Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count

  • Dylan Toh
  • Jacob Teo
  • Khoongming Khoo
  • Siang Meng Sim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10831)

Abstract

Many block ciphers and hash functions require the diffusion property of Maximum Distance Separable (MDS) matrices. Serial matrices with the MDS property obtain a trade-off between area requirement and clock cycle performance to meet the needs of lightweight cryptography. In this paper, we propose a new class of serial-type matrices called Diagonal-Serial Invertible (DSI) matrices with the sparse property. These matrices have a fixed XOR count (contributed by the connecting XORs) which is half that of existing matrices. We prove that for matrices of order 4, our construction gives the matrix with the lowest possible fixed XOR cost. We also introduce the Reversible Implementation (RI) property, which allows the inverse matrix to be implemented using the similar hardware resource as the forward matrix, even when the two matrices have different finite field entries. This allows us to search for serial-type matrices which are lightweight in both directions by just focusing on the forward direction. We obtain MDS matrices which outperform existing lightweight (involutory) matrices.

Keywords

MDS matrix Serial matrix Lightweight cryptography XOR count 

References

  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002).  https://doi.org/10.1007/978-3-662-04722-4CrossRefMATHGoogle Scholar
  3. 3.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44983-3_4CrossRefGoogle Scholar
  4. 4.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In: CHES, pp. 326–341 (2011)Google Scholar
  5. 5.
    Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_13CrossRefGoogle Scholar
  6. 6.
    Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices. Cryptology ePrint Archive, Report 2015/258 (2015). http://eprint.iacr.org/2015/258
  7. 7.
    Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices (full version). Cryptology ePrint Archive, Report 2016/186 (2016). http://eprint.iacr.org/2016/186
  8. 8.
    Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in GF(\(2^n\)) with applications to MDS matrices. Cryptology ePrint Archive, Report 2016/119 (2016). http://eprint.iacr.org/2016/119
  9. 9.
    Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-52993-5_7CrossRefGoogle Scholar
  10. 10.
    Vaudenay, S.: On the need for multipermutations: cryptanalysis of MD4 and SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60590-8_22CrossRefGoogle Scholar
  11. 11.
    Mattson Jr., H.F.: The theory of error-correcting codes (F. J. MacWilliams and N. J. A. Sloane). SIAM Rev. 22(4), 513–519 (1980)CrossRefGoogle Scholar
  12. 12.
    Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-optimal SPN structures and components with a fair comparison. Cryptology ePrint Archive, Report 2014/530 (2014). http://eprint.iacr.org/2014/530
  13. 13.
    Jean, J., Peyrin, T., Sim, S.M.: Optimizing implementations of lightweight building blocks. Cryptology ePrint Archive, Report 2017/101 (2017). http://eprint.iacr.org/2017/101
  14. 14.
    Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)Google Scholar
  15. 15.
    Gupta, K.C., Ray, I.G.: On constructions of MDS matrices from companion matrices for lightweight cryptography. Cryptology ePrint Archive, Report 2013/056 (2013). http://eprint.iacr.org/2013/056
  16. 16.
    Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (lightweight) block ciphers and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 355–371. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35999-6_23CrossRefGoogle Scholar
  17. 17.
    Sarkar, S., Syed, H., Sadhukhan, R., Mukhopadhyay, D.: Lightweight design choices for LED-like block ciphers. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol. 10698, pp. 267–281. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71667-1_14CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dylan Toh
    • 1
  • Jacob Teo
    • 1
  • Khoongming Khoo
    • 2
  • Siang Meng Sim
    • 2
    • 3
  1. 1.NUS High School of Math and ScienceSingaporeSingapore
  2. 2.DSO National LaboratoriesSingaporeSingapore
  3. 3.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations