossRefGoogle Scholar
  54. Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of California PressGoogle Scholar
  55. Flowerdew M, Millar IL, Curtis ML, Vaughan A, Horstwood M, Whitehouse MJ, Fanning CM (2007) Combined U–Pb geochronology and Hf isotope geochemistry of detrital zircons from early Paleozoic sedimentary rocks, Ellsworth-Whitmore Mountains block, Antarctica. Geol Soc Am Bull 119(3–4):275–288CrossRefGoogle Scholar
  56. Flowers RM (2009) Exploiting radiation damage control on apatite (U–Th)/He dates in cratonic regions. Earth Planet Sci Lett 277(1):148–155CrossRefGoogle Scholar
  57. Flowers R, Farley K (2012) Apatite 4He/3He and (U–Th)/He evidence for an ancient Grand Canyon. Science 338(6114):1616–1619CrossRefGoogle Scholar
  58. Flowers R, Farley K (2013) Response to Comments on “Apatite 4He/3He and (U–Th)/He evidence for an ancient Grand Canyon”. Science 340(6129):143CrossRefGoogle Scholar
  59. Flowers RM, Kelley SA (2011) Interpreting data dispersion and “inverted” dates in apatite (U–Th)/He and fission-track datasets: an example from the US midcontinent. Geochim Cosmochim Ac 75(18):5169–5186CrossRefGoogle Scholar
  60. Flowers R, Shuster D, Wernicke B, Farley K (2007) Radiation damage control on apatite (U–Th)/He dates from the Grand Canyon region, Colorado Plateau. Geology 35(5):447–450CrossRefGoogle Scholar
  61. Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Ac 73(8):2347–2365CrossRefGoogle Scholar
  62. Flowers RM, Farley KA, Ketcham RA (2015) A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon. Earth Planet Sci Lett 432:425–435CrossRefGoogle Scholar
  63. Flowers RM, Farley KA, Ketcham RA (2016) Response to comment on “A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon”. Earth Planet Sci Lett 441:213CrossRefGoogle Scholar
  64. Fox M, Shuster DL (2014) The influence of burial heating on the (U–Th)/He system in apatite: Grand Canyon case study. Earth Planet Sci Lett 397:174–183CrossRefGoogle Scholar
  65. Galbraith R, Laslett G (1993) Statistical models for mixed fission track ages. Nuclear Tracks Rad Meas 21(4):459–470CrossRefGoogle Scholar
  66. Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res: Sol Ea 117 (B2)CrossRefGoogle Scholar
  67. Gallagher K (2016) Comment on “A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon” by Flowers, Farley and Ketcham. Earth Planet Sci Lett 441:211–212CrossRefGoogle Scholar
  68. Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Ann Rev Earth Planet Sci 26(1):519–572CrossRefGoogle Scholar
  69. Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ ⇔ 2Nd3+ interdiffusion. Geochim Cosmochim Ac 70(9):2325–2336CrossRefGoogle Scholar
  70. Garver JI (2003) Etching zircon age standards for fission-track analysis. Rad Meas 37(1):47–53CrossRefGoogle Scholar
  71. Garver JI, Kamp PJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps. New Zealand. Tectonophysics 349(1):203–219CrossRefGoogle Scholar
  72. Gautheron C, Tassan-Got L (2010) A Monte Carlo approach to diffusion applied to noble gas/helium thermochronology. Chem Geol 273(3):212–224CrossRefGoogle Scholar
  73. Gleadow A (1981) Fission-track dating methods: what are the real alternatives? Nuclear Tracks 5(1–2):3–14CrossRefGoogle Scholar
  74. Gleadow A, Fitzgerald P (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82(1–2):1–14CrossRefGoogle Scholar
  75. Gleadow A, Lovering J (1974) The effect of weathering on fission track dating. Earth Planet Sci Lett 22(2):163–168CrossRefGoogle Scholar
  76. Gleadow A, Duddy I, Lovering J (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Austr Petrol Expl Ass J 23:93–102Google Scholar
  77. Gleadow A, Duddy I, Green PF, Lovering J (1986a) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petr 94(4):405–415CrossRefGoogle Scholar
  78. Gleadow AJ, Duddy IR, Green PF, Hegarty KA (1986b) Fission track lengths in the apatite annealing zone and the interpretation of mixed ages. Earth Planet Sci Lett 78(2–3):245–254CrossRefGoogle Scholar
  79. Gleadow AJ, Gleadow SJ, Belton DX, Kohn BP, Krochmal MS, Brown RW (2009) Coincidence mapping-a key strategy for the automatic counting of fission tracks in natural minerals. Geol Soc Spec Publ 324(1):25–36CrossRefGoogle Scholar
  80. Gleadow AJ, Kohn BP, Lugo-Zazueta R, Alimanovic A (2012) The use of coupled image analysis and laser-ablation ICP-MS in fission track thermochronology. In: Goldschmidt Conference Abstracts 1765, Montreal, 24–29 June, 2012Google Scholar
  81. Gleadow AJ, Kohn B, Seiler C (2018) Chapter 4: the future of fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  82. Green P, Duddy I (2006) Interpretation of apatite (U–Th)/He ages and fission track ages from cratons. Earth Planet Sci Lett 244(3):541–547CrossRefGoogle Scholar
  83. Green P, Duddy I, Laslett G, Hegarty K, Gleadow AW, Lovering J (1989a) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol: Isotope Geosc Sect 79(2):155–182Google Scholar
  84. Green PF, Duddy IR, Gleadow AJ, Lovering JF (1989b) Apatite fission-track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Thermal history of sedimentary basins. Springer, pp 181–195CrossRefGoogle Scholar
  85. Green PF, Crowhurst PV, Duddy IR, Japsen P, Holford SP (2006) Conflicting (U–Th)/He and fission track ages in apatite: enhanced He retention, not anomalous annealing behaviour. Earth Planet Sci Lett 250(3):407–427CrossRefGoogle Scholar
  86. Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U–Th)/He thermochronology. Am J Sci 313(3):145–198CrossRefGoogle Scholar
  87. Hanchar JM, Hoskin PW (2003) Zircon–reviews in mineralogy and geochemistry, vol 53. Mineralogical society of America/geochemical society, p 500Google Scholar
  88. Hansen K, Reiners PW (2006) Low temperature thermochronology of the southern East Greenland continental margin: evidence from apatite (U–Th)/He and fission track analysis and implications for intermethod calibration. Lithos 92(1):117–136CrossRefGoogle Scholar
  89. Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission-track chronometry using laser ablation ICP-MS. Chem Geol 207(3):135–145CrossRefGoogle Scholar
  90. Hawkins DP, Bowring SA (1999) U–Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petr 134(2):150–169CrossRefGoogle Scholar
  91. Hendriks BWH (2003) Cooling and Denudation of the Norwegian and Barents Sea Margins, Northern Scandinavia: Constrained by Apatite Fission Track and (U–Th) He Thermochronology. Vrije universiteitGoogle Scholar
  92. Hendriks B, Redfield T (2005) Apatite fission track and (U–Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite. Earth Planet Sci Lett 236(1):443–458CrossRefGoogle Scholar
  93. Hendriks BWH, Redfield TF (2006) Reply to: comment on “Apatite fission track and (U–Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite” by BWH hendriks and TF redfield. Earth Planet Sci Lett 248(1–2):569–577Google Scholar
  94. Horne AM, van Soest MC, Hodges KV, Tripathy-Lang A, Hourigan JK (2016) Integrated single crystal laser ablation U/Pb and (U–Th)/He dating of detrital accessory minerals–Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochim Cosmochim Ac 178:106–123CrossRefGoogle Scholar
  95. Hourigan JK, Reiners PW, Brandon MT (2005) U–Th zonation-dependent alpha-ejection in (U–Th)/He chronometry. Geochim Cosmochim Ac 69(13):3349–3365CrossRefGoogle Scholar
  96. House M, Kohn B, Farley K, Raza A (2002) Evaluating thermal history models for the Otway Basin, southeastern Australia, using (U–Th)/He and fission-track data from borehole apatites. Tectonophysics 349(1):277–295CrossRefGoogle Scholar
  97. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petr 92(4):413–427CrossRefGoogle Scholar
  98. Hurford AJ (2018) Chapter 1: an historical perspective on fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  99. Hurley PM (1952) Alpha ionization damage as a cause of low helium ratios. Eos, Trans Am Geophys Union 33(2):174–183CrossRefGoogle Scholar
  100. Jennings E, Marschall H, Hawkesworth C, Storey C (2011) Characterization of magma from inclusions in zircon: apatite and biotite work well, feldspar less so. Geology 39(9):863–866CrossRefGoogle Scholar
  101. Jolivet M, Dempster T, Cox R (2003) Distribution of U and Th in apatites: implications for U–Th/He thermo chronology. CR Geosci, 899–906Google Scholar
  102. Jonckheere R, Ratschbacher L (2015) Standardless fission-track dating of the Durango apatite age standard. Chem Geol 417:44–57CrossRefGoogle Scholar
  103. Karlstrom KE, Lee J, Kelley S, Crow R, Young RA, Lucchitta I, Beard LS, Dorsey R, Ricketts JW, Dickinson WR, Crossey L (2013) Comment on “Apatite 4He/3He and (U-Th)/He evidence for an ancient grand canyon”. Science 340(6129):143. http://dx.doi.org/10.1126/science.1233982CrossRefGoogle Scholar
  104. Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58(1):275–314CrossRefGoogle Scholar
  105. Ketcham R (2018) Chapter 3: fission track annealing: from geologic observations to thermal modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  106. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. Am Mineral 84(9):1235–1255CrossRefGoogle Scholar
  107. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved measurement of fission-track annealing in apatite using c-axis projection. Am Mineral 92(5–6):789–798CrossRefGoogle Scholar
  108. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved modeling of fission-track annealing in apatite. Am Mineral 92(5–6):799–810CrossRefGoogle Scholar
  109. Ketcham RA, Donelick RA, Balestrieri ML, Zattin M (2009) Reproducibility of apatite fission-track length data and thermal history reconstruction. Earth Planet Sci Lett 284(3):504–515CrossRefGoogle Scholar
  110. Ketcham RA, Guenthner WR, Reiners PW (2013) Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. Am Mineral 98(2–3):350–360CrossRefGoogle Scholar
  111. Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. Rev Mineral Geochem 53(1):327–341CrossRefGoogle Scholar
  112. Kirkland C, Erickson T, Johnson T, Danišík M, Evans N, Bourdet J, McDonald B (2016a) Discriminating prolonged, episodic or disturbed monazite age spectra: An example from the Kalak Nappe Complex, Arctic Norway. Chem Geol 424:96–110CrossRefGoogle Scholar
  113. Kirkland C, Spaggiari C, Johnson T, Smithies R, Danišík M, Evans N, Wingate M, Clark C, Spencer C, Mikucki E (2016b) Grain size matters: implications for element and isotopic mobility in titanite. Precambrian Res 278:283–302CrossRefGoogle Scholar
  114. Kohn BP, Gleadow A (2018) Chapter 21: application of low-temperature thermochronology to craton evolution. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  115. Kohn BP, Green PF (2002) Low temperature thermochronology: from tectonics to landscape evolution. ElsevierCrossRefGoogle Scholar
  116. Kohn BP, Lorencak M, Gleadow AJ, Kohlmann F, Raza A, Osadetz KG, Sorjonen-Ward P (2009) A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. Geol Soc Spec Publ 324(1):193–216CrossRefGoogle Scholar
  117. Kohn BP, Chung L, Gleadow A (2018) Chapter 2: fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  118. Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICPMS. Rev Mineral Geochem 53(1):243–275CrossRefGoogle Scholar
  119. Krogh T (1982) Improved accuracy of U–Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Ac 46(4):637–649CrossRefGoogle Scholar
  120. Ksienzyk AK, Dunkl I, Jacobs J, Fossen H, Kohlmann F (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc Spec Publ 390(SP390):327Google Scholar
  121. Lee J, Stockli D, Kelley S, Pederson J, Karlstrom K, Ehlers T (2013) New thermochronometric constraints on the Tertiary landscape evolution of the central and eastern Grand Canyon, Arizona. Geosphere 9(2):216–228CrossRefGoogle Scholar
  122. Lisker F, Ventura B, Glasmacher U (2009) Apatite thermochronology in modern geology. Geol Soc Spec Publ 324(1):1–23CrossRefGoogle Scholar
  123. Liu W, Zhang J, Sun T, Wang J (2014) Application of apatite U–Pb and fission-track double dating to determine the preservation potential of magnetite–apatite deposits in the Luzong and Ningwu volcanic basins, eastern China. J Geochem Expl 138:22–32CrossRefGoogle Scholar
  124. Lorencak M (2003) Low temperature thermochronology of the Canadian and Fennoscandian Shields: Integration of apatite fission track and (U–Th)/He methods. University of Melbourne, School of Earth SciencesGoogle Scholar
  125. Malusà MG, Fitzgerald PG (2018) Chapter 8: from cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  126. Malusà MG, Fitzgerald PG (2018) Chapter 10: application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  127. Malusà MG, Garzanti E (2018) Chapter 7: the sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  128. Malusà MG, Danišík M, Kuhlemann J (2016) Tracking the Adriatic-slab travel beneath the Tethyan margin of Corsica-Sardinia by low-temperature thermochronometry. Gondwana Res 31:135–149CrossRefGoogle Scholar
  129. Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for prove-nance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59CrossRefGoogle Scholar
  130. McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem Geol 214(3):249–263CrossRefGoogle Scholar
  131. McInnes BI, Evans NJ, Fu FQ, Garwin S (2005) Application of thermochronology to hydrothermal ore deposits. Rev Mineral Geochem 58(1):467–498CrossRefGoogle Scholar
  132. McInnes BI, Evans NJ, McDonald BJ, Kinny PD, Jakimowicz J (2009) Zircon U–Th-Pb-He double dating of the Merlin kimberlite field, Northern Territory, Australia. Lithos 112:592–599CrossRefGoogle Scholar
  133. Meesters A, Dunai T (2002a) Solving the production-diffusion equation for finite diffusion domains of the various shapes, part 1; implications for low temperature (U–Th)/He thermochronologyGoogle Scholar
  134. Meesters A, Dunai T (2002b) Solving the production-diffusion equation for finite diffusion domains of various shapes: Part II. Application to cases with α-ejection and nonhomogeneous distribution of the source. Chem Geol 186(3):347–363CrossRefGoogle Scholar
  135. Moore TE, O’Sullivan PB, Potter CJ, Donelick RA (2015) Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism. Geosphere 11(1):93–122CrossRefGoogle Scholar
  136. Morton A, Yaxley G (2007) Detrital apatite geochemistry and its application in provenance studies. Geol S Am S 420:319–344Google Scholar
  137. Parrish RR, Noble SR (2003) Zircon U–Th-Pb geochronology by isotope dilution—thermal ionization mass spectrometry (ID-TIMS). Rev Mineral Geochem 53(1):183–213CrossRefGoogle Scholar
  138. Price P, Walker R (1963) Fossil tracks of charged particles in mica and the age of minerals. J Geophys Res 68(16):4847–4862CrossRefGoogle Scholar
  139. Rahl JM, Reiners PW, Campbell IH, Nicolescu S, Allen CM (2003) Combined single-grain (U–Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone. Utah Geol 31(9):761–764CrossRefGoogle Scholar
  140. Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89(4):473–484CrossRefGoogle Scholar
  141. Reiners PW (2004) Thermochronology of wildfire and fault heating through single-grain (U–Th)/He and fission-track double-dating. In: Conference Abstracts of the GSA Annual Meeting, Denver, 7–10, 2004Google Scholar
  142. Reiners PW (2005) Zircon (U–Th)/He thermochronometry. Rev Mineral Geochem 58(1):151–179CrossRefGoogle Scholar
  143. Reiners PW, Ehlers TA (2005) Low-temperature thermochronology: techniques, interpretations, and applications; Ed.: PW Reiners, TA Ehlers. Miner Soc Am. WashingtonGoogle Scholar
  144. Reiners PW, Farley KA (1999) Helium diffusion and (U–Th)/He thermochronometry of titanite. Geochim Cosmochim Ac 63(22):3845–3859CrossRefGoogle Scholar
  145. Reiners PW, Farley KA (2001) Influence of crystal size on apatite (U–Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet Sci Lett 188(3):413–420CrossRefGoogle Scholar
  146. Reiners P, Campbell I, Nicolescu S, Allen C, Garver J, Hourigan J, Cowan D (2004) Double-and triple-dating of single detrital zircons with (U–Th)/He, fission-track, and U/Pb systems, and examples from modern and ancient sediments of the western US. In: AGU Fall Meeting Abstracts, 2004Google Scholar
  147. Reiners PW, Spell TL, Nicolescu S, Zanetti KA (2004b) Zircon (U–Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Ac 68(8):1857–1887CrossRefGoogle Scholar
  148. Reiners PW, Campbell I, Nicolescu S, Allen CM, Hourigan J, Garver J, Mattinson J, Cowan D (2005) (U–Th)/(He-Pb) double dating of detrital zircons. Am J Sci 305(4):259–311CrossRefGoogle Scholar
  149. Schaltegger U, Schmitt A, Horstwood M (2015) U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: recipes, interpretations, and opportunities. Chem Geol 402:89–110CrossRefGoogle Scholar
  150. Schoene B, Latkoczy C, Schaltegger U, Günther D (2010) A new method integrating high-precision U–Pb geochronology with zircon trace element analysis (U–Pb TIMS-TEA). Geochim Cosmochim Ac 74(24):7144–7159CrossRefGoogle Scholar
  151. Shen C-B, Donelick RA, O’Sullivan PB, Jonckheere R, Yang Z, She Z-B, Miu X-L, Ge X (2012) Provenance and hinterland exhumation from LA-ICP-MS zircon U–Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China. Sed Geol 281:194–207CrossRefGoogle Scholar
  152. Shuster DL, Farley KA (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Ac 73(1):183–196CrossRefGoogle Scholar
  153. Shuster D, Flowers R, Farley K (2006) Radiation damage and helium diffusion kinetics in apatite. Geochim Cosmochim Ac 70(18):A590CrossRefGoogle Scholar
  154. Siebel W, Danišík M, Chen F (2009) From emplacement to unroofing: thermal history of the Jiazishan gabbro, Sulu UHP terrane, China. Mineral Petrol 96(3–4):163–175CrossRefGoogle Scholar
  155. Söderlund P, Juez-Larré J, Page LM, Dunai TJ (2005) Extending the time range of apatite (U–Th)/He thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden. Earth Planet Sci Lett 239(3):266–275CrossRefGoogle Scholar
  156. Jt Stacey, Kramers J (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221CrossRefGoogle Scholar
  157. Stockli DF (2005) Application of low-temperature thermochronometry to extensional tectonic settings. Rev Mineral Geochem 58(1):411–448CrossRefGoogle Scholar
  158. Stockli DF, Farley KA (2004) Empirical constraints on the titanite (U–Th)/He partial retention zone from the KTB drill hole. Chem Geol 207(3):223–236CrossRefGoogle Scholar
  159. Stockli DF, Farley KA, Dumitru TA (2000) Calibration of the apatite (U–Th)/He thermochronometer on an exhumed fault block, White Mountains. Calif Geol 28(11):983–986CrossRefGoogle Scholar
  160. Svojtka M, Košler J (2002) Fission-track dating of zircon by laser ablation ICPMS. In: Conference Abstracts of the Goldchmidt Conference, Geochim Cosmochim Ac, 2002. vol 15 A, pp A756–A756, Davos, 18–23 August, 2002Google Scholar
  161. Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. Rev Mineral Geochem 58(1):95–122CrossRefGoogle Scholar
  162. Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low‐damage apatite U‐Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophys Geosys 13(2)CrossRefGoogle Scholar
  163. Tripathy-Lang A, Hodges KV, Monteleone BD, Soest MC (2013) Laser (U–Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments. J Geophys Res: Earth 118(3):1333–1341CrossRefGoogle Scholar
  164. van Soest MC, Hodges KV, Wartho JA, Biren MB, Monteleone BD, Ramezani J, Spray JG, Thompson LM (2011) (U‐Th)/He dating of terrestrial impact structures: the Manicouagan example. Geochem Geophys Geosys 12(5)Google Scholar
  165. Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224(3):441–451CrossRefGoogle Scholar
  166. Vermeesch P (2018) Chapter 6: statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  167. Vermeesch P, Miller DD, Graham SA, De Grave J, McWilliams MO (2006) Multimethod detrital thermochronology of the Great Valley Group near New Idria, California. Geol Soc Am Bull 118(1–2):210–218CrossRefGoogle Scholar
  168. Vermeesch P, Sherlock SC, Roberts NM, Carter A (2012) A simple method for in-situ U–Th–He dating. Geochim Cosmochim Ac 79:140–147CrossRefGoogle Scholar
  169. Wagner G, Reimer G (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14(2):263–268CrossRefGoogle Scholar
  170. Wagner G, van den Haute P (1992) Fission-track dating. Enke, Stuttgart, p 285CrossRefGoogle Scholar
  171. Weise C, van den Boogaart KG, Jonckheere R, Ratschbacher L (2009) Annealing kinetics of Kr-tracks in monazite: implications for fission-track modelling. Chem Geol 260(1):129–137CrossRefGoogle Scholar
  172. Weisheit A, Bons P, Danišík M, Elburg M (2014) Crustal-scale folding: Palaeozoic deformation of the Mt Painter Inlier, South Australia. Geol Soc Spec Publ 394(1):53–77CrossRefGoogle Scholar
  173. Zattin M, Balestrieri ML, Hasebe N, Ketcham R, Seward D, Sobel E, Spiegel C (2008) Notes from the first workshop of the IGCP 543-low temperature thermochronology: applications and interlaboratory calibration. Episodes 31(3):356–357Google Scholar
  174. Zattin M, Andreucci B, Thomson SN, Reiners PW, Talarico FM (2012) New constraints on the provenance of the ANDRILL AND‐2A succession (western Ross Sea, Antarctica) from apatite triple dating. Geochem Geophys Geosys 13(10)CrossRefGoogle Scholar
  175. Zaun P, Wagner G (1985) Fission-track stability in zircons under geological conditions. Nucl Tracks Rad Meas 10(3):303–307Google Scholar
  176. Zeitler P, Herczeg A, McDougall I, Honda M (1987) U–Th-He dating of apatite: a potential thermochronometer. Geochim Cosmochim Ac 51(10):2865–2868CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.John de Laeter CentreSchool of Earth and Planetary Sciences, Curtin UniversityPerthAustralia

Personalised recommendations