Advertisement

Epigenetics and the Exposome

  • Michelle Plusquin
  • Nelly D. Saenen
  • Tim S. Nawrot
Chapter

Abstract

Epigenetic regulation is hereditable but can be influenced by environmental stimuli, in utero circumstances, and aging. Different layers of epigenetic remodeling including DNA methylation, modifications of histone tails, and noncoding RNAs control the spatial and temporal transcriptomic activity. In addition, the epigenome is involved in sustaining chromosome stability. Genomic DNA isolated from blood cells or other pertinent tissues is being expansively exploited for the discovery of biomarkers of effect and exposure. Technology to measure epigenetic marks on a genomic scale complemented with novel tools for data-analysis have recently been developed and continue to be enhanced. Here, we describe common techniques that are applied for untargeted approaches; and to measure regional modifications and gene-specific aberrations. Alterations in epigenetic marks have been associated with various exposures such as tobacco smoke, air pollution, and metal exposures in population-based studies. On the other hand, deviant DNA methylation is a major epigenetic mechanism of epigenetic silencing in a wide range of human diseases including cancers. Epigenetic modifications might play a prominent role in explaining biological mediation of exposures and their effect on health. This is of particular significance in early life exposures where epigenetic alterations can explain how diseases linked to in utero or childhood conditions occur later in life. We discuss relevant examples of how epigenetic remodeling by environmental stimuli affects several health outcomes in adults and in early life.

Keywords

Epigenetics Genomic DNA Biomarkers of exposure 

References

  1. Adkins NL, Niu H, Sung P, Peterson CL (2013) Nucleosome dynamics regulates DNA processing. Nat Struct Mol Biol 20(7):836–842.  https://doi.org/10.1038/nsmb.2585CrossRefGoogle Scholar
  2. Anderson JD, Lowary PT, Widom J (2001) Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target sites. J Mol Biol 307(4):977–985.  https://doi.org/10.1006/jmbi.2001.4528CrossRefGoogle Scholar
  3. Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308(5727):1466–1469.  https://doi.org/10.1126/science.1108190CrossRefGoogle Scholar
  4. Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H (2015) Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123(1):64–71.  https://doi.org/10.1289/ehp.1307884CrossRefGoogle Scholar
  5. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, Zanobetti A, Sparrow D, Vokonas PS, Schwartz J (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179(7):572–578.  https://doi.org/10.1164/rccm.200807-1097OCCrossRefGoogle Scholar
  6. Bailey KA, Wu MC, Ward WO, Smeester L, Rager JE, Garcia-Vargas G, Del Razo LM, Drobna Z, Styblo M, Fry RC (2013) Arsenic and the epigenome: interindividual differences in arsenic metabolism related to distinct patterns of DNA methylation. J Biochem Mol Toxicol 27(2):106–115.  https://doi.org/10.1002/jbt.21462CrossRefGoogle Scholar
  7. Bakulski KM, Feinberg JI, Andrews SV, Yang J, Brown S, LM S, Witter F, Walston J, Feinberg AP, Fallin MD (2016) DNA methylation of cord blood cell types: applications for mixed cell birth studies. Epigenetics 11(5):354–362.  https://doi.org/10.1080/15592294.2016.1161875CrossRefGoogle Scholar
  8. Bandyopadhyay AK, Paul S, Adak S, Giri AK (2016) Reduced LINE-1 methylation is associated with arsenic-induced genotoxic stress in children. Biometals 29(4):731–741.  https://doi.org/10.1007/s10534-016-9950-4CrossRefGoogle Scholar
  9. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395.  https://doi.org/10.1038/cr.2011.22CrossRefGoogle Scholar
  10. Barker DJ (1995) Fetal origins of coronary heart disease. BMJ 311(6998):171–174CrossRefGoogle Scholar
  11. Barth TK, Imhof A (2010) Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci 35(11):618–626.  https://doi.org/10.1016/j.tibs.2010.05.006CrossRefGoogle Scholar
  12. Bartonicek N, Maag JL, Dinger ME (2016) Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Mol Cancer 15(1):43.  https://doi.org/10.1186/s12943-016-0530-6CrossRefGoogle Scholar
  13. Bind MA, Lepeule J, Zanobetti A, Gasparrini A, Baccarelli A, Coull BA, Tarantini L, Vokonas PS, Koutrakis P, Schwartz J (2014) Air pollution and gene-specific methylation in the Normative Aging Study: association, effect modification, and mediation analysis. Epigenetics 9(3):448–458.  https://doi.org/10.4161/epi.27584CrossRefGoogle Scholar
  14. Bind MA, Coull BA, Peters A, Baccarelli AA, Tarantini L, Cantone L, Vokonas PS, Koutrakis P, Schwartz JD (2015) Beyond the mean: quantile regression to explore the association of air pollution with gene-specific methylation in the normative aging study. Environ Health Perspect 123(8):759–765.  https://doi.org/10.1289/ehp.1307824CrossRefGoogle Scholar
  15. Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M, Pegoraro V, Motta V, Tarantini L, Cantone L, Schwartz J, Bertazzi PA, Baccarelli A (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118(6):763–768.  https://doi.org/10.1289/ehp.0901300CrossRefGoogle Scholar
  16. Breton CV, Yao J, Millstein J, Gao L, Siegmund KD, Mack W, Whitfield-Maxwell L, Lurmann F, Hodis H, Avol E, Gilliland FD (2016) Prenatal air pollution exposures, DNA methyl transferase genotypes, and associations with newborn LINE1 and alu methylation and childhood blood pressure and carotid intima-media thickness in the Children’s Health Study. Environ Health Perspect 124(12):1905–1912.  https://doi.org/10.1289/EHP181CrossRefGoogle Scholar
  17. Broberg K, Ahmed S, Engstrom K, Hossain MB, Jurkovic Mlakar S, Bottai M, Grander M, Raqib R, Vahter M (2014) Arsenic exposure in early pregnancy alters genome-wide DNA methylation in cord blood, particularly in boys. J Dev Orig Health Dis 5(4):288–298.  https://doi.org/10.1017/S2040174414000221CrossRefGoogle Scholar
  18. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC Jr, Whitsel L, Kaufman JD, American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378.  https://doi.org/10.1161/CIR.0b013e3181dbece1CrossRefGoogle Scholar
  19. Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H, Lemasters GK, Ho SM (2013) Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol 131(2):592–594.e3.  https://doi.org/10.1016/j.jaci.2012.10.042CrossRefGoogle Scholar
  20. Byun HM, Colicino E, Trevisi L, Fan T, Christiani DC, Baccarelli AA (2016) Effects of air pollution and blood mitochondrial DNA methylation on markers of heart rate variability. J Am Heart Assoc 5(4):pii: e003218.  https://doi.org/10.1161/JAHA.116.003218CrossRefGoogle Scholar
  21. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801.  https://doi.org/10.1056/NEJMoa050995CrossRefGoogle Scholar
  22. Cardenas A, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Wright RO, Christiani DC, Kile ML (2015) In utero arsenic exposure and epigenome-wide associations in placenta, umbilical artery, and human umbilical vein endothelial cells. Epigenetics 10(11):1054–1063.  https://doi.org/10.1080/15592294.2015.1105424CrossRefGoogle Scholar
  23. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143(7):1084–1096.  https://doi.org/10.1016/j.cell.2010.12.008CrossRefGoogle Scholar
  24. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89(2):431–437.  https://doi.org/10.1093/toxsci/kfj030CrossRefGoogle Scholar
  25. Chen R, Meng X, Zhao A, Wang C, Yang C, Li H, Cai J, Zhao Z, Kan H (2016) DNA hypomethylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ Int 94:614–619.  https://doi.org/10.1016/j.envint.2016.06.026CrossRefGoogle Scholar
  26. Chen WT, Hung WC, Kang WY, Huang YC, Chai CY (2007) Urothelial carcinomas arising in arsenic-contaminated areas are associated with hypermethylation of the gene promoter of the death-associated protein kinase. Histopathology 51(6):785–792.  https://doi.org/10.1111/j.1365-2559.2007.02871.xCrossRefGoogle Scholar
  27. Chi GC, Liu Y, MacDonald JW, Barr RG, Donohue KM, Hensley MD, Hou L, McCall CE, Reynolds LM, Siscovick DS, Kaufman JD (2016) Long-term outdoor air pollution and DNA methylation in circulating monocytes: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Environ Health 15(1):119.  https://doi.org/10.1186/s12940-016-0202-4CrossRefGoogle Scholar
  28. Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ (2013) The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics 8(12):1321–1329.  https://doi.org/10.4161/epi.26634CrossRefGoogle Scholar
  29. Dai L, Mehta A, Mordukhovich I, Just AC, Shen J, Hou L, Koutrakis P, Sparrow D, Vokonas PS, Baccarelli AA, Schwartz JD (2017) Differential DNA methylation and PM2.5 species in a 450K epigenome-wide association study. Epigenetics 12(2):139–148.  https://doi.org/10.1080/15592294.2016.1271853CrossRefGoogle Scholar
  30. De Prins S, Koppen G, Jacobs G, Dons E, Van de Mieroop E, Nelen V, Fierens F, Int Panis L, De Boever P, Cox B, Nawrot TS, Schoeters G (2013) Influence of ambient air pollution on global DNA methylation in healthy adults: a seasonal follow-up. Environ Int 59:418–424.  https://doi.org/10.1016/j.envint.2013.07.007CrossRefGoogle Scholar
  31. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186.  https://doi.org/10.1126/science.1070919CrossRefGoogle Scholar
  32. Engstrom KS, Hossain MB, Lauss M, Ahmed S, Raqib R, Vahter M, Broberg K (2013) Efficient arsenic metabolism—the AS3MT haplotype is associated with DNA methylation and expression of multiple genes around AS3MT. PLoS One 8(1):e53732.  https://doi.org/10.1371/journal.pone.0053732CrossRefGoogle Scholar
  33. Gao C, He Z, Li X, Bai Q, Zhang Z, Zhang X, Wang S, Xiao X, Wang F, Yan Y, Li D, Chen L, Zeng X, Xiao Y, Dong G, Zheng Y, Wang Q, Chen W (2016) Specific long non-coding RNAs response to occupational PAHs exposure in coke oven workers. Toxicol Rep 3:160–166CrossRefGoogle Scholar
  34. Gensous N, Bacalini MG, Pirazzini C, Marasco E, Giuliani C, Ravaioli F, Mengozzi G, Bertarelli C, Palmas MG, Franceschi C, Garagnani P (2017) The epigenetic landscape of age-related diseases: the geroscience perspective. Biogerontology 18(4):549–559.  https://doi.org/10.1007/s10522-017-9695-7CrossRefGoogle Scholar
  35. Gervin K, Page CM, Aass HC, Jansen MA, Fjeldstad HE, Andreassen BK, Duijts L, van Meurs JB, van Zelm MC, Jaddoe VW, Nordeng H, Knudsen GP, Magnus P, Nystad W, Staff AC, Felix JF, Lyle R (2016) Cell type specific DNA methylation in cord blood: a 450K-reference data set and cell count-based validation of estimated cell type composition. Epigenetics 11(9):690–698.  https://doi.org/10.1080/15592294.2016.1214782CrossRefGoogle Scholar
  36. Ghosh S, Sengupta S, Scaria V (2014) Comparative analysis of human mitochondrial methylomes shows distinct patterns of epigenetic regulation in mitochondria. Mitochondrion 18:58–62.  https://doi.org/10.1016/j.mito.2014.07.007CrossRefGoogle Scholar
  37. Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, Marsit CJ (2016) Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the new hampshire birth cohort study (USA). Environ Health Perspect 124(8):1253–1260.  https://doi.org/10.1289/ehp.1510437CrossRefGoogle Scholar
  38. Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Anto JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Soderhall C, Yao J, London SJ, Pershagen G, Koppelman GH, Melen E (2016) Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125(1):104–110.  https://doi.org/10.1289/EHP36CrossRefGoogle Scholar
  39. Guida F, Sandanger TM, Castagne R, Campanella G, Polidoro S, Palli D, Krogh V, Tumino R, Sacerdote C, Panico S, Severi G, Kyrtopoulos SA, Georgiadis P, Vermeulen RC, Lund E, Vineis P, Chadeau-Hyam M (2015) Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet 24(8):2349–2359.  https://doi.org/10.1093/hmg/ddu751CrossRefGoogle Scholar
  40. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, Deconde R, Chen M, Rajapakse I, Friend S, Ideker T, Zhang K (2013) Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 49(2):359–367.  https://doi.org/10.1016/j.molcel.2012.10.016CrossRefGoogle Scholar
  41. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049.  https://doi.org/10.1073/pnas.0806560105CrossRefGoogle Scholar
  42. Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H, Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T, Medvedeva YA, Testa AC, Lipovich L, Yip CW, Abugessaisa I, Mendez M, Hasegawa A, Tang D, Lassmann T, Heutink P, Babina M, Wells CA, Kojima S, Nakamura Y, Suzuki H, Daub CO, de Hoon MJ, Arner E, Hayashizaki Y, Carninci P, Forrest AR (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543(7644):199–204.  https://doi.org/10.1038/nature21374CrossRefGoogle Scholar
  43. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115.  https://doi.org/10.1186/gb-2013-14-10-r115CrossRefGoogle Scholar
  44. Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, Paul SK, Tanu T, Hossain S, Saud ZA, Rahman M, Nikkon F, Miyataka H, Himeno S, Nohara K (2017) Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health 16(1):20.  https://doi.org/10.1186/s12940-017-0231-7CrossRefGoogle Scholar
  45. Hossain MB, Vahter M, Concha G, Broberg K (2012) Environmental arsenic exposure and DNA methylation of the tumor suppressor gene p16 and the DNA repair gene MLH1: effect of arsenic metabolism and genotype. Metallomics 4(11):1167–1175.  https://doi.org/10.1039/c2mt20120hCrossRefGoogle Scholar
  46. Hou L, Zhang X, Tarantini L, Nordio F, Bonzini M, Angelici L, Marinelli B, Rizzo G, Cantone L, Apostoli P, Bertazzi PA, Baccarelli A (2011) Ambient PM exposure and DNA methylation in tumor suppressor genes: a cross-sectional study. Part Fibre Toxicol 8:25.  https://doi.org/10.1186/1743-8977-8-25CrossRefGoogle Scholar
  47. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics 13:86.  https://doi.org/10.1186/1471-2105-13-86CrossRefGoogle Scholar
  48. Houseman EA, Molitor J, Marsit CJ (2014) Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30(10):1431–1439.  https://doi.org/10.1093/bioinformatics/btu029CrossRefGoogle Scholar
  49. Howe CG, Gamble MV (2016) Influence of arsenic on global levels of histone posttranslational modifications: a review of the literature and challenges in the field. Curr Environ Health Rep 3(3):225–237.  https://doi.org/10.1007/s40572-016-0104-1CrossRefGoogle Scholar
  50. Huang S, Litt M, Blakey A (2015) Chap. 2: Epigenetic gene expression and regulation. In: Histone modifications—models and mechanisms. Elsevier, pp 21–42Google Scholar
  51. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261.  https://doi.org/10.1038/nm.3981CrossRefGoogle Scholar
  52. Intarasunanont P, Navasumrit P, Waraprasit S, Chaisatra K, Suk WA, Mahidol C, Ruchirawat M (2012) Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environ Health 11:31.  https://doi.org/10.1186/1476-069X-11-31CrossRefGoogle Scholar
  53. Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15(2):R31.  https://doi.org/10.1186/gb-2014-15-2-r31CrossRefGoogle Scholar
  54. Janssen BG, Godderis L, Pieters N, Poels K, Kicinski M, Cuypers A, Fierens F, Penders J, Plusquin M, Gyselaers W, Nawrot TS (2013) Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol 10:22.  https://doi.org/10.1186/1743-8977-10-22CrossRefGoogle Scholar
  55. Janssen BG, Byun HM, Gyselaers W, Lefebvre W, Baccarelli AA, Nawrot TS (2015) Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: an ENVIRONAGE birth cohort study. Epigenetics 10(6):536–544.  https://doi.org/10.1080/15592294.2015.1048412CrossRefGoogle Scholar
  56. Janssen BG, Madlhoum N, Gyselaers W, Bijnens E, Clemente DB, Cox B, Hogervorst J, Luyten L, Martens DS, Peusens M, Plusquin M, Provost EB, Roels HA, Saenen ND, Tsamou M, Vriens A, Winckelmans E, Vrijens K, Nawrot TS (2017) Cohort profile: the ENVIRonmental influence ON early AGEing (ENVIRONAGE): a birth cohort study. Int J Epidemiol 46(5):1386–1387m.  https://doi.org/10.1093/ije/dyw269CrossRefGoogle Scholar
  57. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, Guan W, Xu T, Elks CE, Aslibekyan S, Moreno-Macias H, Smith JA, Brody JA, Dhingra R, Yousefi P, Pankow JS, Kunze S, Shah SH, McRae AF, Lohman K, Sha J, Absher DM, Ferrucci L, Zhao W, Demerath EW, Bressler J, Grove ML, Huan T, Liu C, Mendelson MM, Yao C, Kiel DP, Peters A, Wang-Sattler R, Visscher PM, Wray NR, Starr JM, Ding J, Rodriguez CJ, Wareham NJ, Irvin MR, Zhi D, Barrdahl M, Vineis P, Ambatipudi S, Uitterlinden AG, Hofman A, Schwartz J, Colicino E, Hou L, Vokonas PS, Hernandez DG, Singleton AB, Bandinelli S, Turner ST, Ware EB, Smith AK, Klengel T, Binder EB, Psaty BM, Taylor KD, Gharib SA, Swenson BR, Liang L, DeMeo DL, O’Connor GT, Herceg Z, Ressler KJ, Conneely KN, Sotoodehnia N, Kardia SL, Melzer D, Baccarelli AA, van Meurs JB, Romieu I, Arnett DK, Ong KK, Liu Y, Waldenberger M, Deary IJ, Fornage M, Levy D, London SJ (2016) Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet 9(5):436–447.  https://doi.org/10.1161/CIRCGENETICS.116.001506CrossRefGoogle Scholar
  58. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492.  https://doi.org/10.1038/nrg3230CrossRefGoogle Scholar
  59. Jones PA, Liang G (2012) The human epigenome. In: Michels KB (ed) Epigentic epidemiology, 1st edn. Springer, New York, pp 5–20.  https://doi.org/10.1007/978-94-007-2495-2CrossRefGoogle Scholar
  60. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Kupers LK, Oh SS, Hoyo C, Gruzieva O, Soderhall C, Salas LA, Baiz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Haberg SE, Xu Z, van Meurs JB, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergstrom A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, Van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Anto JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo DL, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, Koppelman GH, Relton CL, Jaddoe VW, Wilcox A, Melen E, London SJ (2016) DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet 98(4):680–696.  https://doi.org/10.1016/j.ajhg.2016.02.019CrossRefGoogle Scholar
  61. Kile ML, Baccarelli A, Hoffman E, Tarantini L, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Hsueh YM, Wright RO, Christiani DC (2012) Prenatal arsenic exposure and DNA methylation in maternal and umbilical cord blood leukocytes. Environ Health Perspect 120(7):1061–1066.  https://doi.org/10.1289/ehp.1104173CrossRefGoogle Scholar
  62. Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Cardenas A, Wright RO, Christiani DC (2014) Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 9(5):774–782.  https://doi.org/10.4161/epi.28153CrossRefGoogle Scholar
  63. Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ (2013) Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. Environ Health Perspect 121(8):971–977.  https://doi.org/10.1289/ehp.1205925CrossRefGoogle Scholar
  64. Kornfeld JW, Bruning JC (2014) Regulation of metabolism by long, non-coding RNAs. Front Genet 5:57.  https://doi.org/10.3389/fgene.2014.00057CrossRefGoogle Scholar
  65. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1):pii: E3.  https://doi.org/10.3390/biology5010003CrossRefGoogle Scholar
  66. Lambrou A, Baccarelli A, Wright RO, Weisskopf M, Bollati V, Amarasiriwardena C, Vokonas P, Schwartz J (2012) Arsenic exposure and DNA methylation among elderly men. Epidemiology 23(5):668–676.  https://doi.org/10.1097/EDE.0b013e31825afb0bCrossRefGoogle Scholar
  67. Langie SA, Szarc Vel Szic K, Declerck K, Traen S, Koppen G, Van Camp G, Schoeters G, Vanden Berghe W, De Boever P (2016) Whole-genome saliva and blood DNA methylation profiling in individuals with a respiratory allergy. PLoS One 11(3):e0151109.  https://doi.org/10.1371/journal.pone.0151109CrossRefGoogle Scholar
  68. Lee DH, Jacobs DR Jr, Porta M (2009) Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. Environ Health Perspect 117(12):1799–1802.  https://doi.org/10.1289/ehp.0900741CrossRefGoogle Scholar
  69. Lehner B, Kaneko K (2011) Fluctuation and response in biology. Cell Mol Life Sci 68(6):1005–1010.  https://doi.org/10.1007/s00018-010-0589-yCrossRefGoogle Scholar
  70. Lepeule J, Bind MA, Baccarelli AA, Koutrakis P, Tarantini L, Litonjua A, Sparrow D, Vokonas P, Schwartz JD (2014) Epigenetic influences on associations between air pollutants and lung function in elderly men: the normative aging study. Environ Health Perspect 122(6):566–572.  https://doi.org/10.1289/ehp.1206458CrossRefGoogle Scholar
  71. Levänen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S, Pollack JL, Skold CM, Svartengren M, Grunewald J, Gabrielsson S, Eklund A, Larsson BM, Woodruff PG, Erle DJ, Wheelock AM (2013) Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol 131(3):894–903.  https://doi.org/10.1016/j.jaci.2012.11.039CrossRefGoogle Scholar
  72. Li Y, Tollefsbol TO (2011) DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol 791:11–21.  https://doi.org/10.1007/978-1-61779-316-5_2CrossRefGoogle Scholar
  73. Liu X, Zheng Y, Zhang W, Zhang X, Lioyd-Jones DM, Baccarelli AA, Ning H, Fornage M, He K, Liu K, Hou L (2014) Blood methylomics in response to arsenic exposure in a low-exposed US population. J Expo Sci Environ Epidemiol 24(2):145–149.  https://doi.org/10.1038/jes.2013.89CrossRefGoogle Scholar
  74. Ma L, Li J, Zhan Z, Chen L, Li D, Bai Q, Gao C, Li J, Zeng X, He Z, Wang S, Xiao Y, Chen W, Zhang A (2016) Specific histone modification responds to arsenic-induced oxidative stress. Toxicol Appl Pharmacol 302:52–61.  https://doi.org/10.1016/j.taap.2016.03.015CrossRefGoogle Scholar
  75. Madrigano J, Baccarelli A, Mittleman MA, Wright RO, Sparrow D, Vokonas PS, Tarantini L, Schwartz J (2011) Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ Health Perspect 119(7):977–982.  https://doi.org/10.1289/ehp.1002773CrossRefGoogle Scholar
  76. Majumdar S, Chanda S, Ganguli B, Mazumder DN, Lahiri S, Dasgupta UB (2010) Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25(3):315–318.  https://doi.org/10.1002/tox.20497CrossRefGoogle Scholar
  77. Martens DS, Plusquin M, Gyselaers W, De Vivo I, Nawrot TS (2016) Maternal pre-pregnancy body mass index and newborn telomere length. BMC Med 14(1):148.  https://doi.org/10.1186/s12916-016-0689-0CrossRefGoogle Scholar
  78. Messerschmidt DM, Knowles BB, Solter D (2014) DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 28(8):812–828.  https://doi.org/10.1101/gad.234294.113CrossRefGoogle Scholar
  79. Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23(3):314–318.  https://doi.org/10.1038/15490CrossRefGoogle Scholar
  80. Needham BL, Smith JA, Zhao W, Wang X, Mukherjee B, Kardia SL, Shively CA, Seeman TE, Liu Y, Diez Roux AV (2015) Life course socioeconomic status and DNA methylation in genes related to stress reactivity and inflammation: the multi-ethnic study of atherosclerosis. Epigenetics 10(10):958–969.  https://doi.org/10.1080/15592294.2015.1085139CrossRefGoogle Scholar
  81. Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, Ilievski V, Levy D, van Geen A, Mey JL, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV (2013) A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environ Health Perspect 121(11–12):1306–1312.  https://doi.org/10.1289/ehp.1206421CrossRefGoogle Scholar
  82. Niedzwiecki MM, Liu X, Hall MN, Thomas T, Slavkovich V, Ilievski V, Levy D, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV (2015) Sex-specific associations of arsenic exposure with global DNA methylation and hydroxymethylation in leukocytes: results from two studies in Bangladesh. Cancer Epidemiol Biomark Prev 24(11):1748–1757.  https://doi.org/10.1158/1055-9965.EPI-15-0432CrossRefGoogle Scholar
  83. Pang AP, Sugai C, Maunakea AK (2016) High-throughput sequencing offers new insights into 5-hydroxymethylcytosine. Biomol Concepts 7(3):169–178.  https://doi.org/10.1515/bmc-2016-0011CrossRefGoogle Scholar
  84. Panni T, Mehta AJ, Schwartz JD, Baccarelli AA, Just AC, Wolf K, Wahl S, Cyrys J, Kunze S, Strauch K, Waldenberger M, Peters A (2016) A genome-wide analysis of dna methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the normative aging study. Environ Health Perspect 124:983–990.  https://doi.org/10.1289/ehp.1509966CrossRefGoogle Scholar
  85. Pauwels S, Truijen I, Ghosh M, Duca RC, Langie SA, Bekaert B, Freson K, Huybrechts I, Koppen G, Devlieger R, Godderis L (2017) The effect of paternal methyl-group donor intake on offspring DNA methylation and birth weight. J Dev Orig Health Dis 8(3):1–11.  https://doi.org/10.1017/S2040174417000046CrossRefGoogle Scholar
  86. Peng C, Bind MC, Colicino E, Kloog I, Byun HM, Cantone L, Trevisi L, Zhong J, Brennan K, Dereix AE, Vokonas PS, Coull BA, Schwartz JD, Baccarelli AA (2016) Particulate air pollution and fasting blood glucose in nondiabetic individuals: associations and epigenetic mediation in the normative aging study, 2000-2011. Environ Health Perspect 124(11):1715–1721.  https://doi.org/10.1289/EHP183CrossRefGoogle Scholar
  87. Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2007) Genomic methylation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86(4):1179–1186CrossRefGoogle Scholar
  88. Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Graziano JH, Gamble MV (2009) Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117(2):254–260.  https://doi.org/10.1289/ehp.11872CrossRefGoogle Scholar
  89. Pilsner JR, Hall MN, Liu X, Ilievski V, Slavkovich V, Levy D, Factor-Litvak P, Yunus M, Rahman M, Graziano JH, Gamble MV (2012) Influence of prenatal arsenic exposure and newborn sex on global methylation of cord blood DNA. PLoS One 7(5):e37147.  https://doi.org/10.1371/journal.pone.0037147CrossRefGoogle Scholar
  90. Rakyan VK, Down TA, Balding DJ, Beck S (2011) Epigenome-wide association studies for common human diseases. Nat Rev Genet 12(8):529–541.  https://doi.org/10.1038/nrg3000CrossRefGoogle Scholar
  91. Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309(5743):2010–2013.  https://doi.org/10.1126/science.1105891CrossRefGoogle Scholar
  92. Reichard JF, Schnekenburger M, Puga A (2007) Long term low-dose arsenic exposure induces loss of DNA methylation. Biochem Biophys Res Commun 352(1):188–192.  https://doi.org/10.1016/j.bbrc.2006.11.001CrossRefGoogle Scholar
  93. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093.  https://doi.org/10.1126/science.1063443CrossRefGoogle Scholar
  94. Richmond RC, Joubert BR (2017) Contrasting the effects of intra-uterine smoking and one-carbon micronutrient exposures on offspring DNA methylation. Epigenomics 9(3):351–367.  https://doi.org/10.2217/epi-2016-0135CrossRefGoogle Scholar
  95. Rojas D, Rager JE, Smeester L, Bailey KA, Drobna Z, Rubio-Andrade M, Styblo M, Garcia-Vargas G, Fry RC (2015) Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 143(1):97–106.  https://doi.org/10.1093/toxsci/kfu210CrossRefGoogle Scholar
  96. Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, Gyselaers W, Vanpoucke C, Lefebvre W, De Boever P, Nawrot TS (2017) Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the environage cohort. Environ Health Perspect 125(2):262–268.  https://doi.org/10.1289/EHP38CrossRefGoogle Scholar
  97. Sanchez-Guerra M, Zheng Y, Osorio-Yanez C, Zhong J, Chervona Y, Wang S, Chang D, McCracken JP, Diaz A, Bertazzi PA, Koutrakis P, Kang CM, Zhang X, Zhang W, Byun HM, Schwartz J, Hou L, Baccarelli AA (2015) Effects of particulate matter exposure on blood 5-hydroxymethylation: results from the Beijing truck driver air pollution study. Epigenetics 10(7):633–642.  https://doi.org/10.1080/15592294.2015.1050174CrossRefGoogle Scholar
  98. Seow WJ, Kile ML, Baccarelli AA, Pan WC, Byun HM, Mostofa G, Quamruzzaman Q, Rahman M, Lin X, Christiani DC (2014) Epigenome-wide DNA methylation changes with development of arsenic-induced skin lesions in Bangladesh: a case-control follow-up study. Environ Mol Mutagen 55(6):449–456.  https://doi.org/10.1002/em.21860CrossRefGoogle Scholar
  99. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100.  https://doi.org/10.1146/annurev.biochem.76.052705.162114CrossRefGoogle Scholar
  100. Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB (2014) Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol Cell 55(2):319–331.  https://doi.org/10.1016/j.molcel.2014.06.029CrossRefGoogle Scholar
  101. Smeester L, Rager JE, Bailey KA, Guan X, Smith N, Garcia-Vargas G, Del Razo LM, Drobna Z, Kelkar H, Styblo M, Fry RC (2011) Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol 24(2):165–167.  https://doi.org/10.1021/tx1004419CrossRefGoogle Scholar
  102. Somineni HK, Zhang X, Biagini Myers JM, Kovacic MB, Ulm A, Jurcak N, Ryan PH, Khurana Hershey GK, Ji H (2015) Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. J Allergy Clin Immunol 137(3):797–805.e5.  https://doi.org/10.1016/j.jaci.2015.10.021CrossRefGoogle Scholar
  103. Soubry A, Hoyo C, Jirtle RL, Murphy SK (2014) A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36(4):359–371.  https://doi.org/10.1002/bies.201300113CrossRefGoogle Scholar
  104. Stringhini S, Polidoro S, Sacerdote C, Kelly RS, van Veldhoven K, Agnoli C, Grioni S, Tumino R, Giurdanella MC, Panico S, Mattiello A, Palli D, Masala G, Gallo V, Castagne R, Paccaud F, Campanella G, Chadeau-Hyam M, Vineis P (2015) Life-course socioeconomic status and DNA methylation of genes regulating inflammation. Int J Epidemiol 44(4):1320–1330.  https://doi.org/10.1093/ije/dyv060CrossRefGoogle Scholar
  105. Tajuddin SM, Amaral AF, Fernandez AF, Rodriguez-Rodero S, Rodriguez RM, Moore LE, Tardon A, Carrato A, Garcia-Closas M, Silverman DT, Jackson BP, Garcia-Closas R, Cook AL, Cantor KP, Chanock S, Kogevinas M, Rothman N, Real FX, Fraga MF, Malats N, Spanish Bladder Cancer ESI (2013) Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect 121(6):650–656.  https://doi.org/10.1289/ehp.1206068CrossRefGoogle Scholar
  106. Tao MH, Zhou J, Rialdi AP, Martinez R, Dabek J, Scelo G, Lissowska J, Chen J, Boffetta P (2014) Indoor air pollution from solid fuels and peripheral blood DNA methylation: findings from a population study in Warsaw, Poland. Environ Res 134:325–330.  https://doi.org/10.1016/j.envres.2014.08.017CrossRefGoogle Scholar
  107. Tauheed J, Sanchez-Guerra M, Lee JJ, Paul L, Ibne Hasan MO, Quamruzzaman Q, Selhub J, Wright RO, Christiani DC, Coull BA, Baccarelli AA, Mazumdar M (2017) Associations between post translational histone modifications, myelomeningocele risk, environmental arsenic exposure, and folate deficiency among participants in a case control study in Bangladesh. Epigenetics 12(6):484–491.  https://doi.org/10.1080/15592294.2017.1312238CrossRefGoogle Scholar
  108. Tellez-Plaza M, Tang WY, Shang Y, Umans JG, Francesconi KA, Goessler W, Ledesma M, Leon M, Laclaustra M, Pollak J, Guallar E, Cole SA, Fallin MD, Navas-Acien A (2014) Association of global DNA methylation and global DNA hydroxymethylation with metals and other exposures in human blood DNA samples. Environ Health Perspect 122(9):946–954.  https://doi.org/10.1289/ehp.1306674CrossRefGoogle Scholar
  109. Vaiserman A (2015) Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? Clin Epigenetics 7:96.  https://doi.org/10.1186/s13148-015-0130-0CrossRefGoogle Scholar
  110. Vriens A, Nawrot TS, Saenen ND, Provost EB, Kicinski M, Lefebvre W, Vanpoucke C, Van Deun J, De Wever O, Vrijens K, De Boever P, Plusquin M (2016) Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva. Environ Health 15(1):80.  https://doi.org/10.1186/s12940-016-0162-8CrossRefGoogle Scholar
  111. Wang C, Chen R, Cai J, Shi J, Yang C, Tse LA, Li H, Lin Z, Meng X, Liu C, Niu Y, Xia Y, Zhao Z, Kan H (2016) Personal exposure to fine particulate matter and blood pressure: a role of angiotensin converting enzyme and its DNA methylation. Environ Int 94:661–666.  https://doi.org/10.1016/j.envint.2016.07.001CrossRefGoogle Scholar
  112. Ward-Caviness CK, Nwanaji-Enwerem JC, Wolf K, Wahl S, Colicino E, Trevisi L, Kloog I, Just AC, Vokonas P, Cyrys J, Gieger C, Schwartz J, Baccarelli AA, Schneider A, Peters A (2016) Long-term exposure to air pollution is associated with biological aging. Oncotarget 7(46):74510–74525.  https://doi.org/10.18632/oncotarget.12903CrossRefGoogle Scholar
  113. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388.  https://doi.org/10.1146/annurev.nutr.27.061406.093705CrossRefGoogle Scholar
  114. Wilhelm CS, Kelsey KT, Butler R, Plaza S, Gagne L, Zens MS, Andrew AS, Morris S, Nelson HH, Schned AR, Karagas MR, Marsit CJ (2010) Implications of LINE1 methylation for bladder cancer risk in women. Clin Cancer Res 16(5):1682–1689.  https://doi.org/10.1158/1078-0432.CCR-09-2983CrossRefGoogle Scholar
  115. Yehuda R, Daskalakis NP, Bierer LM, Bader HN, Klengel T, Holsboer F, Binder EB (2016) Holocaust exposure induced intergenerational effects on FKBP5 methylation. Biol Psychiatry 80(5):372–380.  https://doi.org/10.1016/j.biopsych.2015.08.005CrossRefGoogle Scholar
  116. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340CrossRefGoogle Scholar
  117. You JS, Jones PA (2012) Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 22(1):9–20.  https://doi.org/10.1016/j.ccr.2012.06.008CrossRefGoogle Scholar
  118. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A 94(20):10907–10912CrossRefGoogle Scholar
  119. Zheng SC, Beck S, Jaffe AE, Koestler DC, Hansen KD, Houseman AE, Irizarry RA, Teschendorff AE (2017a) Correcting for cell-type heterogeneity in epigenome-wide association studies: revisiting previous analyses. Nat Methods 14(3):216–217.  https://doi.org/10.1038/nmeth.4187CrossRefGoogle Scholar
  120. Zheng Y, Sanchez-Guerra M, Zhang Z, Joyce BT, Zhong J, Kresovich JK, Liu L, Zhang W, Gao T, Chang D, Osorio-Yanez C, Carmona JJ, Wang S, McCracken JP, Zhang X, Chervona Y, Diaz A, Bertazzi PA, Koutrakis P, Kang CM, Schwartz J, Baccarelli AA, Hou L (2017b) Traffic-derived particulate matter exposure and histone H3 modification: a repeated measures study. Environ Res 153:112–119.  https://doi.org/10.1016/j.envres.2016.11.015CrossRefGoogle Scholar
  121. Zhong J, Karlsson O, Wang G, Li J, Guo Y, Lin X, Zemplenyi M, Sanchez-Guerra M, Trevisi L, Urch B, Speck M, Liang L, Coull BA, Koutrakis P, Silverman F, Gold DR, Wu T, Baccarelli AA (2017) B vitamins attenuate the epigenetic effects of ambient fine particles in a pilot human intervention trial. Proc Natl Acad Sci U S A 114(13):3503–3508.  https://doi.org/10.1073/pnas.1618545114CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Michelle Plusquin
    • 1
  • Nelly D. Saenen
    • 1
  • Tim S. Nawrot
    • 1
  1. 1.Centre for Environmental SciencesHasselt UniversityHasseltBelgium

Personalised recommendations