Plant Biomechanics pp 165-192 | Cite as
Modeling Plant Morphogenesis: An Introduction
Abstract
In this chapter, we provide an overview of some of the computational models used to understand morphogenesis in plants. In particular, we focus on models of growth and patterning processes in primary tissues, prior to the onset of lignification. We explain the assumptions behind these models and how they relate to biological evidence. Our aim is to provide some basic intuitions regarding the construction, operation, and interpretation of such models.
Keywords
Computational modeling Physically based models Auxin patterning Phyllotaxis Vein formation Leaf development FEM Buckling GrowthNotes
Acknowledgements
We thank Richard Smith for helpful discussions and providing the simulation of auxin patterning in a developing leaf. We also would like the thank Przemyslaw Prusinkiewicz for discussions that helped to formulate some of the ideas appearing in this chapter. Support for this work was provided by the Bundesministerium für Bildung und Forschung grant 031A492, the Human Frontier Science Program grant RGP0008/2013 and the Max Planck Society. Funding from the European Commission from a Marie Skłodowska-Curie individual fellowship (Horizon 2020, 703886) is also gratefully acknowledged by AR.
References
- Abley K, De Reuille PB, Strutt D et al (2013) An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140:2061–2074. https://doi.org/10.1242/dev.062984CrossRefPubMedGoogle Scholar
- Ali O, Mirabet V, Godin C, Traas J (2014) Physical models of plant development. Annu Rev Cell Dev Biol 30:59–78. https://doi.org/10.1146/annurev-cellbio-101512-122410CrossRefPubMedGoogle Scholar
- Alvarez JP, Furumizu C, Efroni I et al (2016) Active suppression of a leaf meristem orchestrates determinate leaf growth. Elife 5:1–17. https://doi.org/10.7554/elife.15023CrossRefGoogle Scholar
- Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D et al (2015) MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife 4:1–20. https://doi.org/10.7554/elife.05864CrossRefGoogle Scholar
- Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2008) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–41. https://doi.org/10.1038/ng.189CrossRefPubMedGoogle Scholar
- Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222. https://doi.org/10.1146/annurev.cellbio.20.082503.103053CrossRefPubMedPubMedCentralGoogle Scholar
- Baskin TI, Jensen OE (2013) On the role of stress anisotropy in the growth of stems. J Exp Bot. https://doi.org/10.1093/jxb/ert176CrossRefPubMedGoogle Scholar
- Bassel GW, Stamm P, Mosca G et al (2014) Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc Natl Acad Sci USA 111:8685–8690. https://doi.org/10.1073/pnas.1404616111CrossRefPubMedPubMedCentralGoogle Scholar
- Bayer EM, Smith RS, Mandel T et al (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 5:373–384. https://doi.org/10.1101/gad.497009.5CrossRefGoogle Scholar
- Bharathan G, Goliber TE, Moore C et al (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860. https://doi.org/10.1126/science.1070343CrossRefPubMedGoogle Scholar
- Bidhendi AJ, Geitmann A (2016) Relating the mechanics of the primary plant cell wall to morphogenesis. J Exp Bot 67:449–461. https://doi.org/10.1093/jxb/erv535CrossRefPubMedPubMedCentralGoogle Scholar
- Bilsborough GD, Runions A, Barkoulas M et al (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci 108:3424–3429. https://doi.org/10.1073/pnas.1015162108CrossRefPubMedPubMedCentralGoogle Scholar
- Bolouri H (2008) Computational modeling of gene regulatory networks: a primer. World Scientific Publishing Co IncGoogle Scholar
- Boudon F, Chopard J, Ali O et al (2015) A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput Biol 11:e1003950. https://doi.org/10.1371/journal.pcbi.1003950CrossRefPubMedPubMedCentralGoogle Scholar
- Bouyer D, Geier F, Kragler F et al (2008) Two-dimensional patterning by a trapping/depletion mechanism: The role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:1166–1177. https://doi.org/10.1371/journal.pbio.0060141CrossRefGoogle Scholar
- Bozorg B, Krupinski P, Jönsson H (2014) Stress and strain provide positional and directional cues in development. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1003410CrossRefPubMedPubMedCentralGoogle Scholar
- Burian A, Raczyńska-Szajgin M, Borowska-Wykręt D et al (2015) The CUP-SHAPED COTYLEDON2 and 3 genes have a post-meristematic effect on Arabidopsis thaliana phyllotaxis. Ann Bot 115:807–820. https://doi.org/10.1093/aob/mcv013CrossRefPubMedPubMedCentralGoogle Scholar
- Chickarmane V, Roeder AHK, Tarr PT et al (2010) Computational morphodynamics: a modeling framework to understand plant growth. Annu Rev Plant Biol 61:65–87. https://doi.org/10.1146/annurev-arplant-042809-112213CrossRefPubMedPubMedCentralGoogle Scholar
- Cieslak M, Runions A, Prusinkiewicz P (2015) Auxin-driven patterning with unidirectional fluxes. J Exp Bot 66:5083–5102. https://doi.org/10.1093/jxb/erv262CrossRefPubMedPubMedCentralGoogle Scholar
- Corson F, Hamant O, Bohn S (2009) Turning a plant tissue into a living cell froth through isotropic growth. Proc Natl Acad Sci 106:8453–8458. https://doi.org/10.1073/pnas.0812493106CrossRefGoogle Scholar
- Cosgrove D (1986) Biophysical control of plant cell growth. Annu Rev Plant Physiol 37:377–405. https://doi.org/10.1146/annurev.pp.37.060186.002113CrossRefPubMedGoogle Scholar
- Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861. https://doi.org/10.1038/nrm1746CrossRefPubMedPubMedCentralGoogle Scholar
- Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476. https://doi.org/10.1093/jxb/erv511CrossRefPubMedGoogle Scholar
- Couder Y, Pauchard L, Allain C et al (2002) The leaf venation as formed in a tensorial field. Eur Phys J B 28:135–138. https://doi.org/10.1140/epjb/e2002-00211-1CrossRefGoogle Scholar
- De Rybel B, Adibi M, Breda AS et al (2014) Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345(80):1255215–1255215. https://doi.org/10.1126/science.1255215CrossRefPubMedGoogle Scholar
- Dumais J (2007) Can mechanics control pattern formation in plants? Curr Opin Plant Biol 10:58–62. https://doi.org/10.1016/j.pbi.2006.11.014CrossRefPubMedGoogle Scholar
- Dumais J, Steele C (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 7–18. https://doi.org/10.1007/s003440000003CrossRefPubMedGoogle Scholar
- Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472–503. https://doi.org/10.1017/s002211201000100xCrossRefGoogle Scholar
- Errera L (1886) Sur une condition fondamentale d’équilibre des cellules vivantes. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences 103:822–824Google Scholar
- Fayant P, Girlanda O, Chebli Y et al (2010) Finite element model of polar growth in pollen tubes. Plant Cell 22:2579–2593. https://doi.org/10.1105/tpc.110.075754CrossRefPubMedPubMedCentralGoogle Scholar
- Feugier FG, Mochizuki A, Iwasa Y (2005) Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J Theor Biol 236:366–375. https://doi.org/10.1016/j.jtbi.2005.03.017CrossRefPubMedGoogle Scholar
- Floyd SK, Bowman JL (2010) Gene expression patterns in seed plant shoot meristems and leaves: homoplasy or homology? J Plant Res 123:43–55. https://doi.org/10.1007/s10265-009-0256-2CrossRefPubMedGoogle Scholar
- Fujita H, Toyokura K, Okada K, Kawaguchi M (2011) Reaction-diffusion pattern in shoot apical meristem of plants. PLoS ONE. https://doi.org/10.1371/journal.pone.0018243CrossRefPubMedPubMedCentralGoogle Scholar
- Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478. https://doi.org/10.1016/j.tplants.2009.07.006CrossRefPubMedPubMedCentralGoogle Scholar
- Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mathematical modelling of biosystems. Applied optimization, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76784-8_1Google Scholar
- Green P (1962) Mechanism for plant cellular morphogenesisCrossRefPubMedGoogle Scholar
- Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77:515–527. https://doi.org/10.1006/anbo.1996.0062CrossRefGoogle Scholar
- Grieneisen VA, Xu J, Marée AFM et al (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013. https://doi.org/10.1038/nature06215CrossRefPubMedGoogle Scholar
- Hamant O, Heisler MG, Jönsson H et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655. https://doi.org/10.1126/science.1165594CrossRefPubMedPubMedCentralGoogle Scholar
- Hay A, Barkoulas M, Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133:3955–3961. https://doi.org/10.1242/dev.02545CrossRefPubMedGoogle Scholar
- Heisler MG, Hamant O, Krupinski P et al (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516. https://doi.org/10.1371/journal.pbio.1000516CrossRefPubMedPubMedCentralGoogle Scholar
- Hejnowicz Z, Borowska-Wykrȩt D (2005) Buckling of inner cell wall layers after manipulations to reduce tensile stress: observations and interpretations for stress transmission. Planta 220:465–473. https://doi.org/10.1007/s00425-004-1353-zCrossRefPubMedPubMedCentralGoogle Scholar
- Hejnowicz Z, Rusin A, Rusin T (2000) Tensile tissue stress affects the orientation of cortical microtubules in the epidermis of sunflower hypocotyl. J Plant Growth Regul 19:31–44. https://doi.org/10.1007/s003440000005CrossRefPubMedGoogle Scholar
- Hernandez L, Green P (1993) Transductions for the expression of structural pattern: analysis in sunflower. Plant Cell 5:1725–1738. https://doi.org/10.1105/tpc.5.12.1725CrossRefPubMedPubMedCentralGoogle Scholar
- Hisanaga T, Kawade K, Tsukaya H (2015) Compensation: a key to clarifying the organ-level regulation of lateral organ size in plants. J Exp Bot 66:1055–1063. https://doi.org/10.1093/jxb/erv028CrossRefPubMedGoogle Scholar
- Hofmeister W (1863) Zusatze und berichtigungen zu den 1851 veröffentlichen untersuchungen der entwicklung höherer kryptogamen. Jahrbucher für Wissenschaft und Botanik 3:259–293Google Scholar
- Hofmeister W (1868) Allgemeine Morphologie der Gewächse. W. EngelmannGoogle Scholar
- Hofhuis H, Moulton D, Lessinnes T et al (2016) Morphomechanical innovation drives explosive seed dispersal. Cell 166:222–233. https://doi.org/10.1016/j.cell.2016.05.002CrossRefPubMedPubMedCentralGoogle Scholar
- Jönsson H, Heisler MG, Shapiro BE et al (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638. https://doi.org/10.1073/pnas.0509839103CrossRefPubMedPubMedCentralGoogle Scholar
- Kazama T, Ichihashi Y, Murata S, Tsukaya H (2010) The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of arabidopsis thaliana. Plant Cell Physiol 51:1046–1054. https://doi.org/10.1093/pcp/pcq051CrossRefPubMedGoogle Scholar
- Kennaway R, Coen E, Green A, Bangham A (2011) Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLoS Comput Biol 7:e1002071. https://doi.org/10.1371/journal.pcbi.1002071CrossRefPubMedPubMedCentralGoogle Scholar
- Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L et al (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335(80):1096. https://doi.org/10.1126/science.1213100CrossRefPubMedGoogle Scholar
- Kicheva A, Pantazis P, Bollenbach T, Kalaidzidis Y, Bittig T, Jülicher F, González-Gaitán M (2007) Kinetics of morphogen gradient formation. Science 315:521–525. https://doi.org/10.1126/science.1135774CrossRefPubMedGoogle Scholar
- Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136:2997–3006. https://doi.org/10.1242/dev.033811CrossRefPubMedGoogle Scholar
- Kondo S, Miura T (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(80):1616–20. https://doi.org/10.1126/science.1179047CrossRefPubMedGoogle Scholar
- Kramer EM (2009) Auxin-regulated cell polarity: an inside job? Trends Plant Sci 14:242–247. https://doi.org/10.1016/j.tplants.2009.02.005CrossRefPubMedGoogle Scholar
- Kuchen EE, Fox S, de Reuille PB et al (2012) Generation of leaf shape through early patterns of growth and tissue polarity. Science 335:1092–1096. https://doi.org/10.1126/science.1214678CrossRefPubMedPubMedCentralGoogle Scholar
- Kwiatkowska D (2004) Structural integration at the shoot apical meristem: models, measurements, and experiments. Am J Bot 91:1277–1293. https://doi.org/10.3732/ajb.91.9.1277CrossRefPubMedGoogle Scholar
- Laguna MF, Bohn S, Jagla EA (2008) The role of elastic stresses on leaf venation morphogenesis. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000055CrossRefPubMedPubMedCentralGoogle Scholar
- Landrein B, Lathe R, Bringmann M et al (2013) Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in arabidopsis. Curr Biol 23:895–900. https://doi.org/10.1016/j.cub.2013.04.013CrossRefPubMedGoogle Scholar
- Laskowski M, Grieneisen VA, Hofhuis H et al (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:2721–2735. https://doi.org/10.1371/journal.pbio.0060307CrossRefGoogle Scholar
- Liang H, Mahadevan L (2009) The shape of a long leaf. Proc Natl Acad Sci USA 106:22049–22054. https://doi.org/10.1073/pnas.0911954106CrossRefPubMedPubMedCentralGoogle Scholar
- Liang H, Mahadevan L (2011) Growth, geometry, and mechanics of a blooming lily. Proc Natl Acad Sci USA 108:5516–5521. https://doi.org/10.1073/pnas.1007808108CrossRefPubMedPubMedCentralGoogle Scholar
- Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275. https://doi.org/10.1016/0022-5193(65)90077-9CrossRefPubMedGoogle Scholar
- Mähönen AP, Ten Tusscher K, Siligato R et al (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–129. https://doi.org/10.1038/nature13663CrossRefPubMedPubMedCentralGoogle Scholar
- Marcos D, Berleth T (2014) Dynamic auxin transport patterns preceding vein formation revealed by live-imaging of Arabidopsis leaf primordia. Front Plant Sci 5:235. https://doi.org/10.3389/fpls.2014.00235CrossRefPubMedPubMedCentralGoogle Scholar
- Meinhardt H (2009) The algorithmic beauty of sea shells. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-03617-4CrossRefGoogle Scholar
- Meinhardt H, Koch A-J, Bernasconi G (1998) Models of pattern formation applied to plant development. In: Barabe D, Jean RV (eds) Symmetry in plants. World Scientific, Singapore, pp 723–758. https://doi.org/10.1142/9789814261074_0027Google Scholar
- Merks RMH, Guravage M, Inze D, Beemster GTS (2011) VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol 155:656–666. https://doi.org/10.1104/pp.110.167619CrossRefPubMedPubMedCentralGoogle Scholar
- Mitchison GJ (1980) The dynamics of auxin transport. Proc R Soc London Ser B Biol Sci 209:489–511. https://doi.org/10.1098/rspb.1980.0109CrossRefGoogle Scholar
- Mitchison GJ (1977) Phyllotaxis and the fibonacci series. Science 196:270–275. https://doi.org/10.1126/science.196.4287.270CrossRefPubMedGoogle Scholar
- Mitchison GJ, Hanke DE, Sheldrake AR (1981) The polar transport of auxin and vein patterns in plants [and discussion]. Philos Trans R Soc B Biol Sci 295:461–471. https://doi.org/10.1098/rstb.1981.0154CrossRefGoogle Scholar
- Mosca G, Sapala A, Strauss S et al (2017) On the micro-indentation of plant cells in a tissue context. Phys Biol 14:15003. https://doi.org/10.1088/1478-3975/aa5698CrossRefGoogle Scholar
- Nolte T, Schopfer P (1997) Viscoelastic versus plastic cell wall extensibility in growing seedling organs: a contribution to avoid some misconceptions. J Exp Bot 48:2103–2107. https://doi.org/10.1093/jxb/48.12.2103CrossRefGoogle Scholar
- O’Connor DL, Runions A, Sluis A et al (2014) A division in PIN-Mediated auxin patterning during organ initiation in grasses. PLoS Comput Biol 10:21–24. https://doi.org/10.1371/journal.pcbi.1003447CrossRefGoogle Scholar
- Owens A, Cieslak M, Hart J et al (2016) Modeling dense inflorescences. ACM Trans Graph 35:1–14. https://doi.org/10.1145/2897824.2925982CrossRefGoogle Scholar
- Peters WS, Tomos AD (1996) The history of tissue tension. Ann Bot 77:657–65. https://doi.org/10.1006/anbo.1996.0082CrossRefPubMedGoogle Scholar
- Prusinkiewicz P, Crawford S, Smith RS et al (2009) Control of bud activation by an auxin transport switch. Proc Natl Acad Sci USA 106:17431–17436. https://doi.org/10.1073/pnas.0906696106CrossRefPubMedPubMedCentralGoogle Scholar
- Prusinkiewicz P, Runions A (2012) Computational models of plant development and form. New Phytol 193:549–569. https://doi.org/10.1111/j.1469-8137.2011.04009.xCrossRefPubMedGoogle Scholar
- Reinhardt D, Pesce E-R, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260. https://doi.org/10.1038/nature02081CrossRefPubMedGoogle Scholar
- Rodkaew Y, Chongstitvatana P, Siripant S, Lursinsap C (2003) Particle systems for plant modeling. In: B-G Hu, M Jaeger (eds) Plant growth modeling and applications. Proceedings of PMA03, Tsinghua University Press and Springer, Beijing, pp 210–217Google Scholar
- Roeder AH (2012) When and where plant cells divide: a perspective from computational modeling. Curr Opin Plant Biol 15:638–644. https://doi.org/10.1016/j.pbi.2012.08.002CrossRefPubMedGoogle Scholar
- Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844–1853. https://doi.org/10.1016/j.bpj.2011.08.016CrossRefPubMedPubMedCentralGoogle Scholar
- Rolland-Lagan A-G, Remmler L, Girard-Bock C (2014) Quantifying shape changes and tissue deformation in leaf development. Plant Physiol 165:496–505. https://doi.org/10.1104/pp.113.231258CrossRefPubMedPubMedCentralGoogle Scholar
- Rolland-Lagan AG, Prusinkiewicz P (2005) Reviewing models of auxin canalization in the context of leaf vein pattern formation in Arabidopsis. Plant J 44:854–865. https://doi.org/10.1111/j.1365-313x.2005.02581.xCrossRefPubMedGoogle Scholar
- Roussel MR, Slingerland MJ (2012) A biochemically semi-detailed model of auxin-mediated vein formation in plant leaves. BioSystems 109:475–487. https://doi.org/10.1016/j.biosystems.2012.05.010CrossRefPubMedGoogle Scholar
- Routier-Kierzkowska A-L, Smith RS (2012) Measuring the mechanics of morphogenesis. Curr Op Plant Biol 16:25–32. https://doi.org/10.1016/j.pbi.2012.11.002CrossRefPubMedGoogle Scholar
- Runions A, Fuhrer M, Lane B et al (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24:702. https://doi.org/10.1145/1073204.1073251CrossRefGoogle Scholar
- Runions A (2014) Computational modeling of leaf development and form (Doctoral dissertation, University of Calgary)Google Scholar
- Runions A, Smith RS, Prusinkiewicz P et al (2014) Computational models of auxin-driven development. Auxin Its Role Plant Dev 9783709115:315–357. https://doi.org/10.1007/978-3-7091-1526-8
- Runions A, Tsiantis M, Prusinkiewicz P (2017) A common developmental programme can produce diverse leaf shapes. New Phytol. https://doi.org/10.1111/nph.14449CrossRefPubMedPubMedCentralGoogle Scholar
- Sachs J (1878) Über die anordnung der zellen in jüngsten pflanzentheilen. Arb bot Inst Wurzburg 2:46Google Scholar
- Sachs T (2003) Collective specification of cellular development. BioEssays 25:897–903. https://doi.org/10.1002/bies.10328CrossRefPubMedGoogle Scholar
- Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027. https://doi.org/10.1101/gad.1402406CrossRefGoogle Scholar
- Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425. https://doi.org/10.3732/ajb.93.10.1415CrossRefPubMedGoogle Scholar
- Shapiro BE, Meyerowitz EM, Mjolsness E (2013) Using cellzilla for plant growth simulations at the cellular level. Front Plant Sci 4:408. https://doi.org/10.3389/fpls.2013.00408CrossRefPubMedPubMedCentralGoogle Scholar
- Sharon E, Roman B, Swinney HL (2007) Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys Rev E Stat Nonlinear Soft Matter Phys 75:1–7. https://doi.org/10.1103/physreve.75.046211CrossRefGoogle Scholar
- Smith RS (2007) Simulation models of phyllotaxis and morphogenesis in plants. (Doctoral dissertation, University of Calgary)Google Scholar
- Smith RS (2011) Modeling plant morphogenesis and growth. In: New trends in the physics and mechanics of biological systems. Oxford University Press, pp 301–338CrossRefGoogle Scholar
- Smith RS, Bayer EM (2009) Auxin transport-feedback models of patterning in plants. Plant Cell Environ 32:1258–1271. https://doi.org/10.1111/j.1365-3040.2009.01997.xCrossRefPubMedGoogle Scholar
- Smith RS, Guyomarc’h S, Mandel T et al (2006a) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–6. https://doi.org/10.1073/pnas.0510457103CrossRefGoogle Scholar
- Smith RS, Kuhlemeier C, Prusinkiewicz P (2006b) Inhibition fields for phyllotactic pattern formation: a simulation study. This article is one of a selection of papers published on the Special Theme of Shoot Apical Meristems. Can J Bot 84:1635–1649. https://doi.org/10.1139/b06-133CrossRefGoogle Scholar
- Stoma S, Lucas M, Chopard J et al (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4:e1000207. https://doi.org/10.1371/journal.pcbi.1000207CrossRefPubMedPubMedCentralGoogle Scholar
- Vlad D, Kierzkowski D, Rast MI et al (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343(80):780–3. https://doi.org/10.1126/science.1248384CrossRefPubMedGoogle Scholar
- Vogler H, Draeger C, Weber A, Felekis D et al (2013) The pollen tube: a soft shell with a hard core. Plant J 73:617–627. https://doi.org/10.1111/tpj.12061CrossRefPubMedGoogle Scholar
- Wabnik K, Kleine-Vehn J, Balla J et al (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447. https://doi.org/10.1038/msb.2010.103CrossRefPubMedPubMedCentralGoogle Scholar
- Wartlick O, Kicheva A, González-Gaitán M (2009) Morphogen gradient formation. Cold Spring Harb Perspect Biol 1:1–23. https://doi.org/10.1101/cshperspect.a001255CrossRefGoogle Scholar
- Weber A, Braybrook S, Huflejt M, Mosca G et al (2015) Measuring the mechanical properties of plant cells by combining micro-indentation with osmotic treatments. J Exp Bot 66:3229–3241. https://doi.org/10.1093/jxb/erv135CrossRefPubMedPubMedCentralGoogle Scholar
- Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369. https://doi.org/10.1016/j.tplants.2010.04.005CrossRefPubMedPubMedCentralGoogle Scholar
- Wolpert L (1969) Positional information and the spatial pattern of cellular differentiation. J Theor Biol 25:1–47. https://doi.org/10.1016/s0022-5193(69)80016-0CrossRefPubMedGoogle Scholar
- Yanagisawa M, Desyatova AS, Belteton SA et al (2015) Patterning mechanisms of cytoskeletal and cell wall systems during leaf trichome morphogenesis. Nat Plants 1:15014. https://doi.org/10.1038/nplants.2015.14CrossRefPubMedGoogle Scholar
- Yoshida S, Barbier de Reuille P, Lane B et al (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29:75–87. https://doi.org/10.1016/j.devcel.2014.02.002CrossRefPubMedGoogle Scholar