Forget the “Nobody-Knows-Anything” Mantra: It’s Time for Entertainment Science!

  • Thorsten Hennig-ThurauEmail author
  • Mark B. Houston


When it comes to success for entertainment products, William Goldman famously quipped, “Nobody Knows Anything.” You’ve either got the gift—artistic and managerial intuition—or you don’t. This view has permeated entertainment for years and has suggested that scientific insights is less relevant for managing entertainment than for other industries in which it is used to create and market products. Today’s “big data analytics” revolution is seen by many as an alternative to managerial intuition. So which is the best way forward for creating successful entertainment products in the age of big data? We argue that the right path is a careful integration of intuition and analytics, building on the strengths of each and compensating for the weaknesses. We show that analytics also needs powerful theory to be effective, as empirical results and predictions will otherwise be misleading and useless. Entertainment Science fuses managerial intuition with data analytics and theory, suggesting a new path for the thoughtful entertainment manager.


  1. Amatriain, X., & Basilico, J. (2012a). Netflix recommendations: Beyond the 5 stars (Part 2). The Netflix Tech Blog, June 20,
  2. Amatriain, X., & Basilico, J. (2012b). Netflix recommendations: Beyond the 5 stars (Part 1). The Netflix Technology Blog, April 5,
  3. Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired, June 23,
  4. Angrist, J. D., & Pischke, J.-S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton: Princeton University Press.Google Scholar
  5. Arndt, S. (2009). Marken aus der Manufaktur: Filme für das 21. Jahrhundert. In T. Hennig-Thurau & V. Henning (Eds.), Guru Talk – Die deutsche Filmindustrie im 21. Jahrhundert (pp. 47–63). Marburg: Schüren Verlag.Google Scholar
  6. Austin, B. A. (1989). Immediate seating: A look at movie audiences. California: Wadsworth Pub. Co.Google Scholar
  7. Barnes, B. (2013). Solving equation of a hit film script, with data. The New York Times, May 5,
  8. Bart, P. (2017). Peter Bart: Amazon raises bet on movie business, but rivals still baffled about long-term strategy. Deadline, March 10,
  9. Beier, L.-O. (2016). Instinkt. Geschmack. Eier. Der Spiegel, February 27,
  10. Brodnig, I. (2015). Netflix-Produktchef Neil Hunt: ‘Ich weiß das alles über Sie’. profil, December 11,
  11. Caldwell, J. T. (2008). Production culture: Industrial reflexivity and critical practice in film and television. Durham and London: Duke University Press.Google Scholar
  12. Catmull, Ed. (2008). How Pixar fosters collective creativity. Harvard Business Review, 86, 64–72.Google Scholar
  13. Clement, M. (2004). Erfolgsfaktoren von Spielfilmen im Kino – Eine Übersicht der empirischen betriebswirtschaftlichen Literatur. Medien & Kommunikationswissenschaft, 52, 250–271.CrossRefGoogle Scholar
  14. Dehn, P. (2007). InsightOut: Blick auf digitales Kino und Verwertungskette insgesamt., April 2,
  15. De Vany, A. (2004). Hollywood economics: How extreme uncertainty shapes the film industry. London: Routledge.Google Scholar
  16. De Vany, A. (2006). The movies. In V. A. Ginsburgh & D. Throsby (Eds.), Handbook of the economics of art and culture (pp. 615–665). Amsterdam: Elsevier.Google Scholar
  17. Eck, D. (2016). Welcome to Magenta! Magenta, June 1,
  18. Friend, T. (2016). The mogul of the middle. The New Yorker, January 11,
  19. Gladwell, M. (2006). Annals of entertainment: The formula. The New Yorker, October 9,
  20. Goldman, W. (1983). Adventures in the screen trade. New York: Warner Books.Google Scholar
  21. Gomez-Uribe, C. A., & Hunt, N. (2015). The Netflix recommender system: Algorithms, business value, and innovation. ACM Transactions on Management Information Systems, 6, 13–19.CrossRefGoogle Scholar
  22. Hair Jr., J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Harlow: Pearson.Google Scholar
  23. Indiewire Team (2011). Show me the money: Extremal Film Partners pitches a new financing product. September 7,
  24. Jaafar, A. (2016). The king of Cannes Mario Kassar on the glory days of Carolco, why buying Arnie a plane made sense and talking vaginas. Deadline Hollywood, May 12,
  25. James, B. (1985). The Bill James historical baseball abstract. New York: Villard Books.Google Scholar
  26. Jordanous, A. (2016). Has computational creativity successfully made it ‘Beyond the Fence’ in musical theatre? Conference Paper, University of Kent.Google Scholar
  27. Karp, H. (2014). Music business plays to big data’s beat. The Wall Street Journal, December 14,
  28. Litman, B. R., & Kohl, L. S. (1989). Predicting financial success of motion pictures: The 80’s experience. Journal of Media Economics, 2, 35–50.CrossRefGoogle Scholar
  29. Littleton, C., & Holloway, D. (2017). Jeff Bezos mandates programming shift at Amazon Studios. Variety, September 8,
  30. Liu, X., Shi, S., Teixeira, T., & Wedel, M. (2018). Video content marketing: The making of clips. Journal of Marketing, 82, 86–101.CrossRefGoogle Scholar
  31. Lohr, S. (2009). Netflix awards $1 million prize and starts a new contest. The New York Times, September 21,
  32. McCarthy, E. J. (1960). Basic marketing: A managerial approach. Homewood, IL: Richard D. Irwin.Google Scholar
  33. McKenzie, R. B. (2008). Why popcorn costs so much at the movies. Leipzig: Springer.Google Scholar
  34. Mediabiz (2016). Jeffrey Katzenbergs Gedankenspiele um Paramount. March 3,
  35. Moon, S., & Song, R. (2015). The roles of cultural elements in international retailing of cultural products: An application to the motion picture industry. Journal of Retailing, 91, 154–170.CrossRefGoogle Scholar
  36. Newitz, A. (2016). Movie written by algorithm turns out to be hilarious and intense. Ars Technica, June 9,
  37. Nocera, J. (2016). Can Netflix survive in the new world it created? The New York Times Magazine, June 15,
  38. Peltoniemi, M. (2015). Cultural industries: Product-market characteristics, management challenges and industry dynamics. International Journal of Management Reviews, 17, 41–68.CrossRefGoogle Scholar
  39. Reinartz, P. (2016). Nimm einen Hund rein. Die Zeit, April 22,
  40. Seifert, M., & Hadida, A. L. (2013). On the relative importance of linear model and human judge(s) in combined forecasting. Organizational Behavior and Human Decision Processes, 120, 24–36.CrossRefGoogle Scholar
  41. Sturm, K. (2015). Mercedes-Rechenfehler in Monaco: ‘Wie zum Teufel konnte das passieren?’ Spiegel Online, May 25,
  42. The Economist (2016). Silver-screen playbook: How to make a hit film. February 27,
  43. Thompson, D. (2014). The Shazam effect. The Atlantic, December,
  44. Thompson, P., Jones, M., & Warhurst, C. (2007). From conception to consumption: Creativity and the missing managerial link. Journal of Organizational Behavior, 28, 625–640.CrossRefGoogle Scholar
  45. Tickld (2016). 31 Fascinating things most people don’t know about Netflix.
  46. Vance, A. (2013). Netflix, Reed Hastings survive missteps to join Silicon Valley’s elite. Business Week, May 10,
  47. Variety (2014). Variety launches Vscore to measure actors’ value. August 6,
  48. Vigen, T. (2015). Spurious correlations. New York: Hachette.Google Scholar
  49. Walker, J. (2016). OMG! Analytics didn’t work! LinkedIn, February 25
  50. Wallace, B. (2016). The epic fail of Hollywood’s hottest algorithm. Vulture,
  51. Zafirau, S. (2009). Audience knowledge and the everyday lives of cultural producers in Hollywood. In V. Mayer, M. J. Banks, & J. T. Caldwell (Eds.), Production studies: Cultural studies of media industries (pp. 190–202).Google Scholar
  52. Zimmer, C. (2016). In science, it’s never ‘Just a Theory’. The New York Times, April 8,

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of MünsterMünsterGermany
  2. 2.The Neeley School of BusinessTexas Christian UniversityFort WorthUSA

Personalised recommendations