Metaheuristic Algorithms Based on Fuzzy Logic

  • Erik Cuevas
  • Daniel Zaldívar
  • Marco Pérez-Cisneros
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 775)

Abstract

Several systems are extremely complicated to be handled quantitatively. In spite of this humans undergo them by using simplistic rules that are obtained from their own experiences.

References

  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)MathSciNetCrossRefGoogle Scholar
  2. 2.
    He, Y., Chen, H., He, Z., Zhou, L.: Multi-attribute decision making based on neutral averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)CrossRefGoogle Scholar
  3. 3.
    Taur, J., Tao, C.W.: Design and analysis of region-wise linear fuzzy controllers. IEEE Trans. Syst. Man Cybern. B Cybern. 27(3), 526–532 (1997)CrossRefGoogle Scholar
  4. 4.
    Ali, M.I., Shabir, M.: Logic connectives for soft sets and fuzzy soft sets. IEEE Trans. Fuzzy Syst. 22(6), 1431–1442 (2014)CrossRefGoogle Scholar
  5. 5.
    Novák, V., Hurtík, P., Habiballa, H., Štepnička, M.: Recognition of damaged letters based on mathematical fuzzy logic analysis. J. Appl. Logic 13(2), 94–104 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Papakostas, G.A., Hatzimichailidis, A.G., Kaburlasos, V.G.: Distance and similarity measures between intuitionistic fuzzy sets: a comparative analysis from a pattern recognition point of view. Pattern Recogn. Lett. 34(14), 1609–1622 (2013)CrossRefGoogle Scholar
  7. 7.
    Wang, X., Fu, M., Ma, H., Yang, Y.: Lateral control of autonomous vehicles based on fuzzy logic. Control Eng. Pract. 34, 1–17 (2015)CrossRefGoogle Scholar
  8. 8.
    Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 279, 615–631 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Raju, G., Nair, M.S.: A fast and efficient color image enhancement method based on fuzzy-logic and histogram. AEU Int. J. Electron. Commun. 68(3), 237–243 (2014)Google Scholar
  10. 10.
    Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A.: A hybrid intelligent approach based on computer vision and fuzzy logic for quality measurement of milled rice. Measurement 66, 26–34 (2015)CrossRefGoogle Scholar
  11. 11.
    Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm Evol. Comput. 16, 1–18 (2014)CrossRefGoogle Scholar
  12. 12.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995Google Scholar
  13. 13.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University (2005)Google Scholar
  14. 14.
    Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulations 76, 60–68 (2001)CrossRefGoogle Scholar
  15. 15.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Cruz, C., González, J., Krasnogor, G.T.N., Pelta, D.A. (eds.) Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Berlin (2010)Google Scholar
  16. 16.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, vol. 5792, pp. 169–178 (2009)CrossRefGoogle Scholar
  17. 17.
    Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)CrossRefGoogle Scholar
  18. 18.
    Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for global optimization inspired by collective animal behavior. Discrete Dyn. Nat. Soc. art. no. 638275 (2012)Google Scholar
  19. 19.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Technical Report TR-95–012. ICSI, Berkeley, CA (1995)Google Scholar
  20. 20.
    Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning. Addison-Wesley, USA (1989)Google Scholar
  21. 21.
    Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intell. 1, 27–46 (2008)CrossRefGoogle Scholar
  22. 22.
    Fernández, A., López, V., del Jesus, M.J., Herrera, F.: Revisiting evolutionary fuzzy systems: taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)CrossRefGoogle Scholar
  23. 23.
    Caraveo, C., Valdez, F., Castillo, O.: Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. 43, 131–142 (2016)CrossRefGoogle Scholar
  24. 24.
    Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015)CrossRefGoogle Scholar
  25. 25.
    Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)CrossRefGoogle Scholar
  26. 26.
    Castillo, O., Ochoa, P., Soria, J.: Differential evolution with fuzzy logic for dynamic adaptation of parameters in mathematical function optimization. In: Imprecision and Uncertainty in Information Representation and Processing, pp. 361–374 (2016)Google Scholar
  27. 27.
    Guerrero, M., Castillo, O., García Valdez, M.: Fuzzy dynamic parameters adaptation in the cuckoo search algorithm using fuzzy logic. In: CEC 2015, pp. 441–448Google Scholar
  28. 28.
    Alcala, R., Gacto, M.J., Herrera, F.: A fast and scalable multiobjective genetic fuzzy system for linguistic fuzzy modeling in high-dimensional regression problems. IEEE Trans. Fuzzy Syst. 19(4), 666–681 (2011)CrossRefGoogle Scholar
  29. 29.
    Alcala-Fdez, J., Alcala, R., Gacto, M.J., Herrera, F.: Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst. 160(7), 905–921 (2009)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Alcala, R., Alcala-Fdez, J., Herrera, F.: A proposal for the genetic lateral tuning of linguistic fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 15(4), 616–635 (2007)CrossRefGoogle Scholar
  31. 31.
    Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy Syst. 19(5), 857–872 (2011)CrossRefGoogle Scholar
  32. 32.
    Carmona, C.J., Gonzalez, P., del Jesus, M.J., Navio-Acosta, M., Jimenez-Trevino, L.: Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department. Soft. Comput. 15(12), 2435–2448 (2011)CrossRefGoogle Scholar
  33. 33.
    Cordon, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approximate Reasoning 52(6), 894–913 (2011)CrossRefGoogle Scholar
  34. 34.
    Cruz-Ramirez, M., Hervas-Martinez, C., Sanchez-Monedero, J., Gutierrez, P.A.: Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing 135, 21–31 (2014)CrossRefGoogle Scholar
  35. 35.
    Lessmann, S., Caserta, M., Arango, I.M.: Tuning metaheuristics: a data mining based approach for particle swarm optimization. Expert Syst. Appl. 38(10), 12826–12838 (2011)CrossRefGoogle Scholar
  36. 36.
    Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Omid, M., Lashgari, M., Mobli, H., Alimardani, R., Mohtasebi, S., Hesamifard, R.: Design of fuzzy logic control system incorporating human expert knowledge for combine harvester. Expert Syst. Appl. 37(10), 7080–7085 (2010)CrossRefGoogle Scholar
  38. 38.
    Fullér, R., Canós Darós, L., Darós, M.J.C.: Transparent fuzzy logic based methods for some human resource problems. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA 13, 27–41 (2012)Google Scholar
  39. 39.
    Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and approximate fuzzy-logic-controller knowledge bases from examples. Int. J. Approximate Reasoning 17(4), 369–407 (1997)CrossRefGoogle Scholar
  40. 40.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)CrossRefGoogle Scholar
  41. 41.
    Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 7, 1–13 (1975)CrossRefGoogle Scholar
  42. 42.
    Bagis, A., Konar, M.: Comparison of Sugeno and Mamdani fuzzy models optimized by artificial bee colony algorithm for nonlinear system modelling. Trans. Inst. Measur. Control 38(5), 579–592 (2016)CrossRefGoogle Scholar
  43. 43.
    Guney, K., Sarikaya, N.: Comparison of mamdani and sugeno fuzzy inference system models for resonant frequency calculation of rectangular microstrip antennas. Prog. Electromagnet. Res. B 12, 81–104 (2009)CrossRefGoogle Scholar
  44. 44.
    Baldick, R.: Applied Optimization. Cambridge University Press, Cambridge (2006)Google Scholar
  45. 45.
    Simon, D.: Evolutionary Algorithms—Biologically Inspired and Population Based Approaches to Computer Intelligence. Wiley, USA (2013)Google Scholar
  46. 46.
    Wong, S.Y., Yap, K.S., Yap, H.J., Tan, S.C., Chang, S.W.: On equivalence of FIS and ELM for interpretable rule-based knowledge representation. IEEE Trans. Neural Networks Learn. Syst. 27(7), 1417–1430 (2015)Google Scholar
  47. 47.
    Yap, K.S., Wong, S.Y., Tiong, S.K.: Compressing and improving fuzzy rules using genetic algorithm and its application to fault detection. In: IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), vol. 1, pp. 1–4 (2013)Google Scholar
  48. 48.
    Liang, J.J., Qu, B.-Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2015, Special session and competition on single objective real parameter numerical optimization. Technical Report 201311. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Nanyang Technological University, Singapore (2015)Google Scholar
  49. 49.
    Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set adaptation. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 57–64 (1995)Google Scholar
  50. 50.
    Boussaïda, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Yu, J.J.Q., Li, V.O.K.: A social spider algorithm for global optimization. Appl. Soft Comput. 30, 614–627 (2015)CrossRefGoogle Scholar
  52. 52.
    Li, M.D., Zhao, H., Weng, X.W., Han, T.: A novel nature-inspired algorithm for optimization: virus colony search. Adv. Eng. Softw. 92, 65–88 (2016)CrossRefGoogle Scholar
  53. 53.
    Han, M., Liu, C., Xing, J.: An evolutionary membrane algorithm for global numerical optimization problems. Inf. Sci. 276, 219–241 (2014)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Meng, Z., Pan, J.-S.: Monkey king evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowl. Based Syst. 97, 144–157 (2016)MathSciNetCrossRefGoogle Scholar
  55. 55.
  56. 56.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behavior: a case study on the CEC ’2005, Special session on real parameter optimization. J Heurist (2008).  https://doi.org/10.1007/s10732-008-9080-4CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Daniel Zaldívar
    • 1
  • Marco Pérez-Cisneros
    • 1
  1. 1.CUCEIUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations