Advertisement

Crustal Exhumation of Plutonic and Metamorphic Rocks: Constraints from Fission-Track Thermochronology

  • Suzanne L. Baldwin
  • Paul G. Fitzgerald
  • Marco G. Malusà
Chapter
Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

The thermal evolution of plutonic and metamorphic rocks in the upper crust may be revealed using fission-track (FT) analyses and other low-temperature thermochronologic methods. The segment of pressure–temperature–time–deformation (P-T-t-D) rock paths potentially constrained by FT data corresponds to the lower greenschist facies, prehnite–pumpellyite, and zeolite facies of metamorphic rocks and also includes regions where diagenetic alteration occurs. When plutonic and metamorphic rocks are exhumed, thermal perturbations caused by fluid alteration, and crystallisation below relevant closure/annealing temperatures at relatively shallow crustal depths, may preclude a simplistic interpretation of thermochronologic ages in terms of monotonic cooling. However, FT ages and track-length measurements provide kinetic data that allow interpretation of T-t paths, even in cases where assumptions based on bulk closure temperatures are violated. We show that geologically well-constrained sampling strategies, and application of multiple thermochronologic methods on cogenetic minerals from plutonic and metamorphic rocks, may provide the most promising means to document the timing, rates, and mechanisms of crustal processes. Case studies are presented for: (1) (ultra)high-pressure (U)HP metamorphic terranes (e.g., Papua New Guinea, Western Alps, Western Gneiss Region, Dabie–Sulu), (2) an extensional orogen (Transantarctic Mountains), (3) a compressional orogen (Pyrenees), and (4) a transpressional plate boundary zone (Alpine fault zone, New Zealand).

Notes

Acknowledgements

SLB and PGF acknowledge support from the U.S. National Science Foundation. SLB and PGF thank J. Pettinga and the Erskine Program at the University of Canterbury. SLB thanks the Thonis family endowment. Thorough reviews by A. Blythe, M. Danišík, J. Gonzalez, T. Warfel, M. Jimenez, J.M. Brigham, N. Perez Consuegra, and R. Glas are greatly appreciated.

References

  1. Abers GA, Eilon Z, Gaherty JB, Jin G, Kim YH, Obrebski M, Dieck C (2016) Southeast Papuan crustal tectonics: imaging extension and buoyancy of an active rift. J Geophys Res Solid Earth 121:951–971CrossRefGoogle Scholar
  2. Adams CJ (1980) Uplift rates and thermal structure in the Alpine fault zone and Alpine schists, Southern Alps, New Zealand. Geol Soc London Spec Publ 9:211–222CrossRefGoogle Scholar
  3. Adams CJ, Gabites JE (1985) Age of metamorphism and uplift in the Haast schist group at Haast pass, Lake Wanaka and Lake Hawea, South Island, New Zealand. New Z J Geol Geophys 28:85–96CrossRefGoogle Scholar
  4. Ague JJ, Baxter EF (2007) Brief thermal pulses during mountain building recorded by Sr dif-fusion in apatite and multicomponent diffusion in garnet. Earth Planet Sci Lett 261:500–516CrossRefGoogle Scholar
  5. Amato JM, Johnson CM, Baumgartner LP, Beard BL (1999) Rapid exhumation of the Zermatt-Saas ophiolite deduced from high-precision Sm, Nd and Rb–Sr geochronology. Earth Planet Sci Lett 171:425–438CrossRefGoogle Scholar
  6. Baldwin SL (1996) Contrasting P-T-t histories for blueschists from the western Baja terrane and the Aegean: effects of synsubduction exhumation and backarc extension. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction top to bottom, American Geophysical Union, Washington, DC.  https://doi.org/10.1029/GM096p0135CrossRefGoogle Scholar
  7. Baldwin SL, Das JP (2015) Atmospheric Ar and Ne returned from mantle depths to the Earth’s surface by forearc recycling. Proc Nat Acad Sci 112:14174–14179CrossRefGoogle Scholar
  8. Baldwin SL, Harrison TM (1992) The P-T-t history of serpentinite matrix mélange from west-central Baja California. Geol Soc Am Bull 104:18–31CrossRefGoogle Scholar
  9. Baldwin SL, Lister GS, Hill EJ, Foster DA, McDougall I (1993) Thermochronologic con-straints on the tectonic evolution of active metamorphic core complexes, D’Entrecasteaux Islands, Papua New Guinea. Tectonics 12:611–628CrossRefGoogle Scholar
  10. Baldwin SL, Monteleone BD, Webb LE, Fitzgerald PG, Grove M, Hill EJ (2004) Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea. Nature 431:263–267CrossRefGoogle Scholar
  11. Baldwin SL, Webb LE, Monteleone BD (2008) Late Miocene coesite-eclogite exhumed in the Woodlark Rift. Geology 36:735–738CrossRefGoogle Scholar
  12. Baldwin SL, Fitzgerald PG, Webb LE (2012) Tectonics of the New Guinea region. Annu Rev Earth Planet Sci 40:495–520CrossRefGoogle Scholar
  13. Balestrieri ML, Bigazzi G, Ghezzo C, Lombardo B (1994) Fission track dating of apatites from the Granite Harbour Instrusive suite and uplift-denduation history of the Transantarctic Mountains in the area between the Mariner and David Glaciers (Northern Victoria Land, Antarctica). Terra Antartica 1:82–87Google Scholar
  14. Balestrieri ML, Bigazzi G, Ghezzo C (1997) Uplift—denudation of the Transantarctic Mountains between the david and the mariner glaciers, Northern Victoria Land (Antarctica): Constraints by apatite fission-track analysis. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp 547–554Google Scholar
  15. Barrett PJ (1965) Geology of the area between the Axel Heiberg and Shackleton Glaciers, Queen Maud Mountains, Antarctica. New Z J Geol Geophys 8:344–370CrossRefGoogle Scholar
  16. Barrett PJ (1979) Proposed drilling in McMurdo Sound—1979 Memoir of the National Institute of Polar Research. Special Issue 13:231–239Google Scholar
  17. Barrett PJ (1991) The Devonian to Triassic Beacon Supergroup of the Transantarctic Mountains and correlatives in other parts of Antarctica. In: Tingey RJ (ed) The geology of Antarctica, vol 17. Oxford Monographs on Geology and Geophysics. Clarendon Press, Oxford, pp 120–152Google Scholar
  18. Barrett PJ (1996) Antarctic paleoenvironment through Cenozoic times—a review. Terra Antarct 3:103–119Google Scholar
  19. Barrett PJ, Elliot DH (1973) Reconnaissance geologic map of the Buckley Island Quadrangle, Transantarctic Mountains. Antarctica, United States Geological Survey, Reston, VaGoogle Scholar
  20. Batt GE, Kohn BP, Braun J, McDougall I, Ireland TR (1999) New insight into the dynamic development of the Southern Alps, New Zealand, from detailed thermochronological investigation of the Mataketake Range pegmatites. Geol Soc London Spec Publ 154:261–282CrossRefGoogle Scholar
  21. Batt GE, Braun J, Kohn BP, McDougall I (2000) Thermochronological analysis of the dynamics of the Southern Alps, New Zealand. Geol Soc Am Bull 112:250–266CrossRefGoogle Scholar
  22. Batt GE, Baldwin SL, Cottam M, Fitzgerald PG, Brandon M (2004) Cenozoic plate boundary evolution in the South Island of New Zealand: New thermochronological constraints. Tectonics 23: TC4001CrossRefGoogle Scholar
  23. Beavan J, Tregoning P, Bevis M, Kato T, Meertens C (2002) Motion and rigidity of the Pacific Plate and implications for plate boundary deformation. J Geophys Res Solid Earth 107Google Scholar
  24. Beavan J, Ellis S, Wallace LM, Denys P (2007) Kinematic constraints from GPS on oblique convergence of the Pacific and Australian plates, central South Island, New Zealand. In: Okaya D, Stern TA, Davey FJ (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union. Washington, DC, pp 75–94CrossRefGoogle Scholar
  25. Beavan J, Denys P, Denham M, Hager B, Herring T, Molnar P (2010) Distribution of present‐day vertical deformation across the Southern Alps, New Zealand, from 10 years of GPS data. Geophys Res Lett 37Google Scholar
  26. Becker H (1993) Garnet peridotite and eclogite Sm–Nd mineral ages from the Lepontine dome (Swiss Alps): New evidence for Eocene high-pressure metamorphism in the central Alps. Geology 21:599–602CrossRefGoogle Scholar
  27. Berástegui X, García JM, Losantos M (1990) Structure and sedimentary evolution of the Organyà basin (Central South Pyrenean Unit, Spain) during the Lower Cretaceous. Bull Soc Géol Fr 8:251–264CrossRefGoogle Scholar
  28. Beucher R, Beek P, Braun J, Batt GE (2012) Exhumation and relief development in the Pelvoux and Dora‐Maira massifs (western Alps) assessed by spectral analysis and inversion of thermochronological age transects J Geophys Res Earth Surface 117Google Scholar
  29. Bialas RW, Buck WR, Studinger M, Fitzgerald PG (2007) Plateau collapse model for the Transantarctic Mountains-West Antarctic Rift system: insights from numerical experiments. Geology 35:687CrossRefGoogle Scholar
  30. Blythe AE (1998) Active tectonics and ultrahigh-pressure rocks. In Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Springer Netherlands, pp 141–160CrossRefGoogle Scholar
  31. Blythe AE, Huerta AD, Utevsky E (2011) Evaluating the Mesozoic West Antarctic Plateau col-lapse hypothesis: results from apatite fission-track and (U–Th)/He analyses from Byrd Glacier Outlet. In: AGU Fall Meeting Abstracts, 2011Google Scholar
  32. Bohlen SR, Valley JW, Essene EJ (1985) Metamorphism in the Adirondacks. I. petrology, pressure and temperature. J Petrol 26:971–992CrossRefGoogle Scholar
  33. Braun J (2002) Quantifying the effect of recent relief changes on age-elevation relationships. Earth Planet Sci Lett 200:331–343CrossRefGoogle Scholar
  34. Brouwer FM, Van De Zedde DMA, Wortel MJR, Vissers RLM (2004) Late-orogenic heating during exhumation: Alpine PTt trajectories and thermomechanical models. Earth Planet Sci Lett 220:185–199CrossRefGoogle Scholar
  35. Brown RW, Summerfield MA (1997) Some uncertainties in the derivation of rates of denudation from thermochronologic data. Earth Surf Proc Land 22:239–248CrossRefGoogle Scholar
  36. Bull WB, Cooper AF (1986) Uplifted marine terraces along the Alpine fault, New Zealand. Sci-ence 234:1225–1228CrossRefGoogle Scholar
  37. Camacho A, Lee JKW, Hensen BJ, Braun J (2005) Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids. Nature 435:1191CrossRefGoogle Scholar
  38. Cape Roberts Science Team (2000) Studies from the Cape Roberts Project, Ross Sea Antarctica. Initial report on CRP-3 vol 7. Terra Antartica, vol 1/2. Terra Antartica Publication, Siena, ItalyGoogle Scholar
  39. Capponi G, Messiga B, Piccardo GB, Scambelluri M, Traverso G, Vannucci R (1990) Meta-morphic assemblages in layered amphibolites and micaschists from the Dessent Formation (Mountaineer Range, Antarctica). Mem Soc Geol Ital 43:87–95Google Scholar
  40. Carswell DA, Brueckner HK, Cuthbert SJ, Mehta K, O’Brien PJ (2003) The timing of stabilisa-tion and the exhumation rate for ultra-high pressure rocks in the Western Gneiss Region of Norway. J Metam Geol 21:601–612CrossRefGoogle Scholar
  41. Chamberlain CP, Zeitler PK, Cooper AF (1995) Geochronologic constraints of the uplift and metamorphism along the Alpine Fault, South Island, New Zealand. New Z J Geol Geophys 38:515–523CrossRefGoogle Scholar
  42. Chamberlain CP, Shelly DR, Townend J, Stern TA (2014) Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine fault, New Zealand. Geochem Ge-ophys Geosyst 15:2984–2999CrossRefGoogle Scholar
  43. Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petr 86:107–118.  https://doi.org/10.1007/BF00381838CrossRefGoogle Scholar
  44. Chopin C, Henry C, Michard A (1991) Geology and petrology of the coesite-bearing terrain, Dora Maira massif, Western Alps. Eu J Miner 3:263–291CrossRefGoogle Scholar
  45. Coleman RG, Wang X (1995) Overview of the geology and tectonics of UHPM. Ultrahigh pressure metamorphism, pp 1–32Google Scholar
  46. Compagnoni R, Hirajima T, Chopin C (1995) Ultra-high-pressure metamorphic rocks in the Western Alps. Ultrahigh pressure metamorphism, pp 206–243Google Scholar
  47. Coney PJ, Muñoz JA, McClay K, Evenchick CA (1996) Syn-tectonic burial and post-tectonic exhumation of an active foreland thrust belt, southern Pyrenees, Spain. J Geol Soc 153:9–16CrossRefGoogle Scholar
  48. Cooper AF (1972) Progressive metamorphism of metabasic rocks from the Haast Schist Group of southern New Zealand. J Petrol 13:457–492CrossRefGoogle Scholar
  49. Cooper AF (1974) Multiphase deformation and its relationship to metamorphic crystallisation at Haast River, South Westland, New Zealand. New Z J Geol Geophys 17:855–880CrossRefGoogle Scholar
  50. Cox SC, Sutherland R (2007) Regional geological framework of South Island, New Zealand, and is significance for understanding the active plate boundary. In: Okaya D, Stern TA, Davey FJ (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington, DC, pp 19–46.  https://doi.org/10.1029/175gm03CrossRefGoogle Scholar
  51. Dachs E, Proyer A (2002) Constraints on the duration of high-pressure metamorphism in the Tauern Window from diffusion modelling of discontinuous growth zones in eclogite garnet. J Metam Geol 20:769–780CrossRefGoogle Scholar
  52. Dalziel IWD (1992) Antarctica: a tale of two supercontinents. Annu Rev Earth Planet Sci 20:501–526CrossRefGoogle Scholar
  53. Davies HL, Warren RG (1988) Origin of eclogite-bearing, domed, layered metamorphic com-plexes (“core complexes”) in the D’Entrecasteaux Islands, Papua New Guinea. Tectonics 7:1–21CrossRefGoogle Scholar
  54. de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28:487–490CrossRefGoogle Scholar
  55. DesOrmeau JW, Gordon SM, Kylander-Clark ARC, Hacker BR, Bowring SA, Schoene B, Sam-perton KM (2015) Insights into (U) HP metamorphism of the Western Gneiss Region, Norway: a high-spatial resolution and high-precision zircon study. Chem Geol 414:138–155CrossRefGoogle Scholar
  56. Dewey JF (2005) Orogeny can be very short. Proc Nat Acad Sci 102:15286–15293CrossRefGoogle Scholar
  57. Dodson MH (1973) Closure temperatures in cooling geochronological and petrological systems. Contrib Mineral Petr 40:259–274CrossRefGoogle Scholar
  58. Ducea MN (2016) RESEARCH FOCUS: understanding continental subduction: a work in progress. Geology 44:239–240CrossRefGoogle Scholar
  59. Duchene S, Lardeaux J-M, Albarède F (1997) Exhumation of eclogites: insights from depth-time path analysis. Tectonophysics 280:125–140CrossRefGoogle Scholar
  60. Dunlap WJ, Teyssier C, McDougall I, Baldwin S (1995) Thermal and structural evolution of the intracratonic Arltunga Nappe Complex, central Australia. Tectonics 14:1182–1204CrossRefGoogle Scholar
  61. Elliot DH (1975) Tectonics of Antarctica: a review. Am J Sci 275:45–106Google Scholar
  62. Elliot DH (1992) Jurassic magmatism and tectonism associated with Gondwanaland break-up; an Antarctic perspective. Geol Soc London Spec Publ 68:165–184CrossRefGoogle Scholar
  63. Elliot DH, Fleming TH (2004) Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Res 7:223–237CrossRefGoogle Scholar
  64. Ellis SM, Little TA, Wallace LM, Hacker BR, Buiter SJH (2011) Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks. Earth Planet Sci Lett 311:427–438CrossRefGoogle Scholar
  65. England PC, Thompson AB (1984) Pressure-temperature-time paths of regional metamor-phism I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol 25:894–928CrossRefGoogle Scholar
  66. Ernst WG (1988) Tectonic history of subduction zones inferred from retrograde blueschist PT paths. Geology 16:1081–1084CrossRefGoogle Scholar
  67. Fillon C, van der Beek P (2012) Post-orogenic evolution of the southern Pyrenees: constraints from inverse thermo-kinematic modelling of low-temperature thermochronology data. Basin Res 24:418–436CrossRefGoogle Scholar
  68. Fitzgerald PG (1992) The Transantarctic Mountains of southern Victoria Land: the application of apatite fission track analysis to a rift shoulder uplift. Tectonics 11:634–662CrossRefGoogle Scholar
  69. Fitzgerald PG (1994) Thermochronologic constraints on post-Paleozoic tectonic evolution of the central Transantarctic Mountains, Antarctica. Tectonics 13:818–836CrossRefGoogle Scholar
  70. Fitzgerald PG (2002) Tectonics and landscape evolution of the Antarctic plate since Gondwana breakup, with an emphasis on the West Antarctic rift system and the Transantarctic Mountains. In: Gamble JA, Skinner DNB, Henrys S (eds) Antarctica at the close of a Millennium. In: Proceedings of the 8th international symposium on Antarctic earth science. The Royal Society of New Zealand Bulletin, 35 edn. Royal Society of New Zealand, pp 453–469Google Scholar
  71. Fitzgerald PG, Baldwin SL (2007) Thermochronologic constraints on Jurassic rift flank denudation in the Thiel Mountains, Antarctica. In: Cooper AK, Raymond CR et al. (eds) Antarctica: a keystone in a changing world. USGS open-file report 2007Google Scholar
  72. Fitzgerald PG, Baldwin SL (1997) Detachment fault model for the evolution of the Ross Embayment: geologic and fission track constraints from DSDP site 270. In: Ricci CA (ed) The Antarctic region: geological evolution and processes. Terra Antarctica Publication, Siena, pp. 555–564Google Scholar
  73. Fitzgerald PG, Gleadow AJW (1988) Fission-track geochronology, tectonics and structure of the Transantarctic Mountains in northern Victoria Land, Antarctica. Chem Geol Isotope Geosci Sect 73:169–198CrossRefGoogle Scholar
  74. Fitzgerald PG, Gleadow AJW (1990) New approaches in fission track geochronology as a tectonic tool: examples from the Transantarctic Mountains. Nucl Tracks 17:351–357CrossRefGoogle Scholar
  75. Fitzgerald PG, Malusà MG (2018) Chapter 9: concept of the exhumed partial annealing (retention) zone and age-elevation profiles in thermochronology. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  76. Fitzgerald PG, Stump E (1997) Cretaceous and Cenozoic episodic denudation of the Transantarctic Mountains, Antarctica: new constraints from apatite fission track thermochronology in the Scott Glacier region. J Geophys Res 102:7747–7765CrossRefGoogle Scholar
  77. Fitzgerald PG, Muñoz JA, Coney PJ, Baldwin SL (1999) Asymmetric exhumation across the Pyrenean orogen: implications for the tectonic evolution of collisional orogens. Earth Planet Sci Lett 173:157–170CrossRefGoogle Scholar
  78. Fitzgerald PG, Baldwin SL, O’Sullivan PB, Webb LE (2006) Interpretation of (U–Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chem Geol 225:91–120CrossRefGoogle Scholar
  79. Fitzgerald PG, Baldwin SL, Bermúdez MB, Webb LE, Little TA, Miller SR, Malusa MG, Seward D (2015) Exhumation of the Papuan New Guinea (U)HP terrane: constraints from low temperature thermochronology.  XI International Eclogite Conference, Dominican Republic. http://www.ruhr-uni-bochum.de/eclogite/iec11/IEC-2015-abstract-volume.pdf
  80. Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R (2011) Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nature Geosci 4:703CrossRefGoogle Scholar
  81. Gebauer D (1996) A P‐T‐t Path for an (ultra?) High‐Pressure ultramafic/mafic rock association and its felsic country‐rocks based on SHRIMP dating of magmatic and metamorphic zircon domains. example: Alpe Arami (Central Swiss Alps). Earth Proc: Read Isotopic Code 307–329Google Scholar
  82. Gebauer D, Schertl HP, Brix M, Schreyer W (1997) 35 Ma old ultrahigh-pressure metamorphism and evidence for very rapid exhumation in the Dora Maira Massif, Western Alps. Lithos 41:5–24CrossRefGoogle Scholar
  83. Gibson M, Sinclair HD, Lynn GJ, Stuart FM (2007) Late- to post-orogenic exhumation of the central Pyrenees revealed through combined thermochronological data and thermal modeling. Basin Res 19:323–334CrossRefGoogle Scholar
  84. Gilotti JA (2013) The realm of ultrahigh-pressure metamorphism. Elements 9:255–260CrossRefGoogle Scholar
  85. Gleadow AJW, Brown RW (2000) Fission track thermochronology and the long term denuda-tional response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. John Willey and Sons, New York, pp 57–75Google Scholar
  86. Gleadow AJW, Fitzgerald PG (1987) Uplift history and structure of the Transantarctic Mountains: new evidence from fission track dating of basement apatites in the Dry Valleys area, southern Victoria Land. Earth Planet Sci Lett 82:1–14CrossRefGoogle Scholar
  87. Gleadow AJW, McKelvey BC, Ferguson KU (1984) Uplift history of the Transantarctic Mountains in the Dry Valleys area, southern Victoria Land, Antarctica, from apatite fission track ages. New Z J Geol Geophys 27:457–464CrossRefGoogle Scholar
  88. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 31, Tulsa, 199 ppGoogle Scholar
  89. Goodge JW (2007) Metamorphism in the Ross orogen and its bearing on Gondwana margin tectonics. Geol S Am S 419:185–203Google Scholar
  90. Gordon SM, Little TA, Hacker BR, Bowring SA, Korchinski M, Baldwin SL, Kylander-Clark ARC (2012) Multi-stage exhumation of young UHP–HP rocks: timescales of melt crystallization in the D’Entrecasteaux Islands, southeastern Papua New Guinea. Earth Planet Sci Lett 351–352:237–246CrossRefGoogle Scholar
  91. Grapes R, Watanabe T (1992) Metamorphism and uplift of Alpine schist in the Franz Josef-Fox Glacier area of the Southern Alps, New Zealand. J Metam Geol 10:171–180CrossRefGoogle Scholar
  92. Guillot S, Hattori K, Agard P, Schwartz S, Vidal O (2009) Exhumation processes in oceanic and continental subduction contexts: a review. In: Subduction Zone Geodynamics. Springer, pp 175–205CrossRefGoogle Scholar
  93. Gunn BM, Warren G (1962) Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarctica vol 70–71. New Z Geol Survey Bull, Lower HuttGoogle Scholar
  94. Hacker BR (2006) Pressures and temperatures of ultrahigh-pressure metamorphism: implications for UHP tectonics and H2O in subducting slabs. Int Geol Rev 48:1053–1066CrossRefGoogle Scholar
  95. Hacker BR, Ratschbacher L, Webb LE, Ireland T, Walker D, Shuwen D (1998) U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth Planet Sci Lett 161:215–230CrossRefGoogle Scholar
  96. Hacker BR, Ratschbacher L, Webb LE, McWilliams MO, Ireland T, Calvert A, Dong S, Wenk HR, Chateigner D (2000) Exhumation of ultrahigh-pressure continental crust in east central China: late Triassic-Early Jurassic tectonic unroofing. J Geophys Res Solid Earth 105:13339–13364CrossRefGoogle Scholar
  97. Harlov DE (2015) Apatite: a fingerprint for metasomatic processes. Elements 11:171–176CrossRefGoogle Scholar
  98. Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petr 150:268–286CrossRefGoogle Scholar
  99. Harrison TM, Zeitler PK (2005) Fundamentals of noble gas thermochronometry. Rev Mineral Geochem 58:123–149CrossRefGoogle Scholar
  100. Hay D, Dempster T (2009) Zircon behaviour during low-temperature metamorphism. J Petrol 50:571–589CrossRefGoogle Scholar
  101. Heimann A, Fleming TH, Elliot DH, Foland KA (1994) A short interval of Jurassic continental flood basalt volcanism in Antarctica as demonstrated by 40Ar/39Ar geochronology. Earth Planet Sci Lett 121:19–41CrossRefGoogle Scholar
  102. Herman F, Cox S, Kamp P (2009) Low-temperature thermochronology and thermokinematic modeling of deformation. TectonicsGoogle Scholar
  103. Hill EJ, Baldwin SL (1993) Exhumation of high-pressure metamorphic rocks during crustal extension in the D’Entrecasteaux region, Papua New Guinea. J Metam Geol 11:261–277CrossRefGoogle Scholar
  104. Hill EJ, Baldwin SL, Lister GS (1992) Unroofing of active metamorphic core complexes in the D’Entrecasteaux Islands, Papua New Guinea. Geology 20:907–910CrossRefGoogle Scholar
  105. Hodges KV (1991) Pressure-temperature-time paths. Annu Rev Earth Planet Sci 19:207–236CrossRefGoogle Scholar
  106. Houlié N, Stern TA (2012) A comparison of GPS solutions for strain and SKS fast directions: Implications for modes of shear in the mantle of a plate boundary zone. Earth Planet Sci Lett 345:117–125CrossRefGoogle Scholar
  107. Hu S, Kohn BP, Raza A, Wang J, Gleadow AJW (2006) Cretaceous and Cenozoic cooling history across the ultrahigh pressure Tongbai-Dabie belt, central China, from apatite fission-track thermochronology. Tectonophysics 420:409–429CrossRefGoogle Scholar
  108. Huntington KW, Ehlers TA, Hodges KV, Whipp DM (2007) Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data. Tectonics 26CrossRefGoogle Scholar
  109. Husson L, Moretti I (2002) Thermal regime of fold and thrust belts—an application to the Bolivian subAndean zone. Tectonophysics 345:253–280CrossRefGoogle Scholar
  110. Jamieson RA, Beaumont C (2013) On the origin of orogens. Geol Soc Am Bull 125:1671–1702CrossRefGoogle Scholar
  111. Jiracek GR, Gonzalez VM, Grant Caldwell T, Wannamaker PE, Kilb D (2007) Seismogenic, electrically conductive, and fluid zones at continental plate boundaries in New Zealand, Himalaya, and California, USA. In: O’kaya D, Stern TA, Davey F (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington DC, pp 347–369CrossRefGoogle Scholar
  112. Jolivet M, Labaume P, Brunel M, Arnaud N, Campani M (2007) Thermochronology constraints for the propagation sequence of the south Pyrenean basement thrust system (France-Spain). Tectonics 26: TC5007CrossRefGoogle Scholar
  113. Kamp PJJ, Tippett JM (1993) Dynamics of Pacific plate crust in the South Island (New Zealand) zone of oblique continent-continent convergence. J Geophys Res Solid Earth 98:16105–16118CrossRefGoogle Scholar
  114. Kamp PJJ, Green PF, White SH (1989) Fission track analysis reveals character of collisional tectonics in New Zealand. Tectonics 8:169–195CrossRefGoogle Scholar
  115. Ketcham R (2018) Chapter 3. Fission track annealing: from geologic observations to thermal history modeling. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  116. Kohn B, Chung L, Gleadow A (2018) Chapter 2. Fission-track analysis: field collection, sample preparation and data acquisition. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  117. Kohn MJ (2016) Metamorphic chronology-a tool for all ages. Am Mineral 101:25–42CrossRefGoogle Scholar
  118. Kohn MJ, Corrie SL, Markley C (2015) The fall and rise of metamorphic zircon. Am Mineral 100:897–908CrossRefGoogle Scholar
  119. Koons PO (1995) Modeling the topographic evolution of collisional belts. Annu Rev Earth Planet Sci 23:375–408CrossRefGoogle Scholar
  120. Ksienzyk AK, Dunkl I, Jacobs J, Fossen H, Kohlmann F (2014) From orogen to passive margin: constraints from fission track and (U–Th)/He analyses on Mesozoic uplift and fault reactivation in SW Norway. Geol Soc London Spec Publ 390(SP390):327Google Scholar
  121. Kufner S-K, Schurr B, Sippl C, Yuan X, Ratschbacher L, Ischuk A, Murodkulov S, Schneider F, Mechie J, Tilmann F (2016) Deep India meets deep Asia: Lithospheric indentation, delamination and break-off under Pamir and Hindu Kush (Central Asia). Earth Planet Sci Lett 435:171–184CrossRefGoogle Scholar
  122. Lardeaux J-M, Schwartz S, Tricart P, Paul A, Guillot S, Béthoux N, Masson F (2006) A crustal-scale cross-section of the south-western Alps combining geophysical and geological imagery. Terra Nova 18:412–422CrossRefGoogle Scholar
  123. Leech ML, Stockli DF (2000) The late exhumation history of the ultrahigh-pressure Maksyutov Complex, south Ural Mountains, from new apatite fission track data. Tectonics 19:153–167CrossRefGoogle Scholar
  124. LeMasurier WE, Thomson JW (eds) (1990) Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic research series, vol 48. American Geophysical Union, Washington, DCGoogle Scholar
  125. Lennykh VI, Valizer PM, Beane R, Leech M, Ernst WG (1995) Petrotectonic evolution of the Maksyutov Complex, Southern Urals, Russia: implications for ultrahigh-pressure meta-morphism. Int Geol Rev 37:584–600CrossRefGoogle Scholar
  126. Liao J, Malusà MG, Liang Z, Baldwin SL, Fitzgerald PG, Gerya T (2018) Divergent plate motion drives rapid exhumation of (ultra)high pressure rocks. Earth Planet Sci Lett 491:67–80.  https://doi.org/10.1016/j.epsl.2018.03.024CrossRefGoogle Scholar
  127. Lindsay JF, Gunner J, Barrett PJ (1973) Reconnaissance geologic map of the Mount Elizabeth and Mount Kathleen quadrangles, Transantarctic Mountains, Antarctica. US Geological Survey Washington, DC, 1:250,000Google Scholar
  128. Liou JG, Ernst WG, Zhang RY, Tsujimori T, Jahn BM (2009) Ultrahigh-pressure minerals and metamorphic terranes—the view from China. J Asian Earth Sci 35:199–231CrossRefGoogle Scholar
  129. Lisker F (2002) Review of fission track studies in northern Victoria Land, Antarctica; passive margin evolution versus uplift of the Transantarctic Mountains. Tectonophysics 349:57–73CrossRefGoogle Scholar
  130. Little TA, Cox SE, Vry JK, Batt G (2005) Variations in exhumation level and uplift rate along the obliqu-slip Alpine fault, central Southern Alps. New Zealand. Geol Soc Am Bull 117:707CrossRefGoogle Scholar
  131. Little TA, Baldwin SL, Fitzgerald PG, Monteleone BM (2007) Continental rifting and meta-morphic core complex formation ahead of the Woodlark Spreading Ridge, D’Entrecasteaux Islands, Papua New Guinea. Tectonics 26: TC1002. doi:1010.1029/2005TC001911CrossRefGoogle Scholar
  132. Liu LP, Li Z-X, Danišík M, Li S, Evans N, Jourdan F, Tao N (2017) Thermochronology of the Sulu ultrahigh-pressure metamorphic terrane: implications for continental collision and lithospheric thinning. Tectonophysics 712:10–29CrossRefGoogle Scholar
  133. Lock J, Willett S (2008) Low-temperature thermochronometric ages in fold-and-thrust belts. Tectonophysics 456:147–162CrossRefGoogle Scholar
  134. Lovera OM, Richter FM, Harrison TM (1989) The 40Ar/39Ar thermochrometry for slowly cooled samples having a distribution of diffusion domain sizes. J Geophys Res 94:17917–17935CrossRefGoogle Scholar
  135. Lovera OM, Grove M, Harrison TM, Mahon KI (1997) Systematic analysis of K-feldspar 40Ar 39Ar step heating results: I. Significance of activation energy determinations. Geochim Cosmochim Ac 61:3171–3192CrossRefGoogle Scholar
  136. Lovera OM, Grove M, Harrison TM (2002) Systematic analysis of K-feldspar 40Ar/39Ar step heating results II: Relevance of laboratory argon diffusion properties to nature. Geochim Cosmochim Ac 66:1237–1255CrossRefGoogle Scholar
  137. Malusà MG, Fitzgerald PG (2018a) Chapter 8. From cooling to exhumation: setting the reference frame for the interpretation of thermochronologic data. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  138. Malusà MG, Fitzgerald PG (2018b) Chapter 10. Application of thermochronology to geologic problems: bedrock and detrital approaches. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  139. Malusà MG, Polino R, Zattin M, Bigazzi G, Martin S, Piana F (2005) Miocene to present differential exhumation in the Western Alps: insights from fission track thermochronology. Tectonics 24:1–23 TC3004CrossRefGoogle Scholar
  140. Malusà MG, Philippot P, Zattin M, Martin S (2006) Late stages of exhumation constrained by structural, fluid inclusion and fission track analyses (Sesia–Lanzo unit, Western European Alps). Earth Planet Sci Lett 243:565–580CrossRefGoogle Scholar
  141. Malusà MG, Faccenna C, Garzanti E, Polino R (2011) Divergence in subduction zones and exhumation of high pressure rocks (Eocene Western Alps). Earth Planet Sci Lett 310:21–32CrossRefGoogle Scholar
  142. Malusà MG, Faccenna C, Baldwin SL, Fitzgerald PG, Rossetti F, Balestrieri ML, Danišík M, El-lero A, Ottria G, Piromallo C (2015) Contrasting styles of (U) HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica). Geochem Geophys Geosyst 16:1786–1824CrossRefGoogle Scholar
  143. McClay K, Muñoz J-A, García-Senz J (2004) Extensional salt tectonics in a contractional orogen: a newly identified tectonic event in the Spanish Pyrenees. Geology 32:737–740CrossRefGoogle Scholar
  144. McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method vol 9. Oxford Monographs on Geology and Geophysics, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  145. Metcalf JR, Fitzgerald PG, Baldwin SL, Muñoz JA (2009) Thermochronology in a convergent orogen: constraints on thrust faulting and exhumation from the Maladeta Pluton in the Axial Zone of the Central Pyrenees. Earth Planet Sci Lett 287:488–503CrossRefGoogle Scholar
  146. Miller SR, Fitzgerald PG, Baldwin SL (2010) Cenozoic range-front faulting and development of the Transantarctic Mountains near Cape Surprise, Antarctica: Thermochronologic and geo-morphologic constraints. Tectonics 29.  https://doi.org/10.1029/2009tc002457
  147. Monteleone BD, Baldwin SL, Webb LE, Fitzgerald PG, Grove M, Schmitt A (2007) Late Miocene-Pliocene eclogite-facies metamorphism, D’Entrecastreaux Islands, SE Papua New Guinea. J Metam Geol 25:245–265CrossRefGoogle Scholar
  148. Morris RG, Sinclair HD, Yelland AJ (1998) Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res 10:69–85CrossRefGoogle Scholar
  149. Muñoz JA (1992) Evolution of a continental collision belt: ECORS Pyrenees crustal balanced cross-section. In: McClay K (ed) Thrust Tectonics. Chapman and Hall, London, pp 235–246CrossRefGoogle Scholar
  150. Muñoz JA (2002) The Pyrenees Alpine tectonics; I, The Alpine system north of the Betic Cor-dillera. In: Gibbons W, Moreno T (eds) The geology of Spain. The Geological Society, London, p 649Google Scholar
  151. Nagel TJ (2008) Tertiary subduction, collision and exhumation recorded in the Adula nappe, central Alps. Geol Soc London Spec Publ 298:365–392CrossRefGoogle Scholar
  152. Norris RJ, Cooper AF (2001) Late Quaternary slip rates and slip partitioning on the Alpine Fault, New Zealand. J Struct Geol 23:507–520CrossRefGoogle Scholar
  153. Olivetti V, Balestrieri ML, Rossetti F, Talarico FM (2013) Tectonic and climatic signals from apatite detrital fission track analysis of the Cape Roberts Project core records, South Victoria Land, Antarctica. Tectonophysics 594:80–90CrossRefGoogle Scholar
  154. Pedersen VK, Huismans RS, Moucha R (2016) Isostatic and dynamic support of high topography on a North Atlantic passive margin. Earth Planet Sci Lett 446:1–9CrossRefGoogle Scholar
  155. Petersen KD, Buck WR (2015) Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation. Geochem Geophys Geosyst 16:2564–2581CrossRefGoogle Scholar
  156. Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669CrossRefGoogle Scholar
  157. Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge University PressGoogle Scholar
  158. Powell R, Holland T (2010) Using equilibrium thermodynamics to understand metamorphism and metamorphic rocks. Elements 6:309–314CrossRefGoogle Scholar
  159. Puigdefàbregas C, Souquet P (1986) Tectonostratigraphic cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129:173–203CrossRefGoogle Scholar
  160. Purdy JW, Jager E (1976) K–Ar ages on rock forming minerals from Central Alps. Mem Univ Padova 30Google Scholar
  161. Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ~250 °C. Contrib Mineral Petr 150:146–155CrossRefGoogle Scholar
  162. Ratschbacher L, Hacker BR, Webb LE, McWilliams M, Ireland T, Dong S, Calvert A, Chateigner D, Wenk HR (2000) Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault. J Geophys Res Solid Earth 105:13303–13338CrossRefGoogle Scholar
  163. Reiners PW, Zhou Z, Ehlers TA, Changhai X, Brandon MT, Donelick RA, Nicolescu S (2003) Post-orogenic evolution of the Dabie Shan, eastern China, from (U–Th)/He and fission track thermochronology. Am J Sci 303:489–518CrossRefGoogle Scholar
  164. Ring U, Uysal IT, Glodny J, Cox SC, Little T, Thomson SN, Stubner K, Bozkaya O (2017) Faultgouge dating in the Southern Alps, New Zealand. Tectonophysics 717:321–338CrossRefGoogle Scholar
  165. Rohrman M, Beek P, Andriessen P, Cloetingh S (1995) Meso-Cenozoic morphotectonic evolution of southern Norway: Neogene domal uplift inferred from apatite fission track thermo-chronology. Tectonics 14:704–718CrossRefGoogle Scholar
  166. Rubatto D (2017) Zircon: the metamorphic mineral. Rev Min Geochem 83:261–295Google Scholar
  167. Rubatto D, Hermann J (2001) Exhumation as fast as subduction? Geology 29:3–6CrossRefGoogle Scholar
  168. Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: implications for the geodynamic evolution of the Central and Western Alps. Contrib Mineral Petr 132:269–287CrossRefGoogle Scholar
  169. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10.  https://doi.org/10.1029/2008gc002332
  170. Sawyer EW, Cesare B, Brown M (2011) When the continental crust melts. Elements 7:229–234CrossRefGoogle Scholar
  171. Schertl H-P, Schreyer W, Chopin C (1991) The pyrope-coesite rocks and their country rocks at Parigi, Dora Maira Massif, Western Alps: detailed petrography, mineral chemistry and PT-path. Contrib Mineral Petr 108:1–21CrossRefGoogle Scholar
  172. Schlup M, Carter A, Cosca M, Steck A (2003) Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: the Indus River-Tso Morari transect. NW Himalaya J Geol Soc 160:385–399CrossRefGoogle Scholar
  173. Seguret M (1972) Etude tectonique des nappes et séries décollées de la partie centrale du ver-sant sud des Pyrénées Pub Ustela, Géol Struct, pp 155Google Scholar
  174. Selverstone J, Sprear F (1985) Metamorphic P-T Paths from pelitic schists and greenstones from the south-west Tauern Window, Eastern Alps. J Metam Geol 3:439–465CrossRefGoogle Scholar
  175. Selverstone J, Spear FS, Franz G, Morteani G (1984) High-pressure metamorphism in the SW Tauern Window, Austria: PT paths from hornblende-kyanite-staurolite schists. J Petrol 25:501–531CrossRefGoogle Scholar
  176. Sheppard DS, Adams CJ, Bird GW (1975) Age of metamorphism and uplift in the Alpine Schist Belt, New Zealand. Geol Soc Am Bull 86:1147–1153CrossRefGoogle Scholar
  177. Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644CrossRefGoogle Scholar
  178. Solarino S, Malusà MG, Eva E, Guillot S, Paul A, Schwartz S, Zhao L, Aubert C, Dumont T, Pondrelli S, Salimbeni S, Wang Q, Xu X, Zheng T, Zhu R (2018) Mantle wedge exhumation beneath the Dora-Maira (U)HP dome unravelled by local earthquake tomography (Western Alps). Lithos 296–299:623–636CrossRefGoogle Scholar
  179. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Min Soc Am, Washington, DCGoogle Scholar
  180. Spear FS (2014) The duration of near-peak metamorphism from diffusion modelling of garnet zoning. J Metam Geol 32:903–914CrossRefGoogle Scholar
  181. Stern T, ten Brink US (1989) Flexural uplift of the Transantarctic Mountains. J Geophys Res 94:10315–10330CrossRefGoogle Scholar
  182. Stern TA, Okaya D, Kleffmann S, Scherwath M, Henrys S, Davey FJ (2007) Geophysical exploration and dynamics of the Alpine Fault zone. In: Okaya D, Stern TA, Davey FJ (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington, DC, pp 207–233.  https://doi.org/10.1029/175gm11CrossRefGoogle Scholar
  183. Stump E, Fitzgerald PG (1992) Episodic uplift of the Transantarctic Mountains. Geology 20:161CrossRefGoogle Scholar
  184. Sutherland R, Townend J, Toy V, Upton P, Coussens J, Allen M, Baratin L-M, Barth N, Becroft L, Boese C (2017) Extreme hydrothermal conditions at an active plate-bounding fault. Nature 546:137–140CrossRefGoogle Scholar
  185. ter Voorde M, de Bruijne CH, Cloetingh SAPL, Andriessen PAM (2004) Thermal consequences of thrust faulting: simultaneous versus successive fault activation and exhumation. Earth Planet Sci Lett 223:395–413CrossRefGoogle Scholar
  186. Tippett JM, Kamp PJJ (1993) Fission track analysis of the late Cenozoic vertical kinematics of continental Pacific crust, South Island, New Zealand. J Geophys Res Solid Earth 98:16119–16148CrossRefGoogle Scholar
  187. Toy VG, Prior DJ, Norris RJ (2008) Quartz fabrics in the Alpine Fault mylonites: Influence of pre-existing preferred orientations on fabric development during progressive uplift. J Struct Geol 30:602–621CrossRefGoogle Scholar
  188. Toy VG, Craw D, Cooper AF, Norris RJ (2010) Thermal regime in the central Alpine Fault zone, New Zealand: constraints from microstructures, biotite chemistry and fluid inclusion data. Tectonophysics 485:178–192CrossRefGoogle Scholar
  189. Tracy RJ, Robinson P (1980) Evolution of metamorphic belts: information from detailed petrologic studies. The Caledonides in the USA 2:189–196Google Scholar
  190. Vannucci G, Piazza M, Pastorino P, Fravega P (1997) Le facies a coralli coloniali e rodoficee calcaree di alcune sezioni basali della Formazione di Molare (Oligocene del Bacino Terziario del Piemonte. Italia nord-occidentale Mem Atti Soc Toscana Sci Nat, Ser A 104:1–27Google Scholar
  191. Vergés J, Fernàndez M, Martínez A (2002) The Pyrenean orogen: pre-, syn-, and post-collisional evolution. J Virtual Expl 8:55–84Google Scholar
  192. Viete DR, Hermann J, Lister GS, Stenhouse IR (2011) The nature and origin of the Barrovian metamorphism, Scotland: diffusion length scales in garnet and inferred thermal time scales. J Geol Soc 168:115–132CrossRefGoogle Scholar
  193. Vry JK, Baker J, Maas R, Little T, Grapes R, Dixon M (2004) Zoned (Cretaceous and Cenozoic) garnet and the timing of high grade metamorphism, Southern Alps, New Zealand. J Metam Geol 22:137–157CrossRefGoogle Scholar
  194. Vry J, Powell R, Golden KM, Petersen K (2010) The role of exhumation in metamorphic dehydration and fluid production. Nature Geosci 3:31CrossRefGoogle Scholar
  195. Walcott RI (1998) Modes of oblique compression: late Cenozoic tectonics of the South Island of New Zealand. Rev Geophys 36:1–26CrossRefGoogle Scholar
  196. Wallace LM, Beavan J, McCaffrey R, Berryman K, Denys P (2006) Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys J Int.  https://doi.org/10.1111/j.1365-246X.2006.03183.x
  197. Walsh EO, Hacker BR (2004) The fate of subducted continental margins: two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss Region, Norway. J Metam Geol 22:671–687CrossRefGoogle Scholar
  198. Warren-Smith E, Lamb S, Seward D, Smith E, Herman F, Stern T (2016) Thermochronological evidence of a low-angle, mid-crustal detachment plane beneath the central South Island, New Zealand. Geochem Geophys Geosyst 17:4212–4235CrossRefGoogle Scholar
  199. Webb LE, Baldwin SL, Little TA, Fitzgerald PG (2008) Can microplate rotation drive subduction inversion? Geology 36:823–826CrossRefGoogle Scholar
  200. Welke B, Licht K, Hennessy A, Hemming S, Pierce Davis E, Kassab C (2016) Applications of detrital geochronology and thermochronology from glacial deposits to the Paleozoic and Mesozoic thermal history of the Ross Embayment, Antarctica. Geochem Geophys Geosyst 17:2762–2780CrossRefGoogle Scholar
  201. Wellman H (1979) An uplift map for the South Island of New Zealand, and a model for uplift of the Southern Alps. Royal Soc New Z Bull 18:13–20Google Scholar
  202. Wightman RH, Little TA (2007) Deformation of the Pacific Plate above the Alpine Fault ramp and its relationship to expulsion of metamorphic fluids: an array of backshears. In: Okaya D, Stern T, Davey F (eds) A Continental Plate Boundary: Tectonics at South Island, New Zealand, vol 175. American Geophysical Union, Washington DC, pp 177–205CrossRefGoogle Scholar
  203. Wildman M, Cogné N, Beucher R (2018) Fission-track thermochronology applied to the evolution of passive continental margins. In: Malusà MG, Fitzgerald PG (eds) Fission-track thermochronology and its application to geology. SpringerGoogle Scholar
  204. Willett S, Beaumont C, Fullsack P (1993) Mechanical model for the tectonics of doubly vergent compressional orogens. Geology 21:371–374CrossRefGoogle Scholar
  205. Yamato P, Burov E, Agard P, Le Pourhiet L, Jolivet L (2008) HP-UHP exhumation during slow continental subduction: self-consistent thermodynamically and thermomechanically coupled model with application to the Western Alps. Earth Planet Sci Lett 271:63–74CrossRefGoogle Scholar
  206. Zattin M, Andreucci B, Thomson SN, Reiners PW, Talarico FM (2012) New constraints on the provenance of the ANDRILL AND 2A succession (western Ross Sea, Antarctica) from apatite triple dating. Geochem Geophys Geosyst 13Google Scholar
  207. Zeitler PK, Chamberlain CP, Smith HA (1993) Synchronous anatexis, metamorphism, and rapid denudation at Nanga Parbat (Pakistan Himalaya). Geology 21:347CrossRefGoogle Scholar
  208. Zhao L, Paul A, Guillot S, Solarino S, Malusà MG, Zheng T, Aubert C, Salimbeni S, Dumont T, Schwartz S (2015) First seismic evidence for continental subduction beneath the Western Alps. Geology 43:815–818CrossRefGoogle Scholar
  209. Zirakparvar NA, Baldwin SL, Vervoort JD (2011) Lu-Hf garnet geochronology applied to plate boundary zones: insights from the (U)HP terrane exhumed within the Woodlark Rift. Earth Planet Sci Lett 309:56–66CrossRefGoogle Scholar
  210. Zirakparvar NA, Baldwin SL, Schmitt AK (2014) Zircon growth in (U)HP quartzo-feldspathic host gneisses exhumed in the Woodlark Rift of Papua New Guinea. Geochem Geophys Geosyst 15:1258–1282CrossRefGoogle Scholar
  211. Zirakparvar NA, Baldwin SL, Vervoort JD (2012) The origin and evolution of the Woodlark Rift of Papua New Guinea. Gondwana Res.  https://doi.org/10.1016/j.gr.2012.06.013
  212. Zwart HJ (1979) The geology of the Central Pyrenees. Leidse Geol Mededelingen 50:1–74Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Suzanne L. Baldwin
    • 1
  • Paul G. Fitzgerald
    • 1
  • Marco G. Malusà
    • 2
  1. 1.Department of Earth SciencesSyracuse UniversitySyracuseUSA
  2. 2.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly

Personalised recommendations