Thermochronology on Sand and Sandstones for Stratigraphic and Provenance Studies

  • Andrew CarterEmail author
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)


Clastic detritus preserved within a sedimentary basin represents a natural reservoir of geological information that can be used to constrain sediment deposition age and develop a picture of the sediment routing system and source terrain(s) in terms of location, age, composition and tectonic and climate stability. This chapter charts the development and applications of fission-track (FT) analysis to solve stratigraphic and provenance problems. Many of the interpretative tools and strategies developed for FT data are also applicable to detrital (U–Th)/He and other geochronological data. Provenance interpretations based on double and triple-dating strategies may be further improved by combining with mineral trace element data.



The author thanks Dave Chew, Alberto Resentini (Fig. 14.4) and Marco G. Malusà for their timely and constructive reviews.


  1. Allen R, Carter A, Najman Y, Bandopadhyay PC et al (2007) New constraints on the sedimentation and uplift history of the Andaman-Nicobar accretionary prism, South Andaman Island. Geol Soc Am Spec Pap 436:223–256Google Scholar
  2. Baldwin SL, Harrison TM, Burke K (1986) Fission track evidence for the source of accreted sandstones, Barbados. Tectonics 5:457–468CrossRefGoogle Scholar
  3. Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69CrossRefGoogle Scholar
  4. Boellstorff JD, Steineck PL (1975) The stratigraphic significance of fission track ages from volcanic ashes in the marine late Cenozoic of Southern California. Earth Plan Sci Lett 27:143–154CrossRefGoogle Scholar
  5. Brandon MT (1992) Decomposition of fission-track grain-age distributions. Amer J Sci 292:535–564CrossRefGoogle Scholar
  6. Brandon M (1996) Probability density plot for fission-track grain-age samples. Radiat Meas 26:663–676CrossRefGoogle Scholar
  7. Bruand E, Storey C, Fowler M (2016) An apatite for progress: inclusions in zircon and titanite constrain petrogenesis and provenance. Geology 44:91–94CrossRefGoogle Scholar
  8. Burchart J, Butkiewicz T, Dakowski M, Gałazka-Friedman J (1979) Fission track retention in minerals as a function of heating time during isothermal experiments: a discussion. Nucl Tracks 3:109–117CrossRefGoogle Scholar
  9. Burtner RL, Nigrini A, Donelick RA (1994) Thermochronology of lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull 78:1613–1636Google Scholar
  10. Campbell IH, Reiners PW, Allen CM, Nicolescu S, Upadhyay R (2005) He-Pb double dating of detrital zircons from the Ganges and Indus rivers: implications for sediment recycling and provenance studies. Earth Plan Sci Lett 237:402–432CrossRefGoogle Scholar
  11. Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I. Experimental results. Am Mineral 84:1213–1223Google Scholar
  12. Carpéna J (1998) Uranium-235 fission track annealing in minerals of the apatite group: an experimental study. In: van den Haute P, De Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, Dordrecht, pp 81–92CrossRefGoogle Scholar
  13. Carter A, Moss SJ (1999) Combined detrital-zircon fission-track and U-Pb dating: a new approach to understanding hinterland evolution. Geology 27:235–238CrossRefGoogle Scholar
  14. Carter A, Bristow C, Hurford AJ (1995) The application of FT analysis to the dating of barren sequences: examples from red beds in Scotland and Thailand. Geol Soc Lond Spec Pub 89:57–68CrossRefGoogle Scholar
  15. Carter A (1999) Present status and future avenues of source region discrimination and characterisation using fission-track analysis. Sed Geol 124:31–45CrossRefGoogle Scholar
  16. Carter A, Foster G (2009) Improving constraints on apatite provenance: Nd measurement on FT dated grains. Geol Soc Spec Publ 324:1–16CrossRefGoogle Scholar
  17. Carter A (2007) Heavy minerals and detrital fission-track thermochronology. Dev Sedimentol 58:851–868CrossRefGoogle Scholar
  18. Carter A, Najman N, Bahroudi A, Bown P, Garzanti E, Lawrence RD (2010) Locating earliest records of orogenesis in western Himalaya: evidence from Paleogene sediments in the Iranian Makran and Pakistan Katawaz basin. Geology 38:807–810CrossRefGoogle Scholar
  19. Carrapa B, DeCelles PG, Reiners PW, Gehrels GE, Sudo M (2009) Apatite triple dating and white mica 40Ar/39Ar thermochronology of syntectonic detritus in the central Andes: a multiphase tectonothermal history. Geology 37:407–410CrossRefGoogle Scholar
  20. Cerveny PF (1986) Uplift and erosion of the Himalaya over the past 18 million years: evidence from fission track dating of detrital zircons and heavy mineral analysis. M.Sc. thesis, Dartmouth College, Hanover, New HampshireGoogle Scholar
  21. Chew DM, Sylvester PJ, Tubrett MN (2011) U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chem Geol 280:200–216CrossRefGoogle Scholar
  22. Chew DM, Donelick RA (2012) Combined apatite fission track and U-Pb dating by LA-ICPMS and its application in apatite provenance analysis. Mineral Ass Canada Short Course 42:219–247Google Scholar
  23. Chu M-F, Wang K-L, Griffin WL, Chung S-L, O’Reilly SY, Pearson NJ, Iizuka Y (2009) Apatite composition: tracing petrogenetic processes in transhimalayan granitoids. J Petrol 50:1829–1855CrossRefGoogle Scholar
  24. Clift PD, Carter A, Hurford AJ (1996) Constraints on the evolution of the East Greenland Margin: evidence from detrital apatite in offshore sediments. Geology 24:1013–1016CrossRefGoogle Scholar
  25. Clift PD, Carter A, Hurford AJ (1998) The erosional history of north-east Atlantic passive margins and constraints on the influence of a passing plume. J Geol Soc 155:787–800CrossRefGoogle Scholar
  26. Clift PD, Lorenzo J, Carter A, Hurford AJ (1997) Transform tectonics and thermal rejuvenation on the Côte d’Ivoire-Ghana margin, west Africa. J Geol Soc 154:483–489CrossRefGoogle Scholar
  27. Cochrane R, Spikings RA, Chew D, Wotzlaw J-F, Chiaradia M, Tyrrell S, Schaltegger U, Van der Lelij R (2014) High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim Cosmochim Acta 127:39–56CrossRefGoogle Scholar
  28. Corrigan JD, Crowley KD (1990) Fission-track analysis of detrital apatites from sites 717 and 718, leg 116, central Indian Ocean. Proc Ocean Drill Prog Sci Results 116:75–92Google Scholar
  29. Corrigan JD, Crowley KD (1992) Unroofing of the Himalayas: A view from apatite fission-track analysis of Bengal fan sediments. Geophys Res Lett 19:2345–2348CrossRefGoogle Scholar
  30. Cserepes L (1989) Numerical mathematics—for geophysicist students. Tankönyvkiadó, Budapest, p 358Google Scholar
  31. Danišík M (2018) Integration of fission-track thermochronology with other geochronologic methods on single crystals (Chapter 5). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  32. Dietze M, Kreutzer S, Burow C, Fuchs MC, Fischer M, Schmidt C (2016) The abanico plot: visualising chronometric data with individual standard errors. Quart Geochron 31:12–18CrossRefGoogle Scholar
  33. Dill HG (1994) Can REE patterns and U-Th variations be used as a tool to determine the origin of apatite in clastic rocks. Sed Geol 92:175–196CrossRefGoogle Scholar
  34. Duddy IR, Gleadow AJW, Keene JB (1984) FT dating of apatite and sphene from palaeogene sediments of deep sea drilling project leg 81, site 555. Init Rep Deep Sea Drill Proj 81:725–729Google Scholar
  35. Dunkl I, Székely B (2002) Component analysis with visualization of fitting—PopShare, a Windows program for data analysis. Goldschmidt Conf Abs, Geochim Cosmochim Acta 66A:201Google Scholar
  36. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Studies in inorganic chemistry, vol 18. Elsevier, Amsterdam. 389 ppGoogle Scholar
  37. Fielding PE (1970) The distribution of uranium, rare earths and colour centres in a crystal of natural zircon. Am Mineral 55:428–440Google Scholar
  38. Fleischer RL, Price PB, Symes EM, Miller DS (1964) Fission track ages and track-annealing behavior of some micas. Science 143:349–351CrossRefGoogle Scholar
  39. Fleischer RL, Price PB, Walker RM (1965) Effects of temperature, pressure and ionisation on the formation and stability of fission tracks in minerals and glasses. J Geophys Res 70:1497–1502CrossRefGoogle Scholar
  40. Foster GL, Carter A (2007) Insights into the patterns and locations of erosion in the Himalaya—a combined fission-track and in situ Sm–Nd isotopic study of detrital apatite. Earth Planet Sci Lett 257:407–418CrossRefGoogle Scholar
  41. Fu B, Page FZ, Cavoise AJ, Fournelle J, Kita NT, Lackey JS, Wilde S, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215CrossRefGoogle Scholar
  42. Galbraith RF (1981) On statistical model for fission track counts. Math Geol 13:471–488CrossRefGoogle Scholar
  43. Galbraith RF (1988) Graphical display of estimates having differing standard errors. Technometrics 30:271–281Google Scholar
  44. Galbraith RF (1998) The trouble with “probability density” plots of fission track ages. Rad Measur 29:125–131CrossRefGoogle Scholar
  45. Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214CrossRefGoogle Scholar
  46. Galbraith RF, Green PF (1990) Estimating the component ages in a finite mixture. Nucl Tracks Radiat Meas 17:197–206CrossRefGoogle Scholar
  47. Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks 21:459–470Google Scholar
  48. Galbraith RF (2005) Statistics for fission track analysis. Interdisciplinary Statistics Series. Chapman and Hall/CRC, 224 ppCrossRefGoogle Scholar
  49. Ganerød M, Chew DM, Smethurst M, Troll VR, Corfu F, Meade F. Prestvik T (2011) Geochronology of the tardree rhyolite complex, Northern Ireland: implications for North Atlantic magmatism and zircon fission track and (U-Th)/He studies. Chem Geol 286:222–228Google Scholar
  50. Garver JI, Kamp PJJ (2002) Integration of zircon color and zircon fission track zonation patterns in orogenic belts: application of the Southern Alps, New Zealand. Tectonophysics 349:203–219 CrossRefGoogle Scholar
  51. Garver JI (2003) Etching age standards for fission track analysis. Radiat Meas 37:47–54CrossRefGoogle Scholar
  52. Garver JI, Brandon MT (1994) Erosional denudation of the British Columbia Coast Ranges as determined from fission-track ages of detrital zircon from the Tofino basin, Olympic Peninsula, Washington. Geol Soc Amer Bull 106:1398–1412CrossRefGoogle Scholar
  53. George AD, Hegarty KA (1995) FT analysis of detrital apatites from sites 859, 860 and 862, Chile triple junction. Proc Ocean Drill Program Sci Results 141:181–186Google Scholar
  54. Green PF, Durrani SA (1978) A quantitative assessment of geometry factors for use in fission track studies. Nucl Track Detect 2:207–213CrossRefGoogle Scholar
  55. Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5:169–174CrossRefGoogle Scholar
  56. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328Google Scholar
  57. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem Geol Isot Geosci Sect 59:237–253CrossRefGoogle Scholar
  58. Gleadow AJW (1980) Fission track age of the KBS Tuff and associated hominid remains in northern Kenya. Nature 284:225–230CrossRefGoogle Scholar
  59. Gleadow AJW, Lovering JF (1974) The effect of weathering on fission track dating. Earth Planet Sci Lett 22:163–168CrossRefGoogle Scholar
  60. Henderson AL, Foster GL, Najman Y (2010) Testing the application of in situ Sm–Nd isotopic analysis on detrital apatites: a provenance tool for constraining the timing of India-Eurasia collision. Earth Planet Sci Lett 297:42–49CrossRefGoogle Scholar
  61. Hurford AJ (2018) An historical perspective on fission-track thermochronology (Chapter 1) In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  62. Hurford AJ, Green PF (1981) Standards, dosimetry and the uranium-238 λf decay constant: a discussion. Nucl Tracks 5:73–75CrossRefGoogle Scholar
  63. Hurford AJ, Fitch FJ, Clarke A (1984) Resolution of the age structure of the detrital zircon populations of two lower Cretaceous sandstones from the Weald of England by fission track dating. Geol Mag 121:269–277CrossRefGoogle Scholar
  64. Hurford AJ, Carter A (1991) The role of fission track dating in discrimination of provenance. Geol Soc Spec Publ 57:67–78CrossRefGoogle Scholar
  65. Izett GA, Naeser CW, Obradovich J (1974) Fission-track age of zircons from an ash bed in the pico formation (Pliocene and Pleistocene) near Ventura, California. Geol Soc Am Abstr Programs 6:197Google Scholar
  66. Jasra A, Stephens DA, Gallagher K, Holmes CC (2006) Analysis of geochronological data with measurement error using Bayesian mixtures. Math Geol 38:269–300CrossRefGoogle Scholar
  67. Johnson GD, Zeitler P, Naeser CW, Johnson NM, Summers DM, Frost CD, Opdyke NP, Tahirkheli RAK (1982) The occurrence and fission-track ages of late Neogene and Quaternary volcanic sediments, Siwalik group, northern Pakistan. Palaeogeog Palaeoclim Palaeoecol 37:63–93CrossRefGoogle Scholar
  68. Knutson C, Peacor DR, Kelly WC (1985) Luminescence, colour and fission track zoning in apatite crystals of the Panasqueira tin-tungsten deposit, Beira-Baixa, Portugal. Am Mineral 79:829–837Google Scholar
  69. Kowallis BJ, Heaton JS, Bringhurst K (1986) Fission-track dating of volcanically derived sedimentary rocks. Geology 14:19–22Google Scholar
  70. Lonergan L, Johnson C (1998) A novel approach for reconstructing the denudation histories of mountain belts with an example from the Betic Cordillera (S. Spain). Basin Res 10:353–364CrossRefGoogle Scholar
  71. Malusà MG (2018) A guide for interpreting complex detrital age patterns in stratigraphic sequences (Chapter 16). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  72. Malusà MG, Garzanti E (2018) The sedimentology of detrital thermochronology (Chapter 7). In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  73. Malusà MG, Carter A, Limoncelli M, Garzanti E, Villa IM (2013) Bias in detrital zircon geochronology and thermochronometry. Chem Geol 359:90–107CrossRefGoogle Scholar
  74. Malusà MG, Wang J, Garzanti E, Liu ZC, Villa IM, Wittmann H (2017) Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos 290–291:48–59CrossRefGoogle Scholar
  75. Mbongo Djimbi D, Gautheron C, Roques J, Tassan-Got L, Gerin C, Simoni E (2015) Impact of apatite chemical composition on (U-Th)/He thermochronometry: an atomistic point of view. Geochim Cosmochim Acta 167:162–176CrossRefGoogle Scholar
  76. McGoldrick PJ, Gleadow AJW (1977) Fission-track dating of lower Palaeozoic sandstones at Tatong, North Central Victoria. J Geol Soc Australia 24:461–464CrossRefGoogle Scholar
  77. Morton A, Yaxley G (2007) Detrital apatite geochemistry and its application in provenance studies. In: Arribas J, Critelli S, Johnson MJ (eds) Sedimentary provenance and petrogenesis perspectives from geochemistry. Geol Soc Am Spec Pap 420:319–344Google Scholar
  78. Naeser CW, Izett GA, Wilcox RE (1974) Zircon fission-track ages of pearlette family ash beds in Meade County, Kansas. Geology 1:187–189CrossRefGoogle Scholar
  79. Naeser CW, Zimmermann RA, Cebula GT (1981) Fission-track dating of apatite and zircon: an interlaboratory comparison. Nucl Tracks 5:65–72CrossRefGoogle Scholar
  80. Naeser ND, Zeitler PK, Naeser CW, Cerveny PF (1987) Provenance studies by fission-track dating of zircon-etching and counting procedures. Nucl Tracks Rad Meas 13:121–126CrossRefGoogle Scholar
  81. Najman Y, Appel E, Boudagher-Fadel M, Bown P, Carter A, Garzanti E, Godin L, Han J, Liebke U, Oliver G, Parrish R, Vezzoli G (2010) The timing of India-Asia collision: sedimentological, biostratigraphic and palaeomagnetic constraints. J Geophys Res 115:B12416CrossRefGoogle Scholar
  82. Patchett P, Kouvo O, Hedge C, Tatsumoto M (1981) Evolution of the continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petr 75:263–267CrossRefGoogle Scholar
  83. Perry SE, Garver JI, Ridgway KD (2009) Transport of the Yakutat terrane, Southern Alaska: evidence from sediment petrology and detrital zircon fission-track and U/Pb double dating. J Geol 117:156–173CrossRefGoogle Scholar
  84. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220CrossRefGoogle Scholar
  85. Rahl JM, Reiners PW, Campbell IH, Nicolescu S, Allen CM (2003) Combined single-grain (U-Th)/He and U/Pb dating of detrital zircons from the Navajo Sandstone, Utah. Geology 31(9):761CrossRefGoogle Scholar
  86. Ravenhurst CE, Roden MK, Willet SD, Miller DS (1993) Dependence of fission track annealing on apatite crystal chemistry. Nucl Tracks Rad Meas 21:622Google Scholar
  87. Reiners PW, Campbell IS, Nicolescu S, Allen CA, Garver JI, Hourigan JK, Cowan DS (2004) Double- and triple-dating of single detrital zircons with (U-Th)/He, fission-track, and U/Pb systems, and examples from modern and ancient sediments of the western U.S. American Geophysical Union, Fall Meeting 2004, abstract T51D-01Google Scholar
  88. Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Dragantis E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796CrossRefGoogle Scholar
  89. Ruiz GMH, Seward D, Winkler W (2004) Detrital thermochronology—a new perspective on hinterland tectonics, an example from the Andean Amazon basin, Ecuador. Basin Res 16:413–430CrossRefGoogle Scholar
  90. Sambridge MS, Compston W (1994) Mixture modeling of multi-component data sets with application to ion-probe zircon ages. Earth Planet Sci Lett 128:373–390CrossRefGoogle Scholar
  91. Seward D (1979) Comparison of zircon and glass fission-track ages from tephra horizons. Geology 7:479–482CrossRefGoogle Scholar
  92. Stevens T, Carter A, Watson TP, Vermeesch P, Andò S, Bird AF, Lu H, Garzanti E, Cottam MA, Sevastjanova I (2013) Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quat Sci Rev 78:355–368CrossRefGoogle Scholar
  93. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Oxford, 312 ppGoogle Scholar
  94. Thomson SN, Hervé F (2002) New time constraints for metamorphism at the ancestral Pacific Gondwana margin of southern Chile (42°S–52°S). Rev Geol Chile 29:255–271CrossRefGoogle Scholar
  95. Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low-damage apatite U-Pb dating using laser ablation–multicollector–ICPMS. Geochem Geophys Geosyst 13:Q0AA21CrossRefGoogle Scholar
  96. Vermeesch P (2009) Radial plotter: a Java application for fission track, luminescence and other radial plots. Radiat Meas 44:409–410CrossRefGoogle Scholar
  97. Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194CrossRefGoogle Scholar
  98. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  99. Whitchurch AL, Carter A, Sinclair HD, Duller RA, Whittaker AC, Allen PA (2011) Sediment routing system evolution within a diachronously uplifting orogen: insights from detrital zircon fission track and U-Pb thermochronological analyses from the south-central Pyrenees. Am J. Science 311:1–43CrossRefGoogle Scholar
  100. Winkler W, Hurford AJ, Perch-Nielsen K, Odin GS (1990) Fission track and nannofossil ages from a Palaeocene bentonite in the Schlieren Flysch (Central Alps, Switzerland). Schweiz Mineral Petrogr Mitt 70:389–396Google Scholar
  101. Yim W-S, Gleadow AJW, van Moort JC (1985) Fission track dating of alluvial zircons and heavy mineral provenance in Northeast Tasmania. J Geol Soc 142(351):356Google Scholar
  102. Zattin M, Andreucci B, Thomson SN, Reiners PW, Talarico F (2012) New constraints on the provenance of the ANDRILL AND-2A succession (western Ross Sea, Antarctica) from apatite triple dating. Geochem Geophys Geosyst 13:Q10016CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Earth and Planetary Sciences, BirkbeckUniversity of LondonLondonUK

Personalised recommendations