Advertisement

Application of Low-Temperature Thermochronology to Hydrocarbon Exploration

  • David A. Schneider
  • Dale R. Issler
Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

The maturation of organic material into petroleum in a sedimentary basin is controlled by the maximum temperatures attained by the source rock and the thermal history of the basin. A cycle of continuous deposition into the basin (burial) and regional basin inversions represented by unconformities (unroofing) may complicate the simple thermal development of the basin. Applications of low-temperature thermochronology via fission-track (FT) and (U–Th)/He dating coupled with independent measurements (vitrinite reflectance, Rock-Eval) resolving the paleothermal maximum are the ideal approach to illuminate the relationship between time and temperature. In this contribution, we review the basics of low-temperature thermochronology in the context of a project workflow, from sampling to modeling, for resolving the thermal evolution of a hydrocarbon-bearing sedimentary basin. We specifically highlight the application of multi-kinetic apatite FT dating, emphasizing the usefulness of the rmr0 parameter for interpreting complex apatite age populations that are often present in sedimentary rocks. Still a rapidly advancing science, thermochronology can yield a rich and effective dataset when the minerals are carefully and properly characterized, particularly with regard to mineral chemistry and radiation damage.

Notes

Acknowledgements

The authors wish to thank the editors for the invitation to write this chapter, and for the constructive reviews by A. Gleadow and M. Zattin, which helped us clarify our thoughts. AFT analyses reported in this study were done by Dr. Sandy Grist at Dalhousie University. The Beaufort-Mackenzie study has been funded by a consortium of companies: Anadarko Canada Corporation, BP Canada Energy Company, Chevron Canada Limited, ConocoPhillips Canada Resources Corporation, Devon Canada Corporation, EnCana Corporation, Imperial Oil Resources Ventures Limited, MGM Energy Corporation, Petro-Canada (now Suncor), Shell Canada Limited, Shell Exploration and Production Company, the Program of Energy Research and Development (PERD), and Natural Resources Canada. The NRCan contribution number is 20170139.

References

  1. Barbarand J, Carter A, Wood I, Hurford T (2003) Compositional and structural control of fission track annealing in apatite. Chem Geol 198:107–137CrossRefGoogle Scholar
  2. Batten DJ (1996) Chapter 26B. Palynofacies and petroleum potential. In: Jasonius, J, McGregor DC (eds) Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, pp 1065–1084Google Scholar
  3. Bernet M, Brandon MT, Garver JI, Molitor B (2004) Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol Soc Am 378:25–36Google Scholar
  4. Beucher R, Brown R, Roper S, Persano C, Stuart F, Fitzgerald P (2013) Natural age dispersion arising from the analysis of broken crystals. Part II. Practical application to apatite (U-Th)/He thermochronometry. Geochim Cosmochim Acta 120:395–416CrossRefGoogle Scholar
  5. Brandon MT (2002) Decomposition of mixed grain age distributions using Binomfit. On Track 24:13–18Google Scholar
  6. Brandon MT, Vance JA (1992) New statistical methods for analysis of FT grain age distributions with applications to detrital zircon ages from the Olympic subduction complex, western Washington State. Am J Sci 292:565–636CrossRefGoogle Scholar
  7. Braun J, van der Beek P, Batt G (eds) (2006) Quantitative thermochronology. Cambridge University Press, New YorkGoogle Scholar
  8. Brown R, Beucher R, Roper S, Persano C, Stuart F, Fitzgerald P (2013) Natural age dispersion arising from the analysis of broken crystals. Part I: Theoretical basis and implications for the apatite (U–Th)/He thermochronometer. Geochim Cosmochim Acta 122:478–497CrossRefGoogle Scholar
  9. Burnham AK, Sweeney JJ (1989) A chemical kinetic model of vitrinite reflectance maturation. Geochim Cosmochim Acta 53(2):649–657Google Scholar
  10. Burnett RD (1988) Physical and chemical changes in conodonts from contact-metamorphosed limestones. Irish J Earth Sci 9:79–119Google Scholar
  11. Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull 78:1613–1636Google Scholar
  12. Carlson WD (1990) Mechanisms and kinetics of apatite fission track annealing. Am Mineral 75:1120–1139Google Scholar
  13. Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223CrossRefGoogle Scholar
  14. Cerveny PF, Naeser ND, Zeitler PK, Naeser CW, Johnson NM (1988) History of uplift and relief of the Himalaya during the past 18 million years; evidence from sandstones of the Siwalik Group. In: Kleinspehn KL, Paola C (eds) New perspectives in basin analysis. Springer, New York, pp 43–61CrossRefGoogle Scholar
  15. Cherniak D, Watson E, Thomas J (2009) Diffusion of helium in zircon and apatite. Chem Geol 268(1–2):155–166CrossRefGoogle Scholar
  16. Chew DM, Donelick RA (2012) Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis. Mineral Ass Canada Short Course 42:219–247Google Scholar
  17. Clauer N, Lehrman K (2012) Analyzing thermal histories of sedimentary basins: methods and case studies—Introduction. SEPM Special Publication 103:1–4Google Scholar
  18. Copeland P, Cox K, Watson EB (2015) The potential of crinoids as (U + Th + Sm)/He thermochronometers. Earth Planet Sci Lett 422:1–10CrossRefGoogle Scholar
  19. Copeland P, Watson EB, Urizar SC, Patterson D, Lapen TJ (2007) Alpha thermochronology of carbonates. Geochim Cosmochim Acta 71:4488–4511CrossRefGoogle Scholar
  20. Corrigan J (1991) Inversion of apatite fission track data for thermal history information. J Geophys Res 96:10347–10360CrossRefGoogle Scholar
  21. Cros A, Gautheron C, Pagel M, Berthet P, Tassan-Got L, Douville E, Pinna-Jamme R, Sarda P (2014) 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies. Geochim Cosmochim Acta 125:414–432CrossRefGoogle Scholar
  22. Crowhurst PV, Green PF, Kamp PJJ (2002) Appraisal of (U-Th)/He apatite thermochronology as a thermal history tool for hydrocarbon exploration: an example from the Taranaki Basin, New Zealand. Am Assoc Petrol Geol Bull 86:1801–1819Google Scholar
  23. Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing of etched fission tracks in fluorapatite. Geochim Cosmochim Acta 55:1449–1465CrossRefGoogle Scholar
  24. Danišík M (2018) Chapter 5. Integration of fission-track thermochronology with other geochronologic methods on single crystals. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  25. Donelick R (1993) A method of fission track analysis utilizing bulk chemical etching of apatite. USA Patent No. 5,267,274Google Scholar
  26. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics: II. Crystallographic orientation effects. Am Mineral 84:1224–1234CrossRefGoogle Scholar
  27. Donelick RA, O’Sullivan PB, Ketcham RA (2005) Apatite fission track analysis. Rev Mineral Geochem 58:49–94CrossRefGoogle Scholar
  28. Duddy IR (1997) Focussing exploration in the Otway Basin: understanding timing of source rock maturation. Austr Petrol Prod Explor Ass J 37:178–191Google Scholar
  29. Duddy I, Green P, Laslett G (1988) Thermal annealing of fission tracks in apatite: 3. Variable temperature behaviour. Chem Geol 73:25–38Google Scholar
  30. Duddy I, Green P, Hegarty K, Bray R (1991) Reconstruction of thermal history in basin modelling using apatite fission track analysis: what is really possible? In: Offshore australia conference proceedings, vol 1, pp III-49–III-61Google Scholar
  31. Duddy IR, Green PF, Bray RJ, Hegarty KA (1994) Recognition of the thermal effects of fluid flow in sedimentary basins. Geol Soc Spec Publ 78:325–345CrossRefGoogle Scholar
  32. Dumitru TA (2000) Fission track geochronology. In: Noller JS, Sowers JM, Lettis WR (eds) Quaternary geochronology: methods and applications. American Geophysical Union Ref Shelf 4, Washington, DC, pp 131–155Google Scholar
  33. Epstein AG, Epstein JB, Harris LD (1977) Conodont color alteration—an index to organic metamorphism. USGS Prof Paper 995:1–27Google Scholar
  34. Evans N, McInnes B, McDonald B, Danisik M, Becker T, Vermeesch P, Shelley M, Marillo-Sialer E, Patterson D (2015) An in situ technique for (U-Th-Sm)/He and U-Pb double dating. J Analyt Atomic Spect 30:1636–1645CrossRefGoogle Scholar
  35. Farley K (2000) Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J Geophys Res 105:2903–2914CrossRefGoogle Scholar
  36. Farley K (2002) (U-Th)/He dating: techniques, calibrations, and applications. Rev Mineral Geochem 47:819–844CrossRefGoogle Scholar
  37. Farley K (2007) He diffusion systematics in minerals: evidence from synthetic monazite and zircon structure phosphates. Geochim Cosmochim Acta 71:4015–4024CrossRefGoogle Scholar
  38. Fitzgerald P, Gleadow A (1990) New approaches in fission track geochronology as a tectonic tool: examples from the Transantarctic Mountains. Nucl Tracks Rad Meas 17:351–357CrossRefGoogle Scholar
  39. Fleischer RL, Price PB, Walker R (1964) Fission track ages of zircons. J Geophys Res 69:4885–4888CrossRefGoogle Scholar
  40. Fleischer RL, Price PB, Walker R (1975) Nuclear tracks in solids. University of California Press, Berkeley, p 595Google Scholar
  41. Frey M, Teichmüller M, Teichmüller R, Mullis J, Künzi B, Breitschmid A, Gruner U, Schwizer B (1980) Very low-grade metamorphism in external part of the Central Alps: illite crystallinity, coal rank and fluid inclusion data. Eclogae Geol Helv 73:173–203Google Scholar
  42. Flowers RM, Ketcham RA, Shuster DL, Farley KA (2009) Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim Cosmochim Acta 73:2347–2365CrossRefGoogle Scholar
  43. Foster D, Kohn B, Gleadow A (1996) Sphene and zircon fission track closure temperature revisited: empirical calibrations from 40Ar/39Ar diffusion studies on K-feldspar and biotite. In: International workshop on fission track dating 37Google Scholar
  44. Galbraith RF (1981) On statistical models for fission track counts. J Math Geol 13:471–488CrossRefGoogle Scholar
  45. Galbraith RF (1988) Graphical display of estimates having different standard errors. Technometrics 30:271–281CrossRefGoogle Scholar
  46. Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks Rad Meas 17:207–214CrossRefGoogle Scholar
  47. Galbraith RF (2005) Statistics for fission track analysis. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  48. Gallagher K (1995) Evolving temperature histories from apatite fission track data. Earth Planet Sci Lett 136:421–435CrossRefGoogle Scholar
  49. Gallagher K (2012) Transdimensional inverse thermal history modeling for quantitative thermochronology. J Geophys Res 117:B02408Google Scholar
  50. Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Ann Rev Earth Planet Scis 26:519–572CrossRefGoogle Scholar
  51. Gallagher K, Stephenson Brown R, Holmes C, Fitzgerald P (2005) Low temperature thermochronology and modeling strategies for multiple samples 1: Vertical profiles. Earth Planet Sci Lett 237:193–208CrossRefGoogle Scholar
  52. Gallagher SJ, Duddy IR, Quilty PG, Smith AJ, Wallace MW, Holdgate GR, Boult PJ (2004) The use of Foraminiferal Colouration Index (FCI) as a thermal indicator and correlation with vitrinite reflectance in the Sherbrook Group, Otway Basin, Victoria. In: Boult PJ, Johns DR, Lang SC (eds) PESE Eastern Australasian basins symposium II. Petroleum Exploration Society of Australia, Adelaide, pp 643–653Google Scholar
  53. Garver J (2008) Fission track dating. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments. Encyclopedia of earth science series. Springer, Berlin, pp 247–249Google Scholar
  54. Gautheron C, Tassan-Got L, Barbarand J, Pagel M (2009) Effect of alpha damage annealing on apatite (U-Th)/He thermochronology. Chem Geol 266:157–170CrossRefGoogle Scholar
  55. Gautheron C, Tassan-Got L, Ketcham RA, Dobson KJ (2012) Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochim Cosmochim Acta 96:44–56CrossRefGoogle Scholar
  56. Gautheron C, Barbarand J, Ketcham R, Tassan-Got L, van der Beek P, Pagel M (2013) Chemical influence on α-recoil damage annealing in apatite: implications for (U-Th)/He dating. Chem Geol 351:257–267CrossRefGoogle Scholar
  57. Gleadow PF, Duddy IR, Lovering JF (1983) Fission track analysis: a new tool for the evaluation of thermal histories and hydrocarbon potential. Austr Petrol Explor Ass J 23:93–102Google Scholar
  58. Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contrib Mineral Petr 94:405–415CrossRefGoogle Scholar
  59. Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630CrossRefGoogle Scholar
  60. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328Google Scholar
  61. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite: a qualitative description. Chem Geol 59:237–253CrossRefGoogle Scholar
  62. Green PF, Duddy IR, Gleadow A, Lovering JF (1989a) Apatite fission track analysis as a paleotemperature indicator for hydrocarbon exploration. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins—methods and case histories. Springer, New York, pp 181–195CrossRefGoogle Scholar
  63. Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF (1989b) Thermal annealing of fission tracks in apatite 4. Quantitative modelling techniques and extension to geological timescales. Chem Geol 79:155–182Google Scholar
  64. Guenthner WR, Reiners PW, Ketcham RA, Nasdala L, Geister G (2013) Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. Am J Sci 313:145–198CrossRefGoogle Scholar
  65. Guenthner WR, Reiners P, DeCelles P, Kendall J (2015) Sevier belt exhumation in central Utah constrained from complex zircon (U-Th)/He data sets: radiation damage and He inheritance effects on partially reset detrital zircons. Geol Soc Am Bull 127(3–4):323–348CrossRefGoogle Scholar
  66. Harris AG (1979) Conodont color alteration, an organomineral metamorphic index and its application to Appalachian Basin geology. In: Scholle PA, Schluger PR (eds) Aspects of diagenesis, vol 26. SEPM Special Publication, pp 3–16CrossRefGoogle Scholar
  67. Harris N, Peters KE (eds) (2012) Analyzing the thermal history of sedimentary basins: methods and case studies, vol 103. SEPM Special PublicationGoogle Scholar
  68. Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004) Apatite fission track chronometry using laser ablation ICP-MS. Chem Geol 207:135–145CrossRefGoogle Scholar
  69. Hegarty KA, Foland SA, Cook AC, Green PF, Duddy IR (2007) Direct measurement of timing: underpinning a reliable petroleum system model for the Mid-Continent Rift system. AAPG Bull 91:959–979CrossRefGoogle Scholar
  70. Helson S (1994) Micromorphological changes in Pridolian Lochkovian conodonts from low grade metamorphosed Naux Limestone (Ardenned, France). Bull Soc Belge Geol T103(1-2):205–207Google Scholar
  71. Hendriks BWH, Andriessen P (2002) Pattern and timing of the post-Caledonian denudation of northern Scandinavia constrained by apatite fission track thermochronology. Geol Soc Spec Publ 196:117–137CrossRefGoogle Scholar
  72. Holland HD (1954) Radiation damage and its use in age determination. In: Faul H (ed) Nuclear geology. Wiley, New York, pp 175–179Google Scholar
  73. Hower J, Eslinger EV, Hower M, Perry EA (1976) Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol Soc Am Bull 87:725–737CrossRefGoogle Scholar
  74. Hourigan JK, Reiners PW, Brandon MT (2005) U-Th zonation-dependent alpha ejection in (U-Th)/He chronometry. Geochim Cosmochim Acta 69:3349–3365CrossRefGoogle Scholar
  75. Hurford AJ (1986) Cooling and uplift patterns in the Lepontine Alps south central Switzerland and age of vertical movement on the Insubric fault line. Contrib Mineral Petr 92:413–417CrossRefGoogle Scholar
  76. Hurford AJ, Green PF (1982) A users’ guide to fission track dating calibration. Earth Planet Sci Lett 59:343–354CrossRefGoogle Scholar
  77. Hurley PM (1952) Alpha ionization damage as a cause of low helium ratios. Eos Am Geophys Union 33:174–183CrossRefGoogle Scholar
  78. Issler DR (1996) An inverse model for extracting thermal histories from apatite fission track data: instructions and software for the Windows 95 environment. Geol Survey Canada Open File 2325: 84 pGoogle Scholar
  79. Issler DR (2011) Integrated thermal history analysis of sedimentary basins using multi-kinetic apatite fission track thermochronology: examples from northern Canada. AAPG Foundation Distinguished Lecturer Series, AAPG Search and Discovery Article #90119Google Scholar
  80. Issler DR, Grist AM (2008a) Integrated thermal history analysis of the Beaufort-Mackenzie basin using multi-kinetic apatite fission track thermochronology. Geochim Cosmochim Acta 72:A413Google Scholar
  81. Issler DR, Grist AM (2008b) Reanalysis and reinterpretation of apatite fission track data from the central Mackenzie Valley, NWT, northern Canada: implications for kinetic parameter determination and thermal modeling. In: Proceedings from the 11th international conference on thermochronometry, pp 130–132Google Scholar
  82. Issler DR, Grist AM (2014) Apatite fission track thermal history analysis of the Beaufort-Mackenzie Basin, Arctic Canada: a natural laboratory for testing multi-kinetic thermal annealing models. In: Proceedings from the 14th international conference on thermochronometry, pp 125–126Google Scholar
  83. Issler DR, Willett SD, Beaumont C, Donelick RA, Grist AM (1999) Paleotemperature history of two transects across the Western Canada Sedimentary Basin: constraints from apatite fission track analysis. Bull Can Petrol Geol 47:475–486Google Scholar
  84. Issler DR, Grist AM, Stasiuk LD (2005) Post-early Devonian thermal constraints on hydrocarbon source rock maturation in the Keele Tectonic Zone, Tulita area, NWT, Canada, from multi-kinetic apatite fission track thermochronology, vitrinite reflectance and shale compaction. Bull Can Petrol Geol 53:405–431CrossRefGoogle Scholar
  85. Issler DR, Reyes J, Chen Z, Hu K, Negulic E, Grist A, Stasiuk L, Goodarzi F (2012) Thermal history analysis of the Beaufort-Mackenzie Basin, Arctic Canada. In: SEPM Bob F. Perkins research conference vol 32, pp 609–641Google Scholar
  86. Kamp PJJ, Green PF (1990) Thermal and tectonic history of selected Taranaki Basin (New Zealand) wells assessed by apatite fission track analysis. AAPG Bull 74:1401–1419Google Scholar
  87. Ketcham RA (2003a) Effects of allowable complexity and multiple chronometers on thermal history inversion. Geochim Cosmochim Acta 67:A213CrossRefGoogle Scholar
  88. Ketcham RA (2003b) Observations on the relationship between crystallographic orientation and biasing in apatite fission track measurements. Am Mineral 88:817–829CrossRefGoogle Scholar
  89. Ketcham RA (2005) Forward and inverse modeling of low-temperature thermochronometry data. Rev Mineral Geochem 58:275–314CrossRefGoogle Scholar
  90. Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  91. Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics: III. Extrapolation to geological time scales. Am Mineral 84:1235–1255CrossRefGoogle Scholar
  92. Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: A program for multi-kinetic modeling of apatite fission track data. Geol Mat Res 2:1–32Google Scholar
  93. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007a) Improved modeling of fission track annealing in apatite. Am Mineral 92:799–810CrossRefGoogle Scholar
  94. Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007b) Improved measurement of fission track annealing in apatite using c-axis projection. Am Mineral 92:789–798CrossRefGoogle Scholar
  95. Ketcham RA, Mora A, Parra M (2016) Deciphering exhumation and burial history with multi-sample down-well thermochronometric inverse modeling. Basin Res.  https://doi.org/10.1111/bre.12207CrossRefGoogle Scholar
  96. Kirby E, Reiners PW, Krol M, Hodges K, Farley KA, Whipple K, Yiping L, Tang W, Chen Z (2002) Late Cenozoic uplift and landscape evolution along the eastern margin of the Tibetan plateau: Inferences from 40Ar/39Ar and U-Th-He thermochronology. Tectonics.  https://doi.org/10.1029/2000TC001246CrossRefGoogle Scholar
  97. Kohn BP, Foster DA, Farley KA (2002) Low temperature thermochronology of apatite with exceptional compositional variations: the Stillwater Complex, Montana revisited. Fission Track Analysis Workshop: Theory and Applications, El Puerto de Santa Maria, Spain. Geotemas 4:103–105Google Scholar
  98. Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  99. Lampe C, Person M, Nöth S, Ricken W (2001) Episodic fluid flow within continental rift basins: some insights from field data and mathematical models of the Rhinegraben. Geofluids 1:42–52CrossRefGoogle Scholar
  100. Landman R, Flowers R, Rosenau N, Powell J (2016) Conodont (U-Th)/He thermochronology: a case study from the Illinois Basin. Earth Planet Sci Lett 456:55–65CrossRefGoogle Scholar
  101. Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite. 2. A quantitative analysis. Chem Geol 65:1–13CrossRefGoogle Scholar
  102. Lippolt HJ, Leitz M, Wernicke RS, Hagedorn B (1994) (U + Th)/He dating of apatite: experience with samples from different geochemical environments. Chem Geol 112:179–191CrossRefGoogle Scholar
  103. Lovera OM, Richter FM. Harrison M (1989) The 40Ar/39Ar thermochronology for slowly cooled samples having a distribution of Diffusion Domain Sizes. J Geophys Res 94(B12):17,917–17,935Google Scholar
  104. Lovera OM, Richter FM. Harrison M (1991) Diffusion domains determined by 39Ar released during step heating. J Geophys Res 96:2057–2069CrossRefGoogle Scholar
  105. Lovera OM, Grove M, Harrison TM, Mahon KI (1997) Systematic analysis of K-feldspar 40Ar/39Ar step heating results I: relevance of laboratory argon diffusion properties to nature. Geochim Cosmochim Acta 61:3171–3192CrossRefGoogle Scholar
  106. Lutz TM, Omar G (1991) An inverse method of modeling thermal histories from apatite fission track data. Earth Planet Sci Lett 104:181–195CrossRefGoogle Scholar
  107. Malusà MG, Fitzgerald PG (2018) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermocronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  108. Malusà MG, Garzanti E (2018) Chapter 7. The sedimentology of detrital thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  109. Mark D, Green PF, Parnell J, Kelly SP, Lee MR, Sherlock SC (2008) Late Palaeozoic hydrocarbon migration through the Clair field, West of Shetland, UK Atlantic margin. Geochim Cosmochim Acta 72:2510–2533CrossRefGoogle Scholar
  110. Marsellos A, Garver J (2010) Radiation damage and uranium concentration in zircon as assessed by Raman spectroscopy and neutron irradiation. Am Mineral 95:1192–1202CrossRefGoogle Scholar
  111. Marshall J (1991) Quantitative spore colour. J Geol Soc 148:223–233CrossRefGoogle Scholar
  112. McNeil DH (1997) Diagenetic regimes and the foraminiferal record in the Beaufort-Mackenzie Basin and adjacent cratonic areas. Ann Soc Geol Pol 67:271–286Google Scholar
  113. McNeil DH, Issler DR, Snowdon LR (1996) Colour alteration, thermal maturity, and burial diagenesis in fossil foraminifers. Geol Surv Canada Bull 499:34 pGoogle Scholar
  114. McNeil DH, Dietrich JR., Issler DR, Grasby SE, Stasiuk LD, Dixon J (2010) A new method for recognizing subsurface hydrocarbon seepage and migration using altered foraminifera from a gas chimney in the Beaufort-Mackenzie Basin. In: Wood L (ed) Shale tectonics. AAPG Mem 93: 197–210Google Scholar
  115. McNeil DH, Schulze HG, Matys E, Bosak T (2015) Raman spectroscopic analysis of carbonaceous matter and silica in the test walls of recent and fossil agglutinated foraminifera. AAPG Bull 99:1081–1097CrossRefGoogle Scholar
  116. Meunier A, Velde B (2004) Illite: Origins, evolution and metamorphism. Springer, Berlin, p 288CrossRefGoogle Scholar
  117. Miller RL, Kahn JS (1962) Statistical analysis in the geological sciences. Wiley, New York, p 483Google Scholar
  118. Mitchell SG, Reiners PW (2003) Influence of wildfires on apatite and zircon (U-Th)/He ages. Geology 31:1025–1028CrossRefGoogle Scholar
  119. Naeser CW (1979) Thermal history of sedimentary basins in fission track dating of subsurface rocks. SEPM Special Publication 26:109–112Google Scholar
  120. Naeser ND, McCulloh TH (eds) (1989) Thermal history of sedimentary basins: methods and case histories. Springer, BerlinGoogle Scholar
  121. Nasdala L, Reiners P, Garver J, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Mineral 89:219–231CrossRefGoogle Scholar
  122. Nielsen SB, Clausen OR, McGregor E (2015) basin%Ro: a vitrinite reflectance model derived from basin and laboratory data. Basin Res 29 S1:515–536CrossRefGoogle Scholar
  123. Nöth S (1998) Conodont color (CAI) versus microcrystalline and textural changes in Upper Triassic conodonts from Northwest Germany. Facies 38:165–173CrossRefGoogle Scholar
  124. Obermajer M, Stasiuk LD, Fowler MG, Osadetz KG (1997) Acritarch fluorescence as a new thermal maturity indicator. AAPG Bull 81:1561Google Scholar
  125. Osadetz KG, Kohn BP, Feinstein S, O’Sullivan PB (2002) Thermal history of Canadian Williston basin from apatite fission track thermochronology—implications for petroleum systems and geodynamic history. Tectonophysics 349:221–249CrossRefGoogle Scholar
  126. Pagel M, Bonifacie M, Schneider DA, Gautheron C, Brigaud B, Calmels D, Cros A, St-Bezar B, Landrein P, Davis D, Chaduteau C (2018) A big step in paleohydrological and diagenetic reconstructions in calcite veins and breccia of a sedimentary basin by combining d47 temperature, d18Owater and U-Pb age. Chem Geol 481:1–17Google Scholar
  127. Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49CrossRefGoogle Scholar
  128. Peppe DJ, Reiners PW (2007) Conodont (U-Th)/He thermochronology: Initial results, potential, and problems. Earth Planet Sci Lett 258:569–580CrossRefGoogle Scholar
  129. Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70:318–329Google Scholar
  130. Powell J, Schneider DA, Stockli D, Fallas K (2016) Zircon (U-Th)/He thermochronology of Neoproterozoic strata from the Mackenzie Mountains, Canada: Implications for the Phanerozoic exhumation and deformation history of the northern Canadian Cordillera. Tectonics 35:35.1–35.27CrossRefGoogle Scholar
  131. Powell J, Schneider DA, Issler D (2017) Assessing source rock thermal history through multi-kinetic apatite fission track and (U-Th)/He thermochronology. Basin Res 30 S1:497–512CrossRefGoogle Scholar
  132. Powell J, Schneider DA, Desrochers A, Flowers, RM, Metcalf J, Gaidies F, Stockli DF (2018) Low-temperature thermochronology of Anticosti Island: A case study on the application of conodont (U-Th)/He thermochronology to carbonate basin analysis. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2018.05.018CrossRefGoogle Scholar
  133. Press WH, Teukolsky SA, Vetterling, WT, Flannery BP (1992) Numerical recipes in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, 963 pGoogle Scholar
  134. Price PB, Walker RM (1963) Fossil tracks of charged particles in mica and the age of minerals. J Geophys Res 68:4847–4862CrossRefGoogle Scholar
  135. Ravenhurst CE, Roden-Tice MK, Miller DS (2003) Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganapatite, and Durango apatite: experimental results. Can J Earth Sci 40:995–1007CrossRefGoogle Scholar
  136. Reich M, Ewing RC, Ehlers TA, Becker U (2007) Low-temperature anisotropic diffusion of helium in zircon: Implications for zircon (U-Th)/He thermochronometry. Geochim Cosmochim Acta 71:3119–3130CrossRefGoogle Scholar
  137. Reiners P, Brandon M (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466CrossRefGoogle Scholar
  138. Reiners P, Spell T, Nicolescu S, Zanetti K (2004) Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim Cosmochim Acta 68:1857–1887CrossRefGoogle Scholar
  139. Robison CR, Van Gijzel P, Darnell LM (2000) The transmittance color index of amorphous organic matter: a thermal maturity indicator for petroleum source rocks. Int J Coal Geol 43:83–103CrossRefGoogle Scholar
  140. Saadoune I, Purton JA, de Leeuw NH (2009) He incorporation and diffusion pathways in pure and defective zircon ZrSiO4: a density functional theory study. Chem Geol 258:182–196CrossRefGoogle Scholar
  141. Senftle JT, Landis CR (1991) Vitrinite reflectance as a tool to assess thermal maturity. In: Merrill RK (ed) Source and migration processes and evaluation techniques. AAPG treatise of petroleum geology, Handbook of petroleum geology, pp 119–125Google Scholar
  142. Shuster DL, Farley K (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite. Geochim Cosmochim Acta 73:183–196CrossRefGoogle Scholar
  143. Shuster DL, Flowers R, Farley K (2006) The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet Sci Lett 249:148–161CrossRefGoogle Scholar
  144. Spiegel C, Kohn B, Belton D, Berner Z, Gleadow A (2009) Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth Planet Sci Lett 285:105–114CrossRefGoogle Scholar
  145. Staplin FL (1969) Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Can Petrol Geol Bull 17:47–66Google Scholar
  146. Stock MJ, Humphreys MCS, Smith VC, Johnson RD, Pyle DM (2015) New constraints on electron-beam induced halogen migration in apatite. Am Mineral 100:281–293CrossRefGoogle Scholar
  147. Stockli DF (2005) Application of low-temperature thermochronometry to extensional tectonic settings. Rev Mineral Geochem 58:411–448CrossRefGoogle Scholar
  148. Stockli DF, Surpless BE, Dumitru TA, Farley KA (2002) Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada. Tectonics 21:4CrossRefGoogle Scholar
  149. Stormer JC Jr, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648Google Scholar
  150. Sweeney JJ, Burnham AK (1990) Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull 74:1559–1570Google Scholar
  151. Tagami T (2005) Zircon fission track thermochronology and applications to fault studies. Rev Mineral Geochem 58:95–122CrossRefGoogle Scholar
  152. Tagami T, Dumitru TA (1996) Provenance and thermal history of the Franciscan accretionary complex: constraints from zircon fission track thermochronology. J Geophys Res 101:11,353–11,364CrossRefGoogle Scholar
  153. Tagami T, Carter A, Hurford AJ (1996) Natural long-term annealing of the zircon fission track system in Vienna Basin deep borehole samples: constraints upon the partial annealing zone and closure temperature. Chem Geol 130:147–157CrossRefGoogle Scholar
  154. Timar-Geng Z, Fügenshuh B, Schaltegger U, Wetzel A (2004) The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area. Schweiz Mineral Petr Mitt 84:257–269Google Scholar
  155. Tissot BP, Welte DH (1978) Petroleum formation and occurrence: a new approach to oil and gas exploration. Springer, BerlinCrossRefGoogle Scholar
  156. Tissot B, Durand B, Espitalie J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull 58:499–506Google Scholar
  157. Vermeesch P (2009) RadialPlotter: a Java application for fission track, luminescence and other radial plots. Radiat Meas 44:409–410CrossRefGoogle Scholar
  158. Vermeesch P (2018) Chapter 6. Statistics for fission-track thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. Springer, BerlinGoogle Scholar
  159. Vermeesch P, Tian Y (2014) Thermal history modelling: HeFTy vs QTQt. Earth-Sci Rev 139:279–290CrossRefGoogle Scholar
  160. Wells ML, Snee LW, Blythe AE (2000) Dating of major normal fault systems using thermochronology: an example from the Raft River detachment, Basin and Range, western United States. J Geophys Res 105:16,303–16,327CrossRefGoogle Scholar
  161. Willett SD (1997) Inverse modeling of annealing of fission tracks in apatite 1: a controlled random search method. Am J Sci 297:939–969CrossRefGoogle Scholar
  162. Wolf RA, Farley KA, Silver LT (1996) Helium diffusion and low temperature thermochronometry of apatite. Geochim Cosmochim Acta 60:4231–4240CrossRefGoogle Scholar
  163. Wolf RA, Farley KA, Kass DM (1998) Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chem Geol 148:105–114CrossRefGoogle Scholar
  164. Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental study. Chem Geol 122:249–258CrossRefGoogle Scholar
  165. Yamada R, Murakami M, Tagami T (2007) Statistical modeling of annealing kinetics of fission tracks in zircon; reassessment of laboratory experiments. Chem Geol 236:75–91CrossRefGoogle Scholar
  166. Zaun PE, Wagner GA (1985) Fission track stability in zircons under geological conditions. Nucl Tracks 10:303–307Google Scholar
  167. Zeitler PK, Herczeg AL, McDougall I, Honda M (1987) U-Th-He dating of apatite: a potential thermochronometer. Geochim Cosmochim Acta 51:2865–2868CrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of OttawaOttawaCanada
  2. 2.Geological Survey of Canada, Natural Resources CanadaCalgaryCanada

Personalised recommendations