Advertisement

Fission-Track Annealing: From Geologic Observations to Thermal History Modeling

Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

This chapter reviews the evolving state of knowledge concerning fission-track (FT) annealing, primarily in apatite and zircon, based on theory, experiments, and geological observations. Multiple insights into track structure, formation, and evolution arise from transmission electron microscopy, small-angle X-ray scattering, atomic force microscopy, and molecular dynamics computer modeling. Our principal knowledge, however, comes from experiments in which spontaneous or induced tracks are annealed, etched, and measured, the results statistically fitted, and their predictions compared against geological benchmarks. This empirical approach has proven effective and resilient, though physical understanding remains an ultimate goal. The precise mechanism by which lattice damage anneals, and how it varies among minerals and damage types, remains unknown. Multiple similarities between apatite and zircon suggest equivalent underlying processes. Both minerals demonstrate annealing anisotropy, and its characterization is crucial for understanding both track shortening and density reduction. The fanning curvilinear equation, featuring curved iso-annealing lines on an Arrhenius-type diagram, has been the most successful for matching data spanning timescales from seconds to hundreds of millions of years. A super-model featuring a single set of iso-annealing lines describes all apatite experimental data to date. Annealing rates vary with both anion and cation substitutions, and more work is required to ascertain how these substitutions interact. Other areas for further research include differences between spontaneous and induced tracks, and possible additional processes affecting length and density evolution, such as seasoning. Thermal history inversion simultaneously leverages and tests our models, and accounting for kinetic variation is key for doing it soundly.

Notes

Acknowledgements

I thank M. Tamer for help with data transcription for drafting figures, and R. Yamada for providing the zircon FT length data. Thorough and thoughtful reviews by the editors, T. Tagami, and particularly R. Jonckheere, helped improve the manuscript.

References

  1. Afra B, Lang M, Bierschenk T, Rodriguez MD, Weber WJ, Trautmann C, Ewing RC, Kirby N, Kluth P (2014) Annealing behaviour of ion tracks in olivine, apatite and britholite. Nucl Instr Meth Phys Res B 326:126–130CrossRefGoogle Scholar
  2. Afra B, Lang M, Rodriguez MD, Zhang F, Giulian R, Kirby N, Ewing RC, Trautmann C, Toulemonde M, Kluth P (2011) Annealing kinetics of latent particle tracks in Durango apatite. Phys Rev B 83:064116CrossRefGoogle Scholar
  3. Afra B, Rodriguez MD, Lang M, Ewing RC, Kirby N, Trautmann C, Kluth P (2012) SAXS study of ion tracks in San Carlos olivine and Durango apatite. Nucl Instr Meth Phys Res B 286:243–246CrossRefGoogle Scholar
  4. Barbarand J, Carter A, Wood I, Hurford AJ (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137CrossRefGoogle Scholar
  5. Bernet M (2009) A field-based estimate of the zircon fission-track closure temperature. Chem Geol 259:181–189CrossRefGoogle Scholar
  6. Bertagnolli E, Keil R, Pahl M (1983) Thermal history and length distribution of fission tracks in apatite: part I. Nucl Tracks 7:163–177Google Scholar
  7. Box GEP, Cox DR (1964) An analysis of transformations. J Royal Statistical Soc B 26:211–252Google Scholar
  8. Braddy D, Hutcheon ID, Price PB (1975) Crystal chemistry of Pu and U and concordant fission track ages of lunar zircons and whitlockites. In: Merrill RB, Hubbard NJ, Mendell WW, Williams RJ (eds) Proceedings of the 6th lunar science conference. Pergamon Press, New York, United States, pp 3587–3600Google Scholar
  9. Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009CrossRefGoogle Scholar
  10. Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. Am Assoc Petrol Geol Bull 78:1613–1636Google Scholar
  11. Carlson WD (1990) Mechanisms and kinetics of apatite fission-track annealing. Am Mineral 75:1120–1139Google Scholar
  12. Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics I: experimental results. Am Mineral 84:1213–1223CrossRefGoogle Scholar
  13. Carpéna J (1992) Fission track dating of zircon: zircons from mont blanc granite (French-Italian Alps). J Geol 100:411–421CrossRefGoogle Scholar
  14. Chadderton LT (2003) Nuclear tracks in solids: registration physics and the compound spike. Rad Meas 36:13–34CrossRefGoogle Scholar
  15. Challandes N, Marquer D, Villa IM (2008) P-T-t modelling, fluid circulation, and 39Ar-40Ar and Rb-Sr mica ages in the Aar Massif shear zones (Swiss Alps). Swiss J Geosci 101:269–288CrossRefGoogle Scholar
  16. Clauser C, Giese P, Huenges E, Kohl T, Lehmann H, Rybach L, Šafanda J, Wilhelm H, Windloff K, Zoth G (1997) The thermal regime of the crystalline continental crust: Implications from the KTB. J Geophys Res 102:18417–18441CrossRefGoogle Scholar
  17. Corrigan JD (1993) Apatite fission-track analysis of Oligocene strata in South Texas, U.S.A.: testing annealing models. Chem Geol 104:227–249CrossRefGoogle Scholar
  18. Coyle DA, Wagner GA, Hejl E, Brown RW, van den Haute P (1997) The Cretaceous and younger thermal history of the KTB site (Germany): apatite fission-track data from the Vorbohrung. Geol Rundsch 86:203–209CrossRefGoogle Scholar
  19. Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing etched fission tracks in fluorapatite. Geochim Cosmochim Acta 55:1449–1465CrossRefGoogle Scholar
  20. Dartyge E, Duraud JP, Langevin Y, Maurette M (1981) New model of nuclear particle tracks in dielectric materials. Phys Rev B 23:5213–5229CrossRefGoogle Scholar
  21. Donelick RA (1991) Crystallographic orientation dependence of mean etchable fission track length in apatite: an empirical model and experimental observations. Am Mineral 76:83–91Google Scholar
  22. Donelick RA, Farley KA, Asimow P, O’Sullivan PB (2003) Pressure dependence of He diffusion and fission-track annealing kinetics in apatite?: experimental results. Geochim Cosmochim Acta 67:A82Google Scholar
  23. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics II: crystallographic orientation effects. Am Mineral 84:1224–1234CrossRefGoogle Scholar
  24. Donelick RA, Roden MK, Mooers JD, Carpenter BS, Miller DS (1990) Etchable length reduction of induced fission tracks in apatite at room temperature (~23 °C): Crystallographic orientation effects and “initial” mean lengths. Nucl Tracks 17:261–265CrossRefGoogle Scholar
  25. Duddy IR (1997) Focussing exploration in the Otway basin: understanding timing of source rock maturation. Aust Pet Prod Explor Assoc J 37:178–191Google Scholar
  26. Duddy IR, Green PF, Laslett GM (1988) Thermal annealing of fission tracks in apatite 3. Variable temperture behaviour. Chem Geol 73:25–38Google Scholar
  27. Durrani SA, Bull RK (1987) Solid state nuclear track detection. Pergamon, OxfordGoogle Scholar
  28. Enkelmann E, Jonckheere R, Wauschkuhn B (2005) Independent fission-track ages (f-ages) of proposed and accepted apatite age standards and a comparison of f-, Z-, z-, and z0- ages: Implications for method calibration. Chem Geol 222:232–248CrossRefGoogle Scholar
  29. Fleischer RL, Price PB (1964) Glass dating by fission fragment tracks. J Geophys Res 69:331–339CrossRefGoogle Scholar
  30. Fleischer RL, Price PB, Walker JD (1965a) Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. J Geophys Res 70:1497–1502CrossRefGoogle Scholar
  31. Fleischer RL, Price PB, Walker RM (1965b) Ion explosion spike mechanism for formation of charged-particle tracks in solids. J Appl Phys 36:3645–3652CrossRefGoogle Scholar
  32. Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids; principles and applications. University of California Press, Berkeley, California, United StatesGoogle Scholar
  33. Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73:2347–2365CrossRefGoogle Scholar
  34. Gallagher K (1995) Evolving temperature histories from apatite fission-track data. Earth Planet Sci Lett 136:421–435CrossRefGoogle Scholar
  35. Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117:B02408Google Scholar
  36. Garver JI (2003) Etching zircon age standards for fission-track analysis. Rad Meas 37:47–53CrossRefGoogle Scholar
  37. Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission-track zonation patterns in orogenic belts: application to the Southern Alps, New England. Tectonophysics 349:203–219CrossRefGoogle Scholar
  38. Garver JI, Reiners PW, Walker LJ, Ramage JM, Perry SE (2005) Implications for timing of andean uplift from thermal resetting of radiation-damaged zircon in the Cordillera Huayhuash, Northern Peru. J Geol 113:117–138CrossRefGoogle Scholar
  39. Gautheron C, Tassan-Got L, Barbarand J, Pagel M (2009) Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chem Geol 266:157–170CrossRefGoogle Scholar
  40. Geisler T, Pidgeon RT, Van Bronwijk W, Pleysier R (2001) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. Eur J Mineral 13:1163–1176CrossRefGoogle Scholar
  41. Girstmair A, Ritter W, Märk E, Märk TD (1984) High temperature fission track annealing in natural fluorapatite. Nucl Tracks 8:381–384Google Scholar
  42. Gleadow AJW (2014) Thermochronology of the future. In: 14th International conference on thermochronology, Chamonix-Mont Blanc, pp 3–4Google Scholar
  43. Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630CrossRefGoogle Scholar
  44. Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5:169–174CrossRefGoogle Scholar
  45. Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnoastic tool for thermal history analysis. Contrib Mineral Petrol 94:405–415CrossRefGoogle Scholar
  46. Gleadow AJW, Harrison TM, Kohn BL, Lugo-Zazueta R, Phillips D (2015) The fish canyon tuff: a new look at an old low-temperature thermochronology standard. Earth Planet Sci Lett 424:95–108CrossRefGoogle Scholar
  47. Gleadow AJW, Hurford AJ, Quaife RD (1976) Fission track dating of zircon: improved etching techniques. Earth Planet Sci Lett 33:273–276CrossRefGoogle Scholar
  48. Gögen K, Wagner GA (2000) Alpha-recoil track dating of quaternary volcanics. Chem Geol 166:127–137CrossRefGoogle Scholar
  49. Green PF (1988) The relationship between track shortening and fission track age reduction in apatite: combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth Planet Sci Lett 89:335–352CrossRefGoogle Scholar
  50. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328Google Scholar
  51. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite 1. A qualitative description. Chem Geol 59:237–253CrossRefGoogle Scholar
  52. Green PF, Duddy IR, Laslett GM (1988) Can fission track annealing in apatite be described by first-order kinetics? Earth Planet Sci Lett 87:216–228CrossRefGoogle Scholar
  53. Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989) Thermal annealing of fission tracks in apatite 4. Quantitative modeling techniques and extension to geological time scales. Chem Geol 79:155–182Google Scholar
  54. Grove M, Harrison TM (1996) 40Ar* diffusion in Fe-rich biotite. Am Mineral 81:940–951CrossRefGoogle Scholar
  55. Guedes S, Moreira PAFP, Devanathan R, Weber WJ, Hadler JC (2013) Improved zircon fission-track annealing based on reevaluation of annealing data. Phys Chem Min 40:93–106CrossRefGoogle Scholar
  56. Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Giester G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am J Sci 313:145–198CrossRefGoogle Scholar
  57. Haack U (1978) The stability of fission tracks in epidote and vesuvianite. Earth Planet Sci Lett 30:129–134CrossRefGoogle Scholar
  58. Haack UK, Potts MJ (1972) Fission track annealing in garnet. Contrib Mineral Petrol 34:343–345CrossRefGoogle Scholar
  59. Hansen J, Sato M, Russell G, Kharecha P (2013) Climate sensitivity, sea level and atmospheric carbon dioxide. Phil Trans R Soc London A 371:20120294CrossRefGoogle Scholar
  60. Harrison TM, Célérier J, Aikman AB, Hermann J, Heizler MT (2009) Diffusion of 40Ar in muscovite. Geochim Cosmochim Acta 73:1039–1051CrossRefGoogle Scholar
  61. Hasebe N, Mori S, Tagami T, Matsui R (2003) Geological partial annealing zone of zircon fission-track system: additional constrains from the deep drilling MITI-Nishikubiki and MITI-Mishima. Chem Geol 199:45–52CrossRefGoogle Scholar
  62. Hasebe N, Tagami T, Nishimura S (1994) Towards zircon fission-track thermochronology: Reference framework for confined track length measurements. Chem Geol 112:169–178CrossRefGoogle Scholar
  63. Hashemi-Nezhad SR, Durrani SA (1983) Annealing behaviour of alpha-recoil tracks in biotite mica: implications for alpha-recoil dating method. Nuclear Tracks 7:141–146Google Scholar
  64. Hendricks BWH, Redfield TF (2005) Apatite fission track and (U-Th)/He data from Fennoscandia: An example of underestimation of fission track annealing in apatite. Earth Planet Sci Lett 236:443–458CrossRefGoogle Scholar
  65. Huang WH, Walker RM (1967) Fossil alpha-particle recoil tracks: a new method of age determination. Science 155:1103–1106CrossRefGoogle Scholar
  66. Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Mineral 74:870–876Google Scholar
  67. Hughes JM, Cameron M, Crowley KD (1990) Crystal structures of natural ternary apatite: solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. Am Mineral 75:295–304Google Scholar
  68. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps South Central Switzerland and an age of vertical movement on the Insubric fault line. Contrib Mineral Petrol 92:413–427CrossRefGoogle Scholar
  69. Hurford AJ (2018) An historical perspective on fission-track thermochronology (Chapter 1). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  70. Issler DR (1996) An inverse model for extracting thermal histories from apatite fission track data: instructions and software for the Windows 95 environment. Geolgical Survey Canada, p 84Google Scholar
  71. Ito H, Tanaka K (1995) Insights on the thermal history of the Valles caldera, New Mexico: evidence from zircon fission-track analysis. J Volcan Geotherm Res 67:153–160CrossRefGoogle Scholar
  72. Jaskierowicz G, Dunlop A, Jonckheere R (2004) Track formation in fluorapatite irradiated with energetic cluster ions. Nucl Instr Meth Phys Res B 222:213–227CrossRefGoogle Scholar
  73. Jenkin GRT, Ellam RM, Rogers G, Stuart FM (2001) An investigation of closure temperature of the biotite Rb-Sr system: The importance of cation exchange. Geochim Cosmochim Acta 65:1141–1160CrossRefGoogle Scholar
  74. Jonckheere R (2003a) On methodical problems in estimating geological temperature and time from measurements of fission tracks in apatite. Rad Meas 36:43–55CrossRefGoogle Scholar
  75. Jonckheere R (2003b) On the densities of etchable fission tracks in a mineral and co-irradiated external detector with reference to fission-track dating of minerals. Chem Geol 200:41–58CrossRefGoogle Scholar
  76. Jonckheere R, Tamer MT, Wauschkuhn B, Wauschkuhn F, Ratschbacher L (2017) Single-track length measurements of step-etched fission tracks in Durango apatite: “Vorsprung durch Technik”. Am Mineral 102Google Scholar
  77. Jonckheere R, van den Haute P, Ratschbacher L (2015) Standardless fission-track dating of the Durango apatite age standard. Chem Geol 417:44–57CrossRefGoogle Scholar
  78. Kasuya M, Naeser CW (1988) The effect of α-damage on fission-track annealing in zircon. Nucl Tracks 14:477–480CrossRefGoogle Scholar
  79. Ketcham RA (2003) Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements. Am Mineral 88:817–829CrossRefGoogle Scholar
  80. Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58(1):275–314CrossRefGoogle Scholar
  81. Ketcham RA, Carter A, Hurford AJ (2015) Inter-laboratory comparison of fission track confined length and etch figure measurements in apatite. Am Mineral 100:1452–1468CrossRefGoogle Scholar
  82. Ketcham RA, Carter AC, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved measurement of fission-track annealing in apatite using c-axis projection. Am Mineral 92:789–798CrossRefGoogle Scholar
  83. Ketcham RA, Carter AC, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved modeling of fission-track annealing in apatite. Am Mineral 92:799–810CrossRefGoogle Scholar
  84. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics III: extrapolation to geological time scales. Am Mineral 84:1235–1255CrossRefGoogle Scholar
  85. Ketcham RA, Mora A, Parra M (2016) Deciphering exhumation and burial history with multi-sample down-well thermochronometric inverse modelling. Basin Res (early view)CrossRefGoogle Scholar
  86. Kohlmann F, Kohn BL, Gleadow AJW, Siegle R (2013) Scanning force microscopy of 129Iodine surface impact structures in muscovite, zircon and apatite as proxies for damage of simulated fission fragments in solids. Rad Meas 51–52:83–91CrossRefGoogle Scholar
  87. Kohn BP, Belton DX, Brown RW, Gleadow AJW, Green PF, Lovering JF (2003) Comment on: “Experimental evidence for teh pressure dependence of fission track annealing in apatite” by A.S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593–607]. Earth Planet Sci Lett 215:299–306Google Scholar
  88. Kohn BP, Lorencak M, Gleadow AJW, Kohlmann F, Raza A, Osadetz KG, Sorjonen-Ward P (2009) A reappraisal of low-temperature thermochronology of the eastern Fennoscandia shield and radiation-enhanced apatite fission-track annealing. Geol Soc Spec Publ 324:193–216CrossRefGoogle Scholar
  89. Kohn B, Chung L, Gleadow A (2018) Fission-track analysis: field collection, sample preparation and data acquisition (Chapter 2). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  90. Kozlovsky YA (1984) The superdeep well of the Kola Peninsula. Springer-VerlagGoogle Scholar
  91. Lal N, Parshad R, Nagpaul KK (1977) Fission track annealing characteristics of garnet. Lithos 10:129–132CrossRefGoogle Scholar
  92. Lang M, Lian J, Zhang F, Hendricks BWH, Trautmann C, Neumann R, Ewing RC (2008) Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet Sci Lett 274:355–358CrossRefGoogle Scholar
  93. Laslett GM, Galbraith RF (1996) Statistical modelling of thermal annealing of fission tracks in apatite. Geochim Cosmochim Acta 60:5117–5131CrossRefGoogle Scholar
  94. Laslett GM, Gleadow AJW, Duddy IR (1984) The relationship between fission track length and track density in apatite. Nucl Tracks 9:29–38Google Scholar
  95. Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem Geol 65:1–13CrossRefGoogle Scholar
  96. Laslett GM, Kendall WS, Gleadow AJW, Duddy IR (1982) Bias in measurement of fission-track length distributions. Nucl Tracks 6:79–85Google Scholar
  97. Li N, Wang L, Sun K, Lang M, Trautmann C, Ewing RC (2010) Porous fission fragment tracks in fluorapatite. Phys Rev B 82:144109CrossRefGoogle Scholar
  98. Li W, Kluth P, Schauries D, Rodriguez MD, Zhang F, Zdorvets MV, Trautmann C, Ewing RC (2014) Effect of orientation on ion track formation in apatite and zircon. Am Mineral 99:1127–1132CrossRefGoogle Scholar
  99. Li W, Lang M, Gleadow AJW, Zdorvets MV, Ewing RC (2012) Thermal annealing of unetched fission tracks in apatite. Earth Planet Sci Lett 321–322:121–127CrossRefGoogle Scholar
  100. Li W, Wang L, Lang M, Trautmann C, Ewing RC (2011) Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth Planet Sci Lett 302:227–235CrossRefGoogle Scholar
  101. Malusà MG, Fitzgerald PG (2018) From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data (Chapter 8). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  102. Marsellos AE, Garver JI (2010) Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. Am Mineral 95:1192–1201CrossRefGoogle Scholar
  103. McDowell FW, McIntosh WC, Farley KA (2005) A precise 40Ar-39Ar reference age for Durango apatite (U-Th)/He and fission-track dating standard. Chem Geol 214:249–263CrossRefGoogle Scholar
  104. Murakami M, Yamada R, Tagami T (2006) Short-term annealing characteristics of spontaneous fission tracks in zircon: a qualitative description. Chem Geol 227:214–222CrossRefGoogle Scholar
  105. Naeser CW (1981) The fading of fission tracks in the geologic environment—data from deep drill holes. Nucl Tracks 5:248–250CrossRefGoogle Scholar
  106. Naeser CW, Engels JC, Dodge FC (1970) Fission track annealing and age determination of epidote minerals. J Geophys Res 75:1579–1584CrossRefGoogle Scholar
  107. Naeser CW, Faul H (1969) Fission track annealing in apatite and sphene. J Geophys Res 74:705–710CrossRefGoogle Scholar
  108. Naeser CW, Fleischer RL (1975) Age of the apatite at Cerro de Mercado, Mexico: a problem for fission-track annealing corrections. Geophys Res Lett 2:67–70CrossRefGoogle Scholar
  109. Naeser CW, Forbes RL (1976) Variation of fission track ages with depth in two deep drill holes. Eos 57:363Google Scholar
  110. Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231CrossRefGoogle Scholar
  111. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001) Metamictization of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Mineral Petrol 141:125–144CrossRefGoogle Scholar
  112. O’Nions RK, Griesshaber E, Oxburgh ER (1989) Rocks that are too hot to handle. Nature 341:391CrossRefGoogle Scholar
  113. O’Sullivan PB, Parrish RR (1995) The importance of apatite composition and single-grain ages when interpreting fission track data from plutonic rocks: a case study from the Coast Ranges, British Columbia. Earth Planet Sci Lett 132:213–224CrossRefGoogle Scholar
  114. Ohishi S, Hasebe N (2012) Observations of fission-tracks in zircons by atomic force microscope. Rad Meas 47:548–556CrossRefGoogle Scholar
  115. Ouchani S, Dran JC, Chaumont J (1997) Evidence of ionization annealing upon helium-ion irradiation of pre-damaged apatite. Nucl Instr Meth Phys Res B 132:447–451CrossRefGoogle Scholar
  116. Parker P, Cowan R (1976) Some properties of line segment processes. J Appl Prob 13:255–266CrossRefGoogle Scholar
  117. Parshad R, Saini HS, Nagpaul KK (1978) Fission track etching and annealing phenomenon in phlogopite and their applications. Can J Earth Sci 15:1924–1929CrossRefGoogle Scholar
  118. Paul TA, Fitzgerald PG (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. Am Mineral 77:336–344Google Scholar
  119. Powell JW, Schneider DA, Issler DR (2017) Application of multi-kinetic apatite fission track and (U-Th)/He thermochronology to source rock thermal history: a case study from the Mackenzie Plain, NWT, Canada. Basin Res (early view)Google Scholar
  120. Rabone JAL, Carter A, Hurford AJ, De Leeuw NH (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Phys Chem Min 35:583–596CrossRefGoogle Scholar
  121. Rabone JAL, De Leeuw NH (2007) Molecular dynamics simulations of fission track annealing in apatite. Geochim Cosmochim Acta 71:A816CrossRefGoogle Scholar
  122. Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89:473–484CrossRefGoogle Scholar
  123. Ravenhurst CE, Roden-Tice MK, Miller DS (2003) Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoapatite, and Durango apatite: experimental results. Can J Earth Sci 40:995–1007CrossRefGoogle Scholar
  124. Reiners PW (2009) Nonmonotonic thermal histories and contrasting kinetics of multiple thermochronometers. Geochim Cosmochim Acta 73:3612–3629CrossRefGoogle Scholar
  125. Reiners PW, Farley KA, Hickes HJ (2002) He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics 349:297–308CrossRefGoogle Scholar
  126. Saini HS, Nagpaul KK (1979) Annealing characteristics of fission tracks in minerals and their applications to earth sciences. Int J Appl Rad Isotop 30:213–231CrossRefGoogle Scholar
  127. Schauries D, Afra B, Bierschenk T, Lang M, Rodriguez MD, Trautmann C, Li W, Ewing RC, Kluth P (2014) The shape of ion tracks in natural apatite. Nucl Instrum Methods Phys Res, Sect B 326:117–120CrossRefGoogle Scholar
  128. Schauries D, Lang M, Pakarinen OH, Botis S, Afra B, Rodriguez MD, Djurabekova F, Nordlund K, Severin D, Bender M, Li WX, Trautmann C, Ewing RC, Kirby N, Klutha P (2013) Temperature dependence of ion track formation in quartz and apatite. Appl Crystall 46:1558–1563CrossRefGoogle Scholar
  129. Soulet S, Carpena J, Chaumont J, Kaitasov O, Ruault MO, Krupa JC (2001) Simulation of the α-annealing effect in apatitic structures by He-ion irradiation: influence of the silicate/phosphate ratio and of the OH−/F− substitution. Nucl Instr Meth Phys Res B 184:383–390CrossRefGoogle Scholar
  130. Spiegel C, Kohn BL, Raza A, Rainer T, Gleadow AJW (2007) The effect of long-term low-temperature exposure on apatite fission track stability: a natural annealing experiment in the deep ocean. Geochim Cosmochim Acta 71:4512–4537CrossRefGoogle Scholar
  131. Stormer JCJ, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648Google Scholar
  132. Storzer D (1970) Fission track dating of volcanic glasses and the thermal history of rocks. Earth Planet Sci Lett 8:55–60CrossRefGoogle Scholar
  133. Stübner K, Jonckheere R, Ratschbacher L (2015) The densities and dimensions of recoil-track etch pits in mica. Chem Geol 404:52–61CrossRefGoogle Scholar
  134. Szenes G (1995) General features of latent track formation in magnetic insulators irradiated with swift heavy ions. Phys Rev B 51:8026–8029CrossRefGoogle Scholar
  135. Tagami T, Carter A, Hurford AJ (1996) Natural long-term annealing of the zircon fission-track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chem Geol 130Google Scholar
  136. Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, Netherlands, pp 99–112CrossRefGoogle Scholar
  137. Tagami T, Ito H, Nishimura S (1990) Thermal annealing characteristics of spontaneous fission tracks in zircon. Chem Geol 80:159–169Google Scholar
  138. Tello CA, Palissari R, Hadler JC, Iunes PJ, Guedes S, Curvo EAC, Paulo SR (2006) Annealing experiments on induced fission tracks in apatite: Measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains. Am Mineral 91:252–260CrossRefGoogle Scholar
  139. Trachenko K, Dove MT, Salje EKH (2002) Structural changes in zircon under a-decay irradiation. Phys Rev B 65:180101–180103CrossRefGoogle Scholar
  140. Turnbull D (1956) Phase Changes. In: Seitz F, Turnbull D (eds) Solid state physics. Academic Press, New York, pp 226–309Google Scholar
  141. Villa IM (1998) Isotopic closure. Terra Nova 10:42–47CrossRefGoogle Scholar
  142. Villa IM, Puxeddu M (1994) Geochronology of the Larderello geothermal field: new data and the “closure temperature” issue. Contrib Mineral Petrol 115:415–426CrossRefGoogle Scholar
  143. Vrolijk P, Donelick RA, Queng J, Cloos M (1992) Testing models of fission track annealing in apatite in a simple thermal setting: site 800, leg 129. In: Larson RL, Lancelot Y (eds) Proceedings of the ocean drilling program, scientific results. Ocean Drilling Program, College Station, TX, pp 169–176Google Scholar
  144. Wagner GA, Reimer GM (1972) Fission track tectonics: the tectonic interpretation of fission track apatite ages. Earth Planet Sci Lett 14:263–268CrossRefGoogle Scholar
  145. Wauschkuhn B, Jonckheere R, Ratschbacher L (2015a) The KTB apatite fission-track profiles: Building on a firm foundation? Geochim Cosmochim Acta 167:27–62CrossRefGoogle Scholar
  146. Wauschkuhn B, Jonckheere R, Ratschbacher L (2015b) Xe- and U-tracks in apatite and muscovite near the etching threshold. Nucl Instr Meth Phys Res B 343:146–152CrossRefGoogle Scholar
  147. Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697CrossRefGoogle Scholar
  148. Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698CrossRefGoogle Scholar
  149. Wendt AS, Vidal O, Chadderton LT (2002) Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet Sci Lett 201:593–607CrossRefGoogle Scholar
  150. Wesch W, Wendler E (2016) Ion beam modification of solids; ion-solid interaction and radiation damage. In: Car R, Ertl G, Freund HJ, Lüth H, Rocca MA (eds) Springer series in surface sciences. Springer, Switzerland, p 534Google Scholar
  151. Yamada R, Murakami M, Tagami T (2007) Statistical modeling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments. Chem Geol 236:75–91CrossRefGoogle Scholar
  152. Yamada R, Tagami T, Nishimura S (1993) Assessment of overetching factor for confined fission-track length measurement in zircon. Chem Geol 104:251–259CrossRefGoogle Scholar
  153. Yamada R, Tagami T, Nishimura S (1995a) Confined fission-track length measurement of zircon: assessment of factors affecting the paleotemperature estimate. Chem Geol 119:293–306CrossRefGoogle Scholar
  154. Yamada R, Tagami T, Nishimura S, Ito H (1995b) Annealing kinetics of fission tracks in zircon. Chem Geol 122:249–258CrossRefGoogle Scholar
  155. Yuan W, Ketcham RA, Gao S, Dong J, Bao Z, Deng J (2009) Annealing behavior of alpha recoil tracks in phlogopite. Chem Geol 266:352–358CrossRefGoogle Scholar
  156. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 415:279–283CrossRefGoogle Scholar
  157. Zattin M, Bersani D, Carter A (2006) Raman microspectroscopy: a nondestructive tool for routine calibration of apatite composition for fission-track analyses. In: European conference on thermochronology, Bremen, GermanyGoogle Scholar
  158. Zhang M, Salje EKH, Capitani GC, Leroux H, Clark AM, Schlüter J, Ewing RC (2000) Annealing of α-decay damage in zircon: a Raman spectroscopic study. J Phys: Condens Matter 12:3131–3148Google Scholar
  159. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM the stopping and range of ions in matter, v05 edn. SRIM Co., Chester, MarylandGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geological Sciences, Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA

Personalised recommendations