Advertisement

Mechanical Conflicts in Growth Heterogeneity

  • Nathan Hervieux
  • Olivier Hamant
Chapter

Abstract

Morphogenesis involves coordinated cell division and cellular growth. Beyond average growth rate and direction, multicellular growth can also be characterized by its variance, i.e., the level of heterogeneity between individual cells or regions. Because final shapes are usually very reproducible, this raises the question of the contribution of local variability in growth in morphogenesis. Here, we focus on the mechanical conflicts that are associated with differential growth and discuss how mechanical forces, emerging from growth heterogeneity, can serve as cues to channel morphogenesis.

Keywords

Mechanical signals Stochasticity Robustness Feedback Quantitative imaging Proprioception 

References

  1. Abley K, Locke JCW, Leyser HMO (2016) Developmental mechanisms underlying variable, invariant and plastic phenotypes. Ann Bot 117:733–748CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aegerter-Wilmsen T, Aegerter CM, Hafen E, Basler K (2007) Model for the regulation of size in the wing imaginal disc of Drosophila. Mech Dev 124:318–326CrossRefPubMedGoogle Scholar
  3. Aigouy B, Farhadifar R, Staple DB, Sagner A, Röper J-C, Jülicher F, Eaton S (2010) Cell flow reorients the axis of planar polarity in the wing epithelium of Drosophila. Cell 142:773–786CrossRefPubMedGoogle Scholar
  4. Aliee M, Röper J-C, Landsberg KP, Pentzold C, Widmann TJ, Jülicher F, Dahmann C (2012) Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. Curr Biol CB 22:967–976CrossRefPubMedGoogle Scholar
  5. Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife 4:05864Google Scholar
  6. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRefPubMedGoogle Scholar
  7. Bassel GW, Stamm P, Mosca G, Barbier de Reuille P, Gibbs DJ, Winter R, Janka A, Holdsworth MJ, Smith RS (2014) Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci USA 111:8685–8690CrossRefPubMedGoogle Scholar
  8. Beauzamy L, Louveaux M, Hamant O, Boudaoud A (2015) Mechanically, the shoot apical meristem of arabidopsis behaves like a shell inflated by a pressure of about 1 MPa. Front Plant Sci 6:1038CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beer FP, Johnston ER (1992) Mechanics of material. McGraw-HillGoogle Scholar
  10. Besson S, Dumais J (2011) Universal rule for the symmetric division of plant cells. Proc Natl Acad Sci US A 108:6294–6299CrossRefGoogle Scholar
  11. Boudon F, Chopard J, Ali O, Gilles B, Hamant O, Boudaoud A, Traas J, Godin C (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput, Biol, p 11Google Scholar
  12. Bozorg B, Krupinski P, Jönsson H (2014) Stress and strain provide positional and directional cues in development. PLoS Comput Biol 10:e1003410CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bringmann M, Landrein B, Schudoma C, Hamant O, Hauser M-T, Persson S (2012) Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled. Trends Plant Sci 17:666–674CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brunet T, Bouclet A, Ahmadi P, Mitrossilis D, Driquez B, Brunet A-C, Henry L, Serman F, Béalle G, Ménager C et al (2013) Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat Commun 4:2821CrossRefPubMedPubMedCentralGoogle Scholar
  15. Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O, Kwiatkowska D (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64:5753–5767CrossRefPubMedPubMedCentralGoogle Scholar
  16. Buschmann H, Lloyd CW (2008) Arabidopsis mutants and the network of microtubule-associated functions. Mol Plant 1:888–898CrossRefPubMedGoogle Scholar
  17. Castle ES (1937) Membrane tension and orientation of structure in the plant cell wall. J Cell Comp Physiol 10:113–121CrossRefGoogle Scholar
  18. Coen E, Rebocho AB (2016) Resolving conflicts: modeling genetic control of plant morphogenesis. Dev Cell 38:579–583CrossRefPubMedGoogle Scholar
  19. Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci USA 106:8453–8458CrossRefPubMedGoogle Scholar
  20. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861CrossRefPubMedGoogle Scholar
  21. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476CrossRefPubMedGoogle Scholar
  22. Creff A, Brocard L, Ingram G (2015) A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat. Nat Commun 6:6382CrossRefPubMedGoogle Scholar
  23. Durand-Smet P, Chastrette N, Guiroy A, Richert A, Berne-Dedieu A, Szecsi J, Boudaoud A, Frachisse J-M, Bendahmane M, Hamant O et al (2014) A comparative mechanical analysis of plant and animal cells reveals convergence across kingdoms. Biophys J 107:2237–2244CrossRefPubMedPubMedCentralGoogle Scholar
  24. Elsner J, Michalski M, Kwiatkowska D (2012) Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of Arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Ann Bot 109:897–910CrossRefPubMedPubMedCentralGoogle Scholar
  25. Errera L (1886) Sur une condition fondamentale d’e´ quilibre des cellules vivantes. C R Hebd Seances Acad Sci 822–824Google Scholar
  26. Fal K, Landrein B, Hamant O (2015) Interplay between miRNA regulation and mechanical stress for CUC gene expression at the shoot apical meristem. Plant Signal, BehavGoogle Scholar
  27. Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol CB 13:1365–1377CrossRefPubMedGoogle Scholar
  28. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J, Verdeil J-L, Malandain G, Godin C (2010) Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat Methods 7:547–553CrossRefPubMedGoogle Scholar
  29. Fisher DD, Cyr RJ (2000) Mechanical forces in plant growth and development. Bull Publ Am Soc Gravit Space Biol. 13:67–73Google Scholar
  30. Geitmann A, Hush JM, Overall RL (1997) Inhibition of ethylene biosynthesis does not block microtubule re-orientation in wounded pea roots. Protoplasma 198:135–142CrossRefGoogle Scholar
  31. Green PB (1962) Mechanism for plant cellular morphogenesis. Science 138:1404–1405CrossRefPubMedGoogle Scholar
  32. Green P, King A (1966) A mechanism for the origin of specifically oriented textures in development with special reference to Nitella wall texture. Aust J Biol Sci 421–437CrossRefGoogle Scholar
  33. Hamant O, Moulia B (2016) How do plants read their own shapes? New Phytol 212:333–337CrossRefPubMedGoogle Scholar
  34. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hamant O, Traas J, Boudaoud A (2010) Regulation of shape and patterning in plant development. Curr Opin Genet Dev 20:454–459CrossRefPubMedGoogle Scholar
  36. Heath IB (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445–449CrossRefPubMedGoogle Scholar
  37. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol CB 15:1899–1911CrossRefPubMedGoogle Scholar
  38. Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jonsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8Google Scholar
  39. Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J Plant Growth Regul 19:31–44CrossRefPubMedGoogle Scholar
  40. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska A-L, Kierzkowski D, Roeder AHK, Smith RS, Boudaoud A, Hamant O (2016) A mechanical feedback restricts sepal growth and shape in arabidopsis. Curr Biol CBCrossRefGoogle Scholar
  41. Hervieux N, Tsugawa S, Fruleux A, Dumond M, Routier-Kierzkowska AL, Komatsuzaki T, Boudaoud A, Larkin JC, Smith RS, Li CB, Hamant O (2017) Mechanical shielding of rapidly growing cells buffers growth heterogeneity and contributes to organ shape reproducibility. Curr Biol 27(22):3468–3479.e4CrossRefPubMedGoogle Scholar
  42. Himmelspach R, Williamson RE, Wasteneys GO (2003) Cellulose microfibril alignment recovers from DCB-induced disruption despite microtubule disorganization. Plant J Cell Mol Biol 36:565–575CrossRefGoogle Scholar
  43. Hofmeister W (1859) Über die Beugungen saftreicher Pflanzenteile nach Erschütterung. Ber Verh Ges Wiss Leipz 175–204Google Scholar
  44. Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska A-L, Zhou Y, Chen C, Kiss A, Zhu M, Hamant O et al (2016) Variable cell growth yields reproducible organdevelopment through spatiotemporal averaging. Dev Cell 38:15–32CrossRefPubMedGoogle Scholar
  45. Hong L, Dumond M, Zhu M, Tsugawa S, Li CB, Boudaoud A, Hamant O, Roeder AHK (2018) Heterogeneity and robustness in plant morphogenesis: from cells to organs. Annu Rev Plant Biol.  https://doi.org/10.1146/annurev-arplant-042817-040517
  46. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK (2008) Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–1069CrossRefPubMedGoogle Scholar
  47. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096–1099CrossRefPubMedGoogle Scholar
  48. Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409CrossRefPubMedGoogle Scholar
  49. Landrein B, Kiss A, Sassi M, Chauvet A, Das P, Cortizo M, Laufs P, Takeda S, Aida M, Traas J et al (2015) Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife 4:e07811Google Scholar
  50. Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ, Bittig T, Said A, Jülicher F, Dahmann C (2009) Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr Biol CB 19:1950–1955CrossRefPubMedGoogle Scholar
  51. Laufs P, Grandjean O, Jonak C, Kiêu K, Traas J (1998) Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:1375–1390CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ledbetter MC, Porter KR (1963) A “microtubule” in plant cell fine structure. J Cell Biol 19:239–250CrossRefPubMedPubMedCentralGoogle Scholar
  53. Legoff L, Rouault H, Lecuit T (2013) A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Dev Camb Engl. 140:4051–4059Google Scholar
  54. Lintilhac PM, Vesecky TB (1984) Stress-induced alignment of division plane in plant tissues grown in vitro. Nature 307:363–364CrossRefGoogle Scholar
  55. Louveaux M, Julien J-D, Mirabet V, Boudaoud A, Hamant O (2016) Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 113:E4294–E4303CrossRefPubMedGoogle Scholar
  56. Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer EHK (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J Cell Mol Biol 68:377–385CrossRefGoogle Scholar
  57. Martin AC, Kaschube M, Wieschaus EF (2009) Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–499CrossRefPubMedGoogle Scholar
  58. Milani P, Gholamirad M, Traas J, Arneodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J Cell Mol Biol 67:1116–1123CrossRefGoogle Scholar
  59. Milani P, Mirabet V, Cellier C, Rozier F, Hamant O, Das P, Boudaoud A (2014) Matching patterns of gene expression to mechanical stiffness at cell resolution through quantitative tandem epifluorescence and nanoindentation. Plant Physiol 165Google Scholar
  60. Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, Boudaoud A, Kuhlemeier C (2012) Mechanical regulation of auxin-mediated growth. Curr Biol CB 22:1468–1476CrossRefPubMedGoogle Scholar
  61. Pan Y, Heemskerk I, Ibar C, Shraiman BI, Irvine KD (2016) Differential growth triggers mechanical feedback that elevates Hippo signaling. Proc Natl Acad Sci USACrossRefGoogle Scholar
  62. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495CrossRefPubMedGoogle Scholar
  63. Peaucelle A (2014) AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions. J Vis Exp JoVEGoogle Scholar
  64. Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Höfte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol CB 21:1720–1726CrossRefPubMedGoogle Scholar
  65. Peaucelle A, Wightman R, Höfte H (2015) The control of growth symmetry breaking in the Arabidopsis Hypocotyl. Curr Biol CB 25:1746–1752CrossRefPubMedGoogle Scholar
  66. Péret B, Li G, Zhao J, Band LR, Voß U, Postaire O, Luu D-T, Da Ines O, Casimiro I, Lucas M et al (2012) Auxin regulates aquaporin function to facilitate lateral root emergence. Nat Cell Biol 14:991–998CrossRefPubMedGoogle Scholar
  67. Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–665CrossRefPubMedGoogle Scholar
  68. Pouille PA et al (2009) Mechanical signals trigger Myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci Signal 2:ra16CrossRefPubMedGoogle Scholar
  69. Roeder AHK, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM (2010) Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. PLoS Biol 8:e1000367CrossRefPubMedPubMedCentralGoogle Scholar
  70. Routier-Kierzkowska A-L, Weber A, Kochova P, Felekis D, Nelson BJ, Kuhlemeier C, Smith RS (2012) Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol 158:1514–1522CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sachs J (1878) Über die Anordnung der Zellen in jüngsten Pflanzentheilen. Arb Bot Inst 46–104Google Scholar
  72. Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jonsson H, Meyerowitz EM (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3Google Scholar
  73. Sassi M, Ali O, Boudon F, Cloarec G, Abad U, Cellier C, Chen X, Gilles B, Milani P, Friml J et al (2014) An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr Biol CB 24:2335–2342CrossRefPubMedGoogle Scholar
  74. Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102:3318–3323CrossRefPubMedGoogle Scholar
  75. Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306CrossRefGoogle Scholar
  76. Thompson DW (1917) On growth and form. Cambridge University Press, UKCrossRefGoogle Scholar
  77. Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D, Dedieu A, Peaucelle A, Ludynia M, Traas J, Boudaoud A et al (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–451CrossRefPubMedGoogle Scholar
  78. Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, Maizel A, Geldner N (2014) A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178–183CrossRefPubMedGoogle Scholar
  79. Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith RS et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783CrossRefPubMedGoogle Scholar
  80. Williamson R (1990) Alignment of cortical microtubules by anisotropic wall stresses. Aust J Plant Physiol 601–613CrossRefGoogle Scholar
  81. Wymer CL, Wymer SA, Cosgrove DJ, Cyr RJ (1996) Plant cell growth responds to external forces and the response requires intact microtubules. Plant Physiol 110:425–430CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yeoman PM, Brown R (1971) Effects of mechanical stress on the plane of cell division in developing callus cultures. Ann Bot 1102–1112CrossRefGoogle Scholar
  83. Zerzour R, Kroeger J, Geitmann A (2009) Polar growth in pollen tubes is associated with spatially confined dynamic changes in cell mechanical properties. Dev Biol 334:437–446CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Reproduction et Développement des PlantesUniversité de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRALyonFrance

Personalised recommendations