Advertisement

The Mechanics of Leaf Growth on Large Scales

  • Eran Sharon
  • Michal Sahaf
Chapter

Abstract

Leaf growth is a process during which the leaf expands by many orders of magnitude, while maintaining a proper shape. Complex mechanisms which are not fully understood regulate the local, individual expansion of multiple cells into an organ with a well-defined shape. Various factors of mechanical and biochemical nature play a role in the growth process. The mechanical factors include the cell wall properties, osmotic pressure, and interactions between neighboring cells. This happens under the strict restrictions stemming from geometric considerations, which are dictated by the three-dimensional shape of the leaf. In this chapter, we review this topic focusing on its geometric and mechanical aspects, such as stress–strain response, viscous and elastic moduli, and typical statistical properties of the growth field. We view the leaf as a sheet of active matter, capable of adjusting and responding to signals originating both from its natural internal growth processes and from its surrounding. We aim at a better understanding of the growth patterns and mechanical properties of the tissue as a whole.

Keywords

Leaf growth Remodeling Mechanical stress Morphogenesis 

References

  1. Armon S, Aharoni H, Moshe M, Sharon E (2014) Shape selection in chiral ribbons: from seed pods to supramolecular assemblies. Soft Matter 10(16):2733. http://xlink.rsc.org/?DOI=c3sm52313fCrossRefPubMedGoogle Scholar
  2. Armon S, Efrati E, Kupferman R, Sharon E (2011) Geometry and mechanics in the opening of chiral seed pods. Science (New York, N.Y.) 333(6050):1726–1730. http://www.sciencemag.org/content/333/6050/1726.shortCrossRefPubMedGoogle Scholar
  3. Audoly B, Boudaoud A (2003) Self-similar structures near boundaries in strained systems. Phys Rev Lett 91(8):86105. https://link.aps.org/doi/10.1103/PhysRevLett.91.086105
  4. Bar-Sinai Y et al (2016) Mechanical stress induces remodeling of vascular networks in growing leaves. PLoS Comput Biol 12(4):e1004819. http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004819CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bidhendi AJ, Geitmann A (2016) Relating the mechanics of the primary plant cell wall to morphogenesis. J Exp Bot 67(2):449–461. http://jxb.oxfordjournals.org/content/67/2/449.abstractCrossRefPubMedGoogle Scholar
  6. Bohn S et al (2002) Constitutive property of the local organization of leaf venation networks. Phys Rev E 65(6):61914. http://link.aps.org/doi/10.1103/PhysRevE.65.061914
  7. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165(2):373–389. http://www.scopus.com/inward/record.url?eid=2-s2.0-13144282772&partnerID=tZOtx3y1CrossRefGoogle Scholar
  8. Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52(1):167–174. http://doi.wiley.com/10.1111/j.1365-313X.2007.03234.xCrossRefPubMedGoogle Scholar
  9. Cohen J (1995) Lisianthus leaf curl a new disease of lisianthus caused by tomato yellow leaf curl virus. Plant Dis 79(4):416. http://www.cabdirect.org/abstracts/19952307537.html;jsessionid=54F0790C53EE9A2E2EE68B01F68E5AC2?freeview=trueCrossRefGoogle Scholar
  10. Comstock JP (2002) Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot 53(367):195–200. https://academic.oup.com/jxb/article-lookup/doi/10.1093/jexbot/53.367.195CrossRefPubMedGoogle Scholar
  11. Corson F, Adda-Bedia M, Boudaoud A (2009) In silico leaf venation networks: growth and reorganization driven by mechanical forces. J Theor Biol 259(3):440–448CrossRefPubMedGoogle Scholar
  12. Cosgrove DJ (2015) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67(2):463–476. http://jxb.oxfordjournals.org/content/67/2/463.shortCrossRefPubMedGoogle Scholar
  13. Couder Y et al (2002) The leaf venation as formed in a tensorial field. Eur Phys J B 28(2):135–138. http://www.springerlink.com/index/10.1140/epjb/e2002-00211-1CrossRefGoogle Scholar
  14. Coutand C et al (2000) Biomechanical study of the effect of a controlled bending on tomato stem elongation: global mechanical analysis. J Exp Bot 51(352):1813–1824. http://jxb.oxfordjournals.org/lookup/doi/10.1093/jexbot/51.352.1813CrossRefPubMedGoogle Scholar
  15. Dumais J, Forterre Y (2012) Vegetable dynamicks: the role of water in plant movements. Annu Rev Fluid Mech 44(1):453–478. http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-120710-101200CrossRefGoogle Scholar
  16. Efrati E, Sharon E, Kupferman R (2009) Elastic theory of unconstrained non-Euclidean plates. J Mech Phys Solids 57(4):762–775. http://www.sciencedirect.com/science/article/pii/S0022509608002160CrossRefGoogle Scholar
  17. Efrati E, Klein Y, Aharoni H, Sharon E (2007) Spontaneous buckling of elastic sheets with a prescribed non-Euclidean metric. Phys D Nonlinear Phenom 235(1–2 SPEC. ISS.):29–32CrossRefGoogle Scholar
  18. Elsner J, Michalski M, Kwiatkowska D (2012) Spatiotemporal variation of leaf epidermal cell growth: a quantitative analysis of arabidopsis thaliana wild-type and triple cyclinD3 mutant plants. Ann Bot 109(5):897–910. http://aob.oxfordjournals.org/content/early/2012/02/02/aob.mcs005.fullCrossRefPubMedPubMedCentralGoogle Scholar
  19. Fleming AJ et al (1999) Analysis of expansion-induced morphogenesis on the apical meristem of tomato. Planta 208(2):166–174. http://link.springer.com/10.1007/s004250050546CrossRefGoogle Scholar
  20. Gemmer JA, Venkataramani SC (2011) Shape selection in non-Euclidean plates. Phys D Nonlinear Phenom 240(19):1536–1552. http://linkinghub.elsevier.com/retrieve/pii/S0167278911001825CrossRefGoogle Scholar
  21. Gibson WT, Gibson MC (2012) Growing cells push back under pressure. Cell 149(2):259–261. http://www.sciencedirect.com/science/article/pii/S0092867412003959CrossRefPubMedGoogle Scholar
  22. Green PB, Erickson RO, Richmond PA (1970) On the physical basis of cell morphogenesis. Ann NY Acad Sci 175(1):712–731. http://doi.wiley.com/10.1111/j.1749-6632.1970.tb45187.xCrossRefGoogle Scholar
  23. Green PC, Steele S, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanism for their origin. Ann Bot 77(5):515–528. https://academic.oup.com/aob/article-lookup/doi/10.1006/anbo.1996.0062CrossRefGoogle Scholar
  24. Green PB (1999) Invited special paper. Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86(8):1059. http://links.jstor.org/sici?sici=0002-9122%28199908%2986%3A8%3C1059%3AISPEOP%3E2.0.CO%3B2-B&origin=crossrefCrossRefPubMedGoogle Scholar
  25. Guest S, Kebadze E, Pellegrino S (2011) A zero-stiffness elastic shell structure. J Mech Mater Struct 6(1–4):203–212. http://msp.org/jomms/2011/6-1/p14.xhtmlCrossRefGoogle Scholar
  26. Gupta MD, Nath U (2015) Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396. Plant Cell 27(10):2785–2799. http://www.ncbi.nlm.nih.gov/pubmed/26410303
  27. Hamant O et al (2008) Developmental patterning by mechanical signals in arabidopsis. Science 322(5908). http://science.sciencemag.org/content/322/5908/1650CrossRefGoogle Scholar
  28. Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135(1):212–220. http://www.plantphysiol.org/content/135/1/212CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hervieux N et al (2016) A mechanical feedback restricts sepal growth and shape in arabidopsis. Curr Biol 26(8):1019–1028. http://linkinghub.elsevier.com/retrieve/pii/S0960982216301804CrossRefGoogle Scholar
  30. Jaffe MJ (1980) Morphogenetic responses of plants to mechanical stimuli or stress. BioScience 30(4):239–243. http://bioscience.oxfordjournals.org/content/30/4/239.abstractCrossRefGoogle Scholar
  31. Kim J et al (2012) Designing responsive buckled surfaces by halftone gel lithography. Science 335(6073)CrossRefPubMedGoogle Scholar
  32. Klein Y, Efrati E, Sharon E (2007) Shaping of elastic sheets by prescription of non-Euclidean metrics. Science 315(5815)CrossRefPubMedGoogle Scholar
  33. Klein Y, Venkataramani S, Sharon E (2011) Experimental study of shape transitions and energy scaling in thin non-Euclidean plates. Phys Rev Lett 106(11):118303. http://link.aps.org/doi/10.1103/PhysRevLett.106.118303
  34. Levin I, Sharon E (2016) Anomalously soft non-Euclidean springs. Phys Rev Lett 116(3):35502. http://link.aps.org/doi/10.1103/PhysRevLett.116.035502
  35. Marchetti MC et al (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85(3):1143–1189. http://link.aps.org/doi/10.1103/RevModPhys.85.1143CrossRefGoogle Scholar
  36. Nakayama N et al (2012) Mechanical regulation of auxin-mediated growth. Current Biol CB 22(16):1468–1476. http://www.sciencedirect.com/science/article/pii/S0960982212007269CrossRefPubMedGoogle Scholar
  37. Nath U et al (2003) Genetic control of surface curvature. Science (New York, N.Y.) 299(5611):1404–1407. http://www.ncbi.nlm.nih.gov/pubmed/12610308 (January 2, 2016)CrossRefPubMedGoogle Scholar
  38. Nath U, Coen E (2003) Genetic control of surface curvature. Science 299(5611):1404–1407CrossRefPubMedGoogle Scholar
  39. O’Neill B (2001) Elementary differential geometryGoogle Scholar
  40. Palatnik JF et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263. http://dx.doi.org/10.1038/nature01958CrossRefGoogle Scholar
  41. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science (New York, N.Y.) 312(5779):1491–1495. http://www.sciencemag.org/content/312/5779/1491CrossRefPubMedGoogle Scholar
  42. Prost J, Jülicher F, Joanny JF (2015) Active gel physics. Nat Phys 11(2):111. http://www.nature.com/nphys/journal/v11/n2/abs/nphys3224.htmlCrossRefGoogle Scholar
  43. Remmler L, Rolland-Lagan AG (2012) Computational method for quantifying growth patterns at the adaxial leaf surface in three dimensions. Plant Physiol 159(1):27–39. http://www.ncbi.nlm.nih.gov/pubmed/22402928CrossRefPubMedPubMedCentralGoogle Scholar
  44. Runions A et al (2005) Modeling and visualization of leaf venation patterns. ACM Trans Graph 24(3):702. http://portal.acm.org/citation.cfm?doid=1073204.1073251CrossRefGoogle Scholar
  45. Sachs T (1969) Polarity and the induction of organized vascular tissues. Ann Bot 33(2):263–275. https://academic.oup.com/aob/article/165334/PolarityCrossRefGoogle Scholar
  46. Sahaf M, Sharon E (2016) The rheology of a growing leaf: stress-induced changes in the mechanical properties of leaves. J Exp Bot 67(18):5509–5515. http://www.ncbi.nlm.nih.gov/pubmed/27651350CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sampathkumar A, Yan A, Krupinski P, Meyerowitz EMM (2014) Physical forces regulate plant development and morphogenesis. Curr Biol 24(10):R475–R483. http://dx.doi.org/10.1016/j.cub.2014.03.014CrossRefPubMedGoogle Scholar
  48. Santangelo CD (2009) Buckling thin disks and ribbons with non-Euclidean metrics. EPL (Europhys Lett). http://iopscience.iop.org/article/10.1209/0295-5075/86/34003/metaCrossRefGoogle Scholar
  49. Scarpella E, Marcos D, Friml J, Berleth T (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20(8):1015–1027. http://www.ncbi.nlm.nih.gov/pubmed/16618807CrossRefGoogle Scholar
  50. Sharon E, Efrati E (2010) The mechanics of non-Euclidean plates. Soft Matter 6(22):5693. http://xlink.rsc.org/?DOI=c0sm00479kCrossRefGoogle Scholar
  51. Shipman PD, Newell AC (2005) Polygonal planforms and phyllotaxis on plants. J Theor Biol 236(2):154–197. http://www.sciencedirect.com/science/article/pii/S0022519305000950CrossRefPubMedGoogle Scholar
  52. Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102(9):3318–3323. http://www.ncbi.nlm.nih.gov/pubmed/15728365CrossRefGoogle Scholar
  53. Tauriello G et al (2015) Variability and constancy in cellular growth of arabidopsis sepals. Plant Physiol 169(4):2342–2358. http://www.ncbi.nlm.nih.gov/pubmed/26432876
  54. Thompson DW (1942) On growth and form. On Growth FormGoogle Scholar
  55. Trewavas A, Knight M (1994) Mechanical signalling, calcium and plant form. Signals and signal transduction pathways in plants. Springer Netherlands, Dordrecht, pp 93–105. http://www.springerlink.com/index/10.1007/978-94-011-0239-1_6CrossRefGoogle Scholar
  56. Uyttewaal M et al (2012) Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in arabidopsis. Cell 149(2):439–451. http://www.sciencedirect.com/science/article/pii/S0092867412002899CrossRefPubMedGoogle Scholar
  57. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275. http://www.nature.com/doifinder/10.1038/nrm1890CrossRefPubMedGoogle Scholar
  58. Volokh KY (2006) Tissue morphogenesis: a surface buckling mechanism. Int J Dev Biol 50(2–3):359–365. http://www.ncbi.nlm.nih.gov/pubmed/16479503CrossRefPubMedGoogle Scholar
  59. Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15(7):363–369. http://www.sciencedirect.com/science/article/pii/S1360138510000737CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wolff J (1986) Law bone remodelling. Springer, Berlin Heidelberg. http://link.springer.com/10.1007/978-3-642-71031-5
  61. Wu ZL et al (2013) Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses. Nat Commun 4:1586. http://www.nature.com/doifinder/10.1038/ncomms2549
  62. Zonia L, Munnik T (2007) Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12(3):90–97. http://www.sciencedirect.com/science/article/pii/S1360138507000337CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Racah Institute of PhysicsThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations